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Abstract: A multiple sclerosis (MS) diagnosis often relies upon clinical presentation and qualitative
analysis of standard, magnetic resonance brain images. However, the accuracy of MS diagnoses
can be improved by utilizing advanced brain imaging methods. We assessed the accuracy of a new
neuroimaging marker, visual-evoked cerebral metabolic rate of oxygen (veCMRO2), in classifying MS
patients and closely age- and sex-matched healthy control (HC) participants. MS patients and HCs
underwent calibrated functional magnetic resonance imaging (cfMRI) during a visual stimulation task,
diffusion tensor imaging, T1- and T2-weighted imaging, neuropsychological testing, and completed
self-report questionnaires. Using resampling techniques to avoid bias and increase the generalizability
of the results, we assessed the accuracy of veCMRO2 in classifying MS patients and HCs. veCMRO2

classification accuracy was also examined in the context of other evoked visuofunctional measures,
white matter microstructural integrity, lesion-based measures from T2-weighted imaging, atrophy
measures from T1-weighted imaging, neuropsychological tests, and self-report assays of clinical
symptomology. veCMRO2 was significant and within the top 16% of measures (43 total) in classifying
MS status using both within-sample (82% accuracy) and out-of-sample (77% accuracy) observations.
High accuracy of veCMRO2 in classifying MS demonstrated an encouraging first step toward
establishing veCMRO2 as a neurodiagnostic marker of MS.
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1. Introduction

Current procedures for diagnosing multiple sclerosis (MS) rely primarily upon clinical
presentation and qualitative analysis of standard, medical-grade (e.g., lower resolution) magnetic
resonance structural, brain images, e.g., [1]. It has been demonstrated that the diagnostic accuracy of
MS can be improved when providers implement advanced neuroimaging techniques and analyses that
are not presently common in clinical practice, e.g., [2], see also [3]. Further, research using advanced
neuroimaging techniques has demonstrated that these techniques can be more sensitive than their
traditional counterparts in detecting subtle changes associated with very early manifestations of MS,
e.g., [4,5]. Here, we investigated the accuracy of an advanced neuroimaging technique never before
used in MS, calibrated functional magnetic resonance imaging (cfMRI), to classify MS patients and
closely age- and sex-matched healthy controls (HCs). Specifically, we focused our analyses upon the
ability of a new neuroimaging marker, visual-evoked cerebral metabolic rate of oxygen (veCMRO2),
to accurately discriminate between MS patients and HCs.

cfMRI is a relatively new neuroimaging technique that capitalizes upon established relationships
between blood-oxygen-level dependent (BOLD) signal and cerebral blood flow (CBF) in order to
estimate steady-state, oxygen metabolism [6,7] see [8]. The technique gets its name from the use
of a BOLD-calibration parameter, often acquired during a gas-inhalation challenge. The CMRO2

metric permitted by cfMRI offers several advantages over the more commonly used BOLD signal.
First, CMRO2 offers physiological specificity. CMRO2 represents a true physiological process, oxygen
metabolism, whereas BOLD reflects a confluence of processes and as such, is physiologically
non-specific. Second, calibration-derived CMRO2 is strongly tied to electrical and chemical neural
activity, e.g., [9–15], whereas an appreciable component of BOLD signal is unexplained by neural
activity, e.g., [16–20], see [21], but see [9]. Finally, CMRO2 measures are not dependent upon the
hemodynamic assumptions of BOLD, making them optimal measures of brain function in populations
with atypical hemodynamics, like MS, e.g., [22,23], see [24].

Evaluating CMRO2 as a diagnostic marker of MS is particularly relevant for these patients
because MS is associated with changes to neurometabolism. Neuroimaging research has produced
considerable evidence of altered neurometabolism in MS, e.g., [25–29]. In one study, Ge and
colleagues [30] demonstrated decreases in brain-wide resting CMRO2 for MS patients relative to HCs.
Some neuroimaging studies have shown that neurometabolic alterations were related to white matter
macrostructural (i.e., lesions, e.g., [30]) or microstructural damage in MS, e.g., [27,28]. For example,
magnetic resonance spectroscopy in centrum semiovale white matter has shown that N-acetylaspertate
(NAA) and NAA: creatine ratios were strongly related to diffusion-weighted indices of white matter
structural integrity in MS patients [27].

It is intuitive that MS patients would show differences in in vivo neurometabolism when
considering that postmortem analyses have revealed extensive alterations to the mitochondria in
lesioned and non-lesioned MS neural tissue [31–33], see [34–36]. For instance, Singhal and colleagues [33]
found decreases in postmortem NAA, a partial marker of neuronal respiratory capacity, and decreases
in electron transport subunit proteins across lesioned and non-lesioned MS grey matter, relative to
matched control participants’ grey matter. Taken together, the results of postmortem and in vivo
neuroimaging studies demonstrate that neurometabolic alterations are generally featured in MS.

Evaluating veCMRO2 should also be particularly relevant as a diagnostic marker of MS because
MS is marked by alterations to the neural substrate of the visual system, see [37–40] see also [5]. The use
of advanced imaging techniques such as high-resolution structural brain imaging, optical coherence
tomography (OCT), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI)
has revealed that visual system alterations exist even in MS patients without visual disturbances
or a history of optic neuritis (a clinical syndrome closely linked to MS and marked by visual
impairment and visual pathway insult). Indeed, there are MS-related structural alterations to both early
(e.g., retinae) and later (e.g., optic radiations) portions of the afferent visual pathway, and alterations to
visuocortical activity in patients without a history of optic neuritis see [39]. For instance, Alshowaier
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and colleagues [41] used electroencephalogram recordings to show that MS patients without a history
of optic neuritis demonstrated delayed inion channel, multifocal visual-evoked electrical potentials
relative to age- and sex-matched HCs. Previous work in our laboratory has also revealed alterations to
visual cortex BOLD signal during visual stimulation in MS patients with normal or corrected-to-normal
vision compared to matched HCs [42], see also [43]. Together, structural and functional imaging results
suggest that changes to the visual system are a robust marker of MS pathology.

MS is associated with changes to neurometabolism and alterations to the neural substrate of
the visual system. Thus, visual-evoked oxygen metabolism signals in visual cortex (i.e., veCMRO2)
should be a diagnostically relevant marker of MS. We assessed the extent to which veCMRO2 signals
could be used to discriminate between MS patients and HCs. The classification accuracy of veCMRO2

was examined in the context of other variables commonly assayed in MS, including measures of
neurological insult (e.g., gross lesion volume, parenchymal atrophy), neuropsychological change
(e.g., Brief Repeatable Battery of Neuropsychological Tests [44]), and self-report symptom measures
(e.g., subjective fatigue). We tested the extent to which veCMRO2, and these other measures, could
classify MS status using both within-sample and out-of-sample observations.

2. Materials and Methods

2.1. Participants

Participants between the ages of 18 and 65 were recruited for this study. Participants were required
to be free of MR-contraindicators, concurrent substance abuse, have normal or corrected-to-normal
vision, and speak fluent English. Because study procedures included a gas-inhalation challenge
(see Section 2.4), participant selection was limited to non-smokers. Participants did not have histories
of respiratory or pulmonary problems, cerebral vascular issues, or cardiac problems. Participants were
required to have a score greater than 21 on the telephone interview for cognitive status [45]. Thirty-one
participants in total met the inclusion criteria.

Twelve MS patients meeting the above criteria were recruited from the Clinical Center for Multiple
Sclerosis at the University of Texas Southwestern Medical Center. Eleven patients had a diagnosis of
relapsing-remitting MS and one patient had a diagnosis of secondary-progressive MS. Patients were
required to be at least 1 month past their most recent exacerbation and their last corticosteroid treatment.
Patients were recruited who did not report a history of optic neuritis. Patients without a history of
optic neuritis were specifically selected so as to limit additional variability from attributed to severe,
anterior visual pathway damage/dysfunction (e.g., such as that resulting from conduction block) and
potential visual impairment. All MS patients’ vision was normal or corrected-to-normal. Two patients
withdrew or declined to undergo the gas challenge (total n = 10).

Nineteen HC participants were recruited from the Dallas-Fort Worth Metroplex via email, posted
flyers, and word-of-mouth. These participants were evaluated for the general inclusion/exclusion
criteria described above. Three HCs did not undergo the scanning protocol because of exclusions
discovered after study enrollment (e.g., concussion history revealed after pre-screening, incidental MR
finding). Two HCs withdrew or declined to undergo the gas challenge. During imaging processing
(see Section 2.5), one HC’s functional images failed to appropriately register to their anatomical image
after multiple attempts, so this person was excluded. Thirteen HCs (n = 13) remained for subsequent
analyses. These participants were closely age- and sex-matched to the MS patients (see Table 1).
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Table 1. Group Characteristics.

MS HC p

Age 50.10 (3.35) 50.77 (3.35) 0.885 a

MFIS 39.10 (7.62) 20.54 (4.57) 0.046 a

Sex (% female) 90.00% 84.62% 0.704 b

TICS Score 27.00 (0.82) 28.08 (1.43) 0.520 a

Age of MS Onset 38.67 (2.42) - -
Disease Duration 118.80 (19.32) - -
Last Flare-up 28.60 (11.32) - -
Neurological Disability Score 15.70 (3.71) - -
Disease Modifying Therapies

Dalfampridine 50% - -
Dimethyl fumarate 10% - -
Fingolimod 20% - -
Glatiramer acetate 10% - -

Mean (SEM). Age in years. MFIS = modified fatigue impact score total. Sex in percent female. TICS score = telephone
interview for cognitive status score. Age of MS onset in years. Disease duration and last flare-up in months.
Neurological disability score measured by self-report [46]. Disease modifying therapies represent percent of
participants reporting use of therapy. a p-value based upon independent samples t-test. b p-value based upon
Pearson χ2.

2.2. Study Procedures

Study procedures were approved by the University of Texas Southwestern Medical Center
Institutional Review Board. Recruitment numbers were approximated based upon previous research
showing sufficient power to demonstrate group changes in calibrated fMRI (cfMRI) contrasts with
similar sample sizes [22,23]. Participants meeting inclusion criteria were asked to refrain from
caffeine use at least two hours before their scheduled appointment time, e.g., [47]. They were
also asked not to consume alcohol on the same calendar day before their scheduled appointment.
Participants gave written informed consent before undergoing procedures and were compensated
for their time. Participants underwent functional and structural neuroimaging on a Philips 3-Tesla
magnet (Philips Medical Systems, Best, The Netherlands) with an 8-channel SENSE radiofrequency
head coil. Foam padding was placed around the head to minimize motion during MRI scan
acquisition. Participants completed standard neuropsychological tests (e.g., Brief Repeatable Battery
of Neuropsychological tests [44]) and self-report measures regarding their general health and
symptomology (i.e., SF-36 [48], Modified Fatigue Impact Scale (MFIS, [49]); see Table 2 for a complete
list of model variables).

Table 2. Predictor Variables.

Predictor (Units if Available) Predictor Category What Predictor Measures

Normalized Grey Matter Volume (mm3) MR Image Total grey matter volume normalized to skull
Normalized White Matter Volume (mm3) MR Image Total white matter volume normalized to skull
Normalized Whole Brain Volume (mm3) MR Image Total brain volume normalized to skull
Skeleton AD (mm2/s) MR Image Diffusion along primary diffusion axis
Skeleton FA (proportion) MR Image Proportion of anisotropic diffusion
Skeleton MD (mm2/s) MR Image Average Diffusion in primary diffusion axes
Skeleton RD (mm2/s) MR Image Diffusion orthogonal to primary diffusion axis
T2-FLAIR Lesion Burden-absolute lesion volume (mm3) MR Image Total volume of lesioned brain tissue
T2-FLAIR Lesion Burden-relative lesion volume (%) MR Image Total lesioned brain tissue relative to total white matter volume
T2-FLAIR spatially distinct lesion count MR Image Total number of spatially distinct lesions
veBOLD (% signal change) MR Image Visual cortex BOLD response to visual stimulation task
veCBF (% signal change) MR Image Visual cortex CBF response to visual stimulation task
veCMRO2 (% signal change) MR Image Visual cortex CMRO2 response to visual stimulation task
ven (proportion) MR Image Visual cortex neural-vascular coupling
10/36 Delayed Recall (total correct after 15 min) Neuropsych Visuospatial memory/learning and delayed recall
10/36 Immediate Recall (total correct) Neuropsych Visuospatial memory/learning
25 Foot Walk (s) Neuropsych Walking ability and gait speed
9-Hole Peg Test-Dominant Hand (s) Neuropsych Finger and hand dexterity
9-Hole Peg Test-Non-dominant Hand (s) Neuropsych Finger and hand dexterity
Box Completion (items completed) Neuropsych Motor control
Controlled Oral Word Association Test (total correct) Neuropsych Verbal association fluency
Number Comparison (items completed) Neuropsych Processing speed
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Table 2. Cont.

Predictor (Units if Available) Predictor Category What Predictor Measures

Paced Auditory Serial Addition Test 2 (% correct) Neuropsych Processing speed and selective/sustained attention
Paced Auditory Serial Addition Test 3 (% correct) Neuropsych Processing speed and selective/sustained attention
Selective Reminding Task Delayed (items recalled) Neuropsych Verbal learning and memory
Selective Reminding Task Long-term Storage (items recalled) Neuropsych Verbal learning and long-term memory
Symbol-digit Modalities Test (items completed) Neuropsych Sustained attention and concentration
Trail Making Task Form A (s) Neuropsych Visual search, attention, mental flexibility, and motor function
Trail Making Task Form B (s) Neuropsych Visual search, attention, mental flexibility, and motor function
Trail Making Task Form B-A (s) Neuropsych Visual search, attention, mental flexibility, and motor function
WAIS-III Digit Span Backward (items completed) Neuropsych Short-term, working memory
WAIS-III Digit Span Forward (items completed) Neuropsych Short-term, working memory
WAIS-III Digit Span Total (items completed) Neuropsych Short-term, working memory
WAIS-III Digit symbol coding (items completed) Neuropsych Performance subtest of WAIS
Modified Fatigue Impact Score Symptoms Fatigue symptomology
SF-36 Bodily Pain Scale Symptoms General measure of bodily pain
SF-36 Emotion Symptoms Role limitations due to emotional problems
SF-36 General Health Scale Symptoms General measure of health wellbeing
SF-36 Mental Health Scale Symptoms General measure of mental health
SF-36 Physical Functioning Scale Symptoms General measure of physical functioning
SF-36 Role Physical Function Scale Symptoms Role limitations due to physical problems
SF-36 Social Functioning Scale Symptoms General measure of social functioning
SF-36 Vitality Scale Symptoms General measure of energy/fatigue

FLAIR = Fluid-attenuated inversion recovery. WAIS = Wechsler adult intelligent scale. SF-36 = Short-form health
survey. MR Image = magnetic resonance image; Neuropsych = neuropsychological test; Symptoms = self-report
general health and symptom measures. Explanations of neuropsychological tests and symptom measures taken
from [44,48,50,51].

2.3. cfMRI Parameters and Theory

Dual-echo pseudocontinuous arterial spin labeling (pCASL) and BOLD images (together referred
to as dual-echo images) were acquired using an interleaved echo scanning protocol see [7,52]. Together,
the perfusion (Echo 1) and BOLD-weighted (Echo 2) images along with biophysical modeling
procedures allowed for estimation of CMRO2 and a neural-vascular coupling coefficient (n, see [8])
associated with steady-state, neural stimulation [5,7]. One task run of dual-echo imaging data and one
gas-challenge run of dual-echo imaging data were collected using the following parameters: Echo 1:
labeling duration 1650 ms, labeling flip angle 18◦, labeling gap = 63.5 mm, 3.44 × 3.44 × 5 mm voxel,
repetition time (TR) = 4000 ms, echo time (TE) = 14 ms, 1525 ms post-label delay, 0 mm slice gap.
Echo 2: 90◦ flip angle, 3.44 × 3.44 × 5 mm voxel, TR = 4000 ms, TE = 40 ms, 0 mm slice gap. Total scan
time for the visual stimulation task = 600 s (72 dual-echo dynamics). Total scan time for the gas
challenge = 624 s (75 dual-echo dynamics).

Estimations of CMRO2 and n were based upon the Davis model of BOLD signal change [6,7]:

∆S
S0

= M

(1− ∆CBF
CBF0

)∝−β
(

∆CMRO2

CMRO2|0

)β
 (1)

where ∆x/x0 denotes a change from baseline, α is an empirically derived constant linking cerebral
blood flow and cerebral blood volume, and β is an empirically derived constant related to vascular
exchange and susceptibility of deoxyhemoglobin at specific field strengths (e.g., [53–55]). We assumed
α = 0.38 [56] and β = 1.3 [52]; these values were chosen because they have been shown to be sensitive
to group differences in neurophysiology [22,23]. Also, these values have previously demonstrated
group-equivalence in the estimation of M, e.g., [22,23]. M is a subject-specific scaling factor dependent
upon the washout resting deoxyhemoglobin see [8]. M was estimated in each participant, using the
gas challenge detailed below.

The measurement of BOLD, CBF, and M allows for the estimation of CMRO2. Here, ∆CMRO2

reflects the visual task-related change in neurometabolism of oxygen from resting baseline:

∆CMRO2

CMRO2|0
=

1−

∆BOLD
BOLD0

M


1/β(

∆CBF
CBF0

)1− α/β
(2)
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where ∆x/x0 reflects percent change of signal during task compared to resting baseline. With the
estimation of ∆CMRO2, n, may also be estimated:

n =

∆CBF
CBF0

∆CMRO2

CMRO2|0

(3)

thus, n reflects per unit output of ∆CBF per unit input of ∆CMRO2 see [8].

2.4. cfMRI Task and Gas Challenge

Participants completed a visual stimulation task during dual-echo task imaging. This task was
chosen for two reasons. First, differences in the functional response to visual stimulation have
been observed in MS visual cortex see [42,57]. Second, because this task required minimal effort,
group differences in performance were not expected to be a factor.

Participants were trained on the task before entering the MR environment. During the task,
participants focused on a fixation cross at the center of their visual field. Participants were required
to respond via bilateral, thumb-button press when a change in the luminance of the fixation cross
occurred. This task was used in order to control the center of the participants’ visual field [22,23,58].
Change in luminance was jittered and occurred every 2, 3, 4, or 6 s. Visual stimulation occurred in
a block format. There were 6 visual stimulation task blocks consisting of 60 s of continual annulus
flickering in the participants’ near-foveal visual field. Annuli alternated at orthogonal orientations
(0 to 90◦) to avoid neural adaptation [58]. Alterations occurred at a constant frequency of 8 Hz because
both electrochemical neural activity and BOLD signal have been shown to peak at this frequency,
potentially yielding the greatest signal-to-noise estimates, e.g., [59,60]. Rest blocks were jittered at 32,
34, 36, 38, and 40 s intervals (see Figure 1).
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Figure 1. Example of three-trial visual stimulation task. Participants viewed a fixation cross at the
center of the screen. This cross changed color at jittered intervals throughout task. Rest periods
were also jittered. Continuous stimulation blocks lasted 60 s with 0◦ to 90◦ flickering annuli (at 8 Hz).
Note: fixation cross was presented during task and rest periods however it cannot be seen in the task
example periods here.

Participants also completed a gas-challenge in order to estimate M. Participants breathed 4 min
of room air (~0.03% CO2: 21% O2: 78% N2) and 6 min of an iso-oxic, CO2 solution (5% CO2: 21%
O2: 74% N2) during dual-echo imaging. Each participant was fitted with a two-way, non-rebreathing
valve/mouthpiece and a nose clip. Baseline end-tidal CO2 (EtCO2), O2 saturation, breath rate,
and heart rate measures were collected. After the 4 min of room air breathing, a valve was opened to
release the CO2 solution from a Douglas airbag which then flowed into the participants’ breathing
apparatus [22,23]. The CO2 inhalation lasted 6 min.

Hypercapnic challenge, via the inhaled 5% CO2 solution, increases global CBF, but probably has
no or a minimal depressant effect on oxygen metabolism, e.g., [61–63]. Hypercapnia acts to wash out
local baseline concentrations of deoxyhemoglobin, yielding a local maximum estimate of resting BOLD
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signal. Potential changes to oxygen metabolism due hypercapnic challenge have not been shown to
appreciably alter the estimation of M as relationships between hypercapnia-derived M and M derived
from non-hypercapnic techniques show high correspondence [64].

2.5. cfMRI Processing

Task and gas-challenge Echo 1 and Echo 2 data were processed in analysis of functional
neuroimages (AFNI [65]) and the Functional MRI of the Brain Software Library (FSL [66]). Data were
transformed into cardinal planes. Anomalous data points in each voxel time series were then attenuated
using an interpolation method based upon the average signal. Data were volume registered to correct
for motion to the fourth functional volume of each dataset’s (task or gas challenge) Echo 2 sequence
using a heptic polynomial interpolation method. CBF was estimated from Echo 1 images using the
surround subtraction method [67]. Dual-echo BOLD data were also interpolated by pairwise averaging
of temporally adjacent images.

For the visual stimulation task, Echo 2 data were linearly registered (12 degrees-of-freedom)
to each participant’s anatomical data using AFNI’s align_epi_anay.py program. The transformation
matrix from this registration was then applied to Echo 1 data, placing these two datasets in the same
space. For gas-challenge data, a binary mask was created for functional voxels in Echo 2 to aid in
co-registration. This mask was then registered to the respective participant’s anatomical space using
the align_epi_anay.py program. Gas-challenge Echo 2 and Echo 1 data were also aligned to the mask
which was registered in native anatomical space. After alignment, Echoes 1 and 2 data from both the
visual task and gas challenge were visually inspected for registration errors. One HC participant failed
to register correctly after multiple attempts and was discarded from further analyses. Echoes 1 and
2 data from the visual task and gas challenge were then spatially smoothed using a Gaussian kernel
(FWHM = 8 mm) and high-pass filtered (0.0039 Hz).

Preprocessed data from Echoes 1 and 2 in the visual stimulation task were analyzed
via generalized linear modeling of task versus rest periods using a boxcar reference function.
This modeling quantified task-related CBF and BOLD changes from baseline. BOLD and CBF
beta-values were scaled to each voxel’s resting baseline signal and were multiplied by 100, yielding
percent signal change estimates from baseline (∆BOLD and ∆CBF). Data were averaged from a visual
(functional) region of interest (ROI) comprised of overlapping ∆BOLD and ∆CBF suprathreshold
signals within occipital lobe (see Structural and Functional ROI; [22,23]). ∆BOLD, ∆CBF, ∆CMRO2,
and n results extracted from the functional region of interest were taken as the visual-evoked signals
(i.e., veBOLD, veCBF, veCMRO2, and ven).

For the gas challenge, resting baseline BOLD and CBF signals during room air breathing were
averaged for each voxel time-series (BOLD0 and CBF0). The first two minutes of hypercapnia BOLD
and CBF time-series were discarded to allow participants’ blood flow to stabilize on the CO2 solution,
e.g., [22,23]. The last four minutes of hypercapnia BOLD and CBF time-series were averaged to yield
BOLDhc and CBFhc respectively. Average values were extracted from a functional region of interest
(see Structural and Functional ROI) using overlapping BOLDhc and CBFhc suprathreshold signals
within occipital lobe, and were used to calculate M, using the following equation:

M =

BOLDhc − BOLD0

BOLD0(
1−

(
1 +

CBFhc − CBF0

CBF0

)α−β
) (4)

where (xhc−x0)/x0 reflects percent change in signal from normocapnic to hypercapnic states,
normalized by the signals during normocapnia and multiplied by 100. Once M was estimated,
∆CMRO2 and n were also estimated (see Equations (2) and (3); see Figure 2) within a functional
region of interest (see Structural and Functional ROI).
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(B) MS patient ∆CMRO2. x = right-left, z = superior-inferior.

2.6. Structural and Functional ROIs

First, the magnetization-prepared rapid acquisition gradient-echo (MPRAGE) data were processed
to create a native-space, occipital ROI. The skull was removed using an automated command,
separating parenchyma and cerebral spinal fluid from the skull. An intensity based automated
segmentation algorithm was used to delineate primarily white matter, grey matter, and cerebral
spinal fluid voxels yielding a partial volume estimate of each tissue type, for each voxel. A grey matter
mask was then created, retaining voxels with only a greater than or equal to grey matter partial volume
estimate of 80%. A structural ROI of occipital lobe was manually delineated on each participant’s
MPRAGE image. These were drawn in native space because native space analyses tend to allow for
more sensitive patient-control contrasts [68]. The structural ROI was drawn using gyral and sulcal
landmarks and encompassed most of occipital cortex including calcarine sulcus, cuneus, and occipital
portions of lingual gyrus. Several anatomical landmarks were used in the demarcation of this ROI
(parieto-occipital sulcus, occipital pole, pre-occipital notch). Within the anatomically defined occipital
lobe, only voxels with partial volume estimates of grey matter (≥80%) were retained. These final masks
were down-sampled to the functional voxel size.

A visual task functional ROI was created within the structural ROI described above to estimate
veBOLD, veCBF, veCMRO2, and ven (see Figure 3). This procedure eschewed noise from inactive
voxels, e.g., [68]. Voxels comprising each participant’s functional ROI were the overlapping top 5%
of BOLD and top 5% of CBF t-values obtained from the generalized model, within the structural
ROI. This ensured that average veBOLD and veCBF estimates were being derived from the same,
task-responsive voxels and that veCMRO2 and ven were derived in voxels with both CBF and BOLD
task-related increases (see Figure 3).
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Figure 3. Graphical overview of masking procedure. For each participant, their top 5%, overlapping
BOLD and CBF t-statistics (middle) within the anatomical ROI (left, yellow) were used to create the
functional ROI mask (right, yellow). Functional measures (veBOLD, veCBF, veCMRO2, and ven) were
extracted from each participant’s functional ROI mask.

veCMRO2 was calculated voxel-wise within the functional ROI using ∆BOLD, ∆CBF,
M (which was extracted from functional ROI described below). ven was then calculated similarly.
The final product of these analyses was average positive veBOLD, veCBF, and veCMRO2, and ven
extracted from the functional ROI (see Figure 3).

Because the gas challenge data differed in occipital coverage compared to the visual task data,
M was estimated ex situ. To create a functional ROI for the gas challenge, ∆BOLDhc/BOLD0

and ∆CBFhc/CBF0 maps were thresholded and extracted from the structural ROI detailed above.
The criteria for retention of a voxel within these maps required that the voxel was within the top 15%
(top 20% for one participant) of ∆BOLDhc/BOLD0 and ∆CBFhc/CBF0 voxels in the structural ROI,
and that these ∆BOLDhc/BOLD0 and ∆CBFhc/CBF0 voxels overlapped. This procedure ensured
complementary maximum ∆BOLDhc/BOLD0 and ∆CBFhc/CBF0 signals in the retained voxels.
Average ∆BOLDhc/BOLD0 and ∆CBFhc/CBF0 signals were extracted from this ROI and M was
calculated (see Equation (4)).

2.7. Structural Images

One T1-weighted MPRAGE image was acquired for each participant: 160 slices, TE = 3.7 ms,
repetition time TR = 8.1 ms, sagittal slice orientation, 1 × 1 × 1 mm3 voxel, 12◦ flip angle.
SIENAX [15,69] was used to obtain measures of grey matter, white matter, and total brain volume
normalized by participant’s head size. This technique uses partial volume estimation to calculate
volume of differing tissue types (see Figure 4B,C). Further, this technique takes into account
lesioned tissue, as demarcated by lesion masks (see below), in order to avoid misclassification of
this tissue. The final products of these analyses were scaled estimates of each participant’s grey matter,
white matter, and total brain volume (mm3).

A T2 fluid attenuated inversion recovery (FLAIR) scan was also acquired for each participant:
33 slices, TE = 125 ms, TR = 11,000 ms, no slice gap, transverse slice orientation, 0.45 × 0.45× 5.00 mm3

voxel, 120◦ refocusing angle. FLAIR images were used to estimate the extent of gross lesion burden
for each participant. Hyperintense voxels were demarcated using in-house MATLAB code based
upon slice-wise, signal intensity (i.e., voxels that were ≥1.25 SD over the slice mean intensity).
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Next, lesions were manually delineated from the hyperintense tissue by two trained researchers
(L.H., S.F.). Manual delineation ruled out false positives in lesion classification due to fat signals,
motion, ventricular edge effects, skull, or signal inhomogeneites [70]. Lesion burden was estimated
by extracting the number of voxels that were demarcated by the automated and manual procedures.
Inter-rater agreement of lesion burden was calculated using a Dice ratio (κ) of the lesion burden
estimates made by the two researchers on a sample of several subjects [71]. After the researchers were
trained on lesion classification, inter-rater agreement was found to be high, κ = 0.89; where κ > 0.70 is
generally thought to reflect excellent inter-rater agreement [72]. Lesion burden was quantified using
absolute (total mm3 of lesioned tissue; see Figure 4E) and relative scales (percent of total mm3 of
lesioned tissue scaled by uncorrected white matter volume in mm3). Spatially distinct lesion count
was also obtained by counting the number of non-touching lesions for each subject (see Figure 4F),
e.g., [73]. A lesion was required to have at least 3 mm3 volume in order to be added to the total lesion
count. Thus, the final products of these analyses were absolute lesion volume, relative lesion volume,
and spatially distinct lesion count.
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Figure 4. Diffusion and Structural Image Processing Examples. (A) Diffusion tensor imaging white
matter skeleton. (B) T1 image. (C) T1 image segmented into white matter (yellow), grey matter (orange),
and cerebral spinal fluid (red) using SIENAX. (D) T2-FLAIR image. (E) Lesions demarcated (yellow)
on T2-FLAIR image used for calculating lesion burden. (F) Spatially distinct lesions demarcated on
T2-FLAIR image.

2.8. Diffusion Images

DTI images were acquired using a single-shot, echo-planar imaging sequence with a Sensitivity
Encoding parallel imaging scheme (reduction factor = 2.3), 112× 112 matrix, field of view = 224× 224 mm2

(nominal resolution of 2 mm), 65 slices (0 mm gap), slice thickness = 2 mm, TR = 7.78 s, TE = 97 ms.
The diffusion weighting was encoded along 30 independent orientations [74] and the b value was
1000 s/mm2. Imaging time was 5 min and 15 s. Two HCs did not undergo DTI (nHC = 11).

Automatic Image Registration [75] was performed on raw diffusion-weighted images to correct
distortion caused by eddy currents. Six elements of the 3 × 3 diffusion tensor were determined by
multivariate least-squares fitting. The tensor was diagonalized to obtain three eigenvalues (λ1–3)
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and eigenvectors (v1–3). Standard tensor fitting was conducted with DTIStudio [76] to generate the
most common DTI-derived diffusion characteristics, fractional anisotropy (FA), axial diffusivity (AD),
mean diffusivity (MD), and radial diffusivity (RD).

DTI measurements were obtained at the skeletons of the white matter using FSL [77] to alleviate
partial volume effects with tract-based spatial statistics (see Figure 4F–H) [77]. Participant FA maps
were registered nonlinearly to the EVE single-subject FA template [78–80] for better alignment with
a digital white matter atlas (JHU ICBM-DTI-81) [81]. Registered FA maps of all subjects were averaged
to generate a mean FA map, from which an FA skeleton mask was created. Skeletonized FA images of
all subjects were obtained by projecting the registered FA images onto the mean FA skeleton mask.
Skeletonized AD, MD, and RD metrics were obtained by applying the same registration, projection,
and skeletonization procedures. We extracted skeleton-wide averages of each DTI metric (i.e., AD, FA,
MD, RD), wherein an average of each metric is calculated across all voxels within the white matter
skeleton (see Figure 4A).

2.9. Statistical Analyses

All analyses were performed on distributions free of outliers (≥±2 SD from group mean for simple
group comparisons,≥±3 MAD from group median for classification modeling see [82]). Binary logistic
regression was used for classifying MS status. A description of model variables can be found in Table 2.
The accuracies of these models were computed as the proportion of correct classification outcomes
over all outcomes. Accuracy was chosen as the metric of interest because it combines sensitivity
and specificity in binary classification analysis by taking into account both true positives and true
negatives relative to all outcomes. We used resampling-based hypothesis testing to examine both
within-sample and out-of-sample classification of patient status see [83]. Because we used relatively
conservative analytic techniques, inherently reducing the likelihood of Type I error and increasing the
generalizability of our results, the criterion for a rejection of the null hypothesis was not corrected for
multiple comparisons and all models were evaluated at the field-standard α = 0.05. We also denote
which hypothesis tests survived Benjamini-Hotchberg correction (Table 4; Figure 7).

Within-sample classification analyses obtained bias-corrected and accelerated (BCa) bootstrapped-
resampled (B = 10,000) 95% confidence intervals of the accuracy of binary logistic regression models.
The BCa procedure was used because it is robust to both skewness and sampling bias in the bootstrap
distribution [84]. To avoid unstable classification, we stratified all resamples to match the original
sample’s constitution of patients and controls, 56.5% and 43.5%, respectively. If the BCa-derived 95%
confidence interval did not contain a value at or below 0.50 (binary chance), this would demonstrate
the measure’s accuracy was significantly greater than chance to classify MS patients and HCs.

Out-of-sample classification analyses used a leave-one-out cross-validation approach [85].
This technique used training and sample iterations to test the ability of the model derived from
the training set to predict an observation in the test (out-of-sample) set, thus, circumventing
problems of sample bias, model over fitting, and lending a true predictive element to these analyses.
Briefly, the leave-one-out cross validation (LOOCV) approach fitted N models, where N was
proportional to our sample size. Each model was trained on N-1 samples and then the accuracy
of the training model was assessed on the left-out sample. The N accuracies were then averaged to
attain a representative and generalizable measure of the average out-of-sample classification accuracy.
Permutation based p-values (5000 permutations) were computed to assess the significance of the
LOOCV-derived accuracy statistics. The test permuted patient status labels and recomputed the
accuracy of the model at each iteration, thus building the null distribution. The p-values were calculated
from the percentage of the accuracy estimates of the permuted samples that were better than actual
LOOCV-derived accuracy statistic of each model. This procedure was slightly modified according to
Ojala and Garriga [86].
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3. Results

3.1. Visual Task Performance

MS patients (92.75 ± 1.11%) did not significantly differ from HCs (94.86 ± 0.44%) on accuracy on
the visual stimulation secondary task, t(10.54) = −1.76, p = 0.108. Patients (492.06 ms ± 31.15) also did
not significantly differ from HCs (487.19 ms ± 24.10) on their average correct response time to press
the button on the secondary task, t(16.22) = 0.12, p = 0.903.

3.2. Group Physiology, Cerebrovascular Response to Gas Challenge, and M

MS and HCs did not significantly differ in breath rate, end-tidal CO2, heart rate, or O2 saturation
at baseline or during CO2 solution breathing (all ps > 0.05; see Table 3). We tested whether MS patients
differed in their CBF response to the CO2 solution ((CBFhc−CBF0)/CBF0) and M in their respective
gas challenge ROIs within occipital lobe see [87]. MS patients did not significantly differ in CBF
response to the CO2 solution (167.48 ± 19.8%) compared to HCs (146.90 ± 14.64%), t(15.70) = 0.83,
p = 0.417. MS patients (3.88 ± 0.48%) did not significantly differ in M compared to HCs (5.11 ± 0.39%),
t(18.90) = −1.98, p = 0.062.

Table 3. Sample Physiological Data.

MS HC p

Baseline
Breath Rate 11.20 (1.00) 10.25 (0.79) 0.747 a

EtCO2 42.70 (1.81) 39.23 (0.74) 0.101 b

Heart Rate 66.90 (2.38) 72.08 (3.18) 0.207 b

SpO2 98.10% (0.35%) 97.85% (0.32%) 0.596 b

5% CO2
Breath Rate 13.35 (1.28) 15.42 (1.07) 0.236 c

EtCO2 48.95 (1.45) 49.06 (0.64) 0.950 c

Heart Rate 69.67 (2.38) 75.04 (2.60) 0.147 d

SpO2 97.58% (0.39%) 98.20% (0.20%) 0.139 d

Mean (SEM). Breath Rate in breaths per minute. EtCO2 = end-tidal CO2 in mmHg. Heart Rate in beats per minute.
SpO2 = peripheral oxygen saturation in percent hemoglobin saturation. p-values were based on independent
samples. a 22 degrees-of-freedom; b 21 degrees-of-freedom; c 16 degrees-of-freedom; d 17 degrees-of-freedom.

3.3. Group Comparisons on Visual Task cfMRI Measures

MS patients (1.12 ± 0.77%) did not significantly differ from HCs (1.18 ± 0.66%) on veBOLD
response to visual stimulation, t(19.18) = −0.60, p = 0.555. MS patients (4.08 ± 0.35) did not
show significant changes in ven compared to HCs (4.23 ± 0.23), t(16.16) = −0.35, p = 0.731.
MS patients (48.06 ± 12.58%) had significant decreases in veCBF compared to HCs (92.68 ± 17.29%),
t(19.76) = −2.09, p = 0.050. MS patients (9.59 ± 0.90%) also showed significant decreases in veCMRO2

compared to HCs (17.85 ± 1.97%), t(16.45) = −3.81, p = 0.002 (see Figure 5).

3.4. Within-Sample Classification Analyses

Measures are ranked on original accuracy and presented in Table 4. Accuracy and smoothed
density distributions for the significant and bottom 5 measures can be found in Figure 6.

3.5. Out-of-Sample Classification Analyses

Predictors presented in Figure 7 are ranked on LOOCV-derived accuracy.
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Table 4. Accuracy and 95% Confidence Limits of Within-Sample Classification Analyses.

Predictor Predictor Accuracy 95% LCL 95% UCL Significant

SF-36 Physical Functioning Scale 0.94 0.65 1.00 Yes †
SF-36 Social Functioning Scale 0.89 0.61 0.94 Yes †
T2-FLAIR spatially distinct lesion count 0.86 0.57 0.95 Yes †
Box Completion 0.86 0.52 0.95 Yes †
SF-36 Role Physical Function Scale 0.85 0.60 0.95 Yes †
veCMRO2 0.82 0.55 0.91 Yes ‡
Normalized Grey Matter Volume 0.81 0.43 0.95 No ‡
T2-FLAIR Lesion Burden-absolute lesion volume 0.80 0.50 0.90 No ‡
T2-FLAIR Lesion Burden-relative lesion volume 0.80 0.50 0.90 No ‡
SF-36 Emotion 0.78 0.56 0.89 Yes
9-Hole Peg Test-Non-dominant Hand 0.77 0.55 0.91 Yes ‡
SF-36 General Health Scale 0.77 0.50 0.86 No ‡
veCBF 0.75 0.45 0.85 No ‡
Normalized Whole Brain Volume 0.73 0.45 0.86 No
9-Hole Peg Test-Dominant Hand 0.73 0.50 0.82 No
SF-36 Bodily Pain Scale 0.73 0.45 0.86 No
Skeleton AD 0.71 0.43 0.81 No
Skeleton MD 0.71 0.48 0.86 No
Paced Auditory Serial Addition Test 2 s 0.71 0.48 0.86 No
Modified Fatigue Impact Score Total 0.70 0.43 0.78 No ‡
Normalized White Matter Volume 0.68 0.45 0.82 No
Paced Auditory Serial Addition Test 3 s 0.68 0.45 0.82 No
Skeleton RD 0.67 0.48 0.76 No
Trail Making Task Form A 0.65 0.43 0.78 No
SF-36 Vitality Scale 0.65 0.43 0.74 No
25 Foot Walk 0.64 0.50 0.77 No
WAIS-III Digit Span Backward 0.64 0.41 0.77 No
WAIS-III Digit Span Total 0.64 0.41 0.82 No
10/36 Delayed Recall 0.63 0.42 0.74 No
Trail Making Task Form B 0.62 0.33 0.76 No
SF-36 Mental Health Scale 0.62 0.38 0.62 No
veBOLD 0.61 0.48 0.78 No
Selective Reminding Task Delayed 0.60 0.35 0.60 No
Symbol-digit Modalities Test 0.60 0.30 0.70 No
Number Comparison 0.59 0.36 0.68 No
WAIS-III Digit symbol coding 0.58 0.37 0.58 No
Skeleton FA 0.57 0.37 0.67 No
ven 0.57 0.39 0.52 No
Selective Reminding Task Long-term Storage 0.57 0.35 0.70 No
Controlled Oral Word Association Test 0.57 0.35 0.57 No
10/36 Immediate Recall 0.52 0.30 0.57 No
WAIS-III Digit Span Forward 0.50 0.27 0.55 No
Trail Making Task Form B-A 0.48 0.29 0.52 No

LCL = lower confidence limit. UCL = upper confidence limit. Confidence limits based upon 10,000 iteration
BCa-corrected bootstrapping procedure.Yes = 95% confidence interval (CI) does not contain 0.50; No = 95% CI
contains 0.50. Note: that the original parameter estimates do not necessarily need to lie within the 95% CI of the
BCa-corrected, empirically derived distributions. † permutation p-value significant using Benjamini-Hotchberg
correction (p < 0.05). ‡ permutation p-value marginally significant using Benjamini-Hotchberg correction (p < 0.10).
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4. Discussion

In the present study, we used a neuroimaging approach novel to MS research (cfMRI) to assess the
accuracy of veCMRO2 in classifying MS patients and closely age- and sex-matched HC participants.
MS patients showed similar responses to HCs in veBOLD and ven, however showed decreased
veCBF and a pronounced decrease in veCMRO2 relative to HCs. Groups were similar on visual
task performance and on physiological measures pertaining to the CO2 challenge, indicating that
potential MS-related changes in physiological response to carbon dioxide, e.g., [87] or visual attention
were not likely contributors to group CMRO2 differences. Within-sample classification analyses
demonstrated that veCMRO2 was significant and one of the top measures to accurately classify
MS status, discriminating between MS patients and HCs with exceptional accuracy (82%). Results also
showed that within-sample classification accuracy by veCMRO2 was comparable to neuroimaging
measures often used to gauge MS pathology, such as T2-FLAIR lesion burden (80% accuracy) and T1

grey matter volume (81% accuracy). veCMRO2 was also significantly accurate in MS classification
using out-of-sample observations (77% accuracy). The use of such out-of-sample modeling afforded
a predictive element to this study and demonstrated that veCMRO2 can accurately classify new
observations of MS and HC participants, offering support for its potential diagnostic utility.

One question that arises from these results is whether veCMRO2 can add predictive value over
other advanced imaging techniques not studied here. For instance, measurements of multifocal
visual-evoked potentials have been of great interest to the MS research community. This technique,
which uses visual stimulation and electroencephalogram signals in occipital channels proximal to the
inion has been demonstrated to (1) more sensitively and specifically detect visual abnormalities in
MS eyes relative to other visual-system measurements [88], (2) predict conversion to an MS diagnosis
in persons with optic neuritis [89], and (3) relate to the extent of MS-related damage to visual white
matter tracts [41]. Not surprisingly, this technique can also accurately discriminate between MS patients
and HCs, e.g., [90]. For example, one study showed that measurements gathered from multifocal
visual-evoked potentials were on average 74.76% accurate (range: 62.7%–96.1%) in classifying
within-sample observations of MS patients without optic neuritis and HCs ([90], average calculated
from Figures 5 and 6, pp. 910–911). We can compare these figures with the within-sample accuracy
of veCMRO2 observed here (82%). This suggests that veCMRO2 accuracy is in about the same range
as multifocal evoked potentials. However, it performs appreciably better than the average multifocal
evoked potential measure. Future research directly comparing veCMRO2 to electroencephalogram
and other measures is necessary to more faithfully adjudicate claims about the relative performance of
this technique.

A second avenue for future research could involve examining whether the integration of evoked
CMRO2 from other neural systems could maximize MS classification accuracy. Here, we showed
significant decreases in MS patients’ veCMRO2 relative to HCs. This variable was also largely accurate
in the prediction of MS status. We looked at veCMRO2 specifically because of robust alterations to
the visual system in MS see [37–40]. However, because (1) mitochondrial alterations are found in
multiple forms of neural tissue in MS [31,33] and (2) global brain decreases in oxygen metabolism
have been found in MS patients relative to HCs [30], it is likely that evoked CMRO2 is affected in
other neural systems as well. Our work and others’ have shown altered patterns of brain activity in
MS patients in motor, e.g., [42,91,92] and association cortices [43,93–95], see [96]. It is possible that the
addition of measures of evoked CMRO2 in these areas could lend improvements in the accuracy of MS
classification. One advantage of the cfMRI approach over other advanced imaging approaches in MS,
like OCT or visual-evoked potentials, is that this technique can specifically and simultaneously assay
multiple neural systems. Work underway in our laboratories is examining the extent to which evoked
motor and executive system CMRO2 differs between MS patients and age- and sex-matched healthy
HCs, and whether these changes, along with veCMRO2, can help build optimal neurodiagnostic
models of MS.
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The utility of imaging biomarkers in MS is not limited to assisting in diagnosis see [97].
For instance, OCT measures have been shown to be effective in predicting brain atrophy and visual
acuity loss in MS see [38]. The retinal nerve fiber thickness and macular volume measures from
OCT might also be useful in differentiating different subtypes of MS [98]. Other imaging-based
measures, such as T2-lesion burden, have shown prognostic ability by prediction of future MS disability,
e.g., [99], see also [100–102]. One potential avenue for future research is to evaluate the use of oxygen
metabolism signals in MS prognosis. For example, Ge and colleagues’ [27] research showed that lower
resting brain-wide levels of oxygen metabolism were associated with both increased neurological
disability and increased lesion burden in MS patients. Although these findings were cross-sectional,
they suggested that oxygen metabolism could be a marker of the trajectory of disease course. To wit,
future longitudinal work should examine whether measures of oxygen metabolism in early MS can
predict future disease progression cf. [89]. veCMRO2 or resting oxygen metabolic markers could also be
evaluated for their abilities to predict the transition from risk states (such as clinically or radiologically
isolated syndrome) to clinically definite MS see [100,102,103].

A recent wave of findings related to metabolic dysfunction in MS has led to metabolic hypotheses
to explain the pathophysiology of MS see [34–36]. For instance, Paling and colleagues furthered
an energy failure hypothesis of the pathophysiology of MS [35,104]. These authors postulated a link
between white matter damage and energy demand in MS, wherein this damage causes neuroenergetic
demand to exceed the supply of metabolic substrate. This hypothesis is largely consistent with the
findings of the present study, wherein the observed relative decrease in veCBF (the supply of oxygen
and glucose) in MS might have limited the neurometabolic response (veCMRO2) relative to HCs.
Further, issues of oxygen extraction due to mitochondrial damage/dysfunction could have also
contributed to the relative decrease in veCMRO2 for MS patients relative to HCs see [34–36].

Imaging techniques here and elsewhere have produced convincing biomarkers of MS
see [38,97,100]. However, MS is a complex, multifaceted disease. Thus, it is not surprising that our
results revealed a diverse array of measures that were accurate in classifying MS patients and HCs.
The goal of this work was to examine the ability of a new marker (veCMRO2) to accurately classify MS.
However, a truly prodigious advance in MS diagnostics will likely evolve from models that combine
many relevant factors. It is possible that a “gold-standard” model of MS diagnostics would contain
information about evoked CMRO2, along with other information like lesion count, self-reported
symptomology, neuropsychological performance, and potentially other strong associates of MS not
examined here (e.g., low-contrast letter acuity performance see [105], oligoclonal band status [106],
retinal nerve fiber layer thickness see [38]). For instance, research from the Alzheimer’s Disease
Neuroimaging Initiative showed that a complement of multimodal neuroimaging, cerebrospinal fluid
proteins, along with standard clinical evaluations allow for optimal prediction of conversion from mild
cognitive impairment to Alzheimer’s disease [107]; see also [108] for application in psychiatry.

5. Conclusions

This study was the first to apply cfMRI in an MS sample. Presently, the intricacies of cfMRI
acquisition and post-acquisition processing probably hinder it from having an immediate impact
upon routine diagnosis or tracking of MS. However, acquisition continues to be optimized and
research is showing promise toward eliminating the gas-challenge component of this method, see [8],
which should increase the ease of cfMRI administration and the diversity of patients in which it
can be applied. With contemporary research highlighting the importance of neurometabolism in
the pathophysiology of MS and continued optimization of this technique, cfMRI shows promise as
a translational diagnostic/prognostic tool for MS.

Our findings demonstrated that veCMRO2 was accurate in classifying both within- and
out-of-sample observations of MS patients and HCs. Out-of-sample analyses suggested that predictive
models using veCMRO2 could be useful in MS diagnostics and potentially new cases of MS. Although
out-of-sample analyses provide confidence in the generalizability of our findings, larger, independent
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samples are desirable to confirm the robustness of these effects. However, the present findings represent
an encouraging first step in realizing the diagnostic relevance of veCMRO2 in MS.
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