Awake versus Asleep Deep Brain Stimulation Surgery: Technical Considerations and Critical Review of the Literature
Abstract
:1. Introduction
2. Advances in Neuroimaging: Changing the Paradigm
3. Targeting Accuracy
4. Radiographic vs. Neurophysiological Target
5. Outcomes
6. Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Benabid, A.L.; Pollak, P.; Gervason, C.; Hoffmann, D.; Gao, D.M.; Hommel, M.; Perret, J.E.; de Rougemont, J. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet Lond. Engl. 1991, 337, 403–406. [Google Scholar] [CrossRef]
- Burchiel, K.J.; Anderson, V.C.; Favre, J.; Hammerstad, J.P. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: Results of a randomized, blinded pilot study. Neurosurgery 1999, 45, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Abosch, A.; Timmermann, L.; Bartley, S.; Rietkerk, H.G.; Whiting, D.; Connolly, P.J.; Lanctin, D.; Hariz, M.I. An international survey of deep brain stimulation procedural steps. Stereotact. Funct. Neurosurg. 2013, 91, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Binder, D.K.; Rau, G.M.; Starr, P.A. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 2005, 56, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Gorgulho, A.; De Salles, A.A.F.; Frighetto, L.; Behnke, E. Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J. Neurosurg. 2005, 102, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Xiaowu, H.; Xiufeng, J.; Xiaoping, Z.; Bin, H.; Laixing, W.; Yiqun, C.; Jinchuan, L.; Aiguo, J.; Jianmin, L. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat. Disord. 2010, 16, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Burchiel, K. The Future of Microelectrode Recording. In Microelectrode Recording in Movement Disorder Surgery; Thieme Medical: New York, NY, USA, 2004; pp. 208–210. ISBN 978-1-58890-174-3. [Google Scholar]
- Aziz, T.Z.; Hariz, M. To sleep or not to sleep during deep brain stimulation surgery for Parkinson disease? Neurology 2017, 89, 1938–1939. [Google Scholar] [CrossRef] [PubMed]
- Burchiel, K.J.; McCartney, S.; Lee, A.; Raslan, A.M. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J. Neurosurg. 2013, 119, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.L.; Ali, R.; Connolly, I.D.; Henderson, J.M.; Dhall, R.; Stein, S.C.; Halpern, C.H. Awake versus asleep deep brain stimulation for Parkinson’s disease: A critical comparison and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Chandran, A.S.; Bynevelt, M.; Lind, C.R.P. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. J. Neurosurg. 2015, 124, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Polanski, W.H.; Martin, K.D.; Engellandt, K.; von Kummer, R.; Klingelhoefer, L.; Fauser, M.; Storch, A.; Schackert, G.; Sobottka, S.B. Accuracy of subthalamic nucleus targeting by T2, FLAIR and SWI-3-Tesla MRI confirmed by microelectrode recordings. Acta Neurochir. 2015, 157, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Alterman, R.L.; Weisz, D. Microelectrode recording during deep brain stimulation and ablative procedures. Mov. Disord. 2012, 27, 1347–1349. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.; Boulis, N.; Rezai, A.; Montgomery, E., Jr. Target selection using microelectrode recordings. In Microelectrode Recordings in Movement Disorders Surgery; Thieme Medical: New York, NY, USA, 2004; pp. 138–151. [Google Scholar]
- Amirnovin, R.; Williams, Z.M.; Cosgrove, G.R.; Eskandar, E.N. Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery 2006, 58, ONS-96–ONS-102. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.K.; Khan, S.; Gill, S.S. Comparison of Atlas- and Magnetic-Resonance-Imaging-Based Stereotactic Targeting of the Subthalamic Nucleus in the Surgical Treatment of Parkinson’s Disease. Stereotact. Funct. Neurosurg. 2008, 86, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Plaha, P.; Ben-Shlomo, Y.; Patel, N.K.; Gill, S.S. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain J. Neurol. 2006, 129, 1732–1747. [Google Scholar] [CrossRef] [PubMed]
- Daniluk, S.; Davies, K.G.; Ellias, S.A.; Novak, P.; Nazzaro, J.M. Assessment of the variability in the anatomical position and size of the subthalamic nucleus among patients with advanced Parkinson’s disease using magnetic resonance imaging. Acta Neurochir. 2010, 152, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Nestor, K.A.; Jones, J.D.; Butson, C.R.; Morishita, T.; Jacobson, C.E.; Peace, D.A.; Chen, D.; Foote, K.D.; Okun, M.S. Coordinate-based lead location does not predict Parkinson’s disease deep brain stimulation outcome. PLoS ONE 2014, 9, e93524. [Google Scholar] [CrossRef] [PubMed]
- Slavin, K.V.; Thulborn, K.R.; Wess, C.; Nersesyan, H. Direct visualization of the human subthalamic nucleus with 3T MR imaging. Am. J. Neuroradiol. 2006, 27, 80–84. [Google Scholar] [PubMed]
- Rabie, A.; Verhagen Metman, L.; Slavin, K.V. Using “Functional” Target Coordinates of the Subthalamic Nucleus to Assess the Indirect and Direct Methods of the Preoperative Planning: Do the Anatomical and Functional Targets Coincide? Brain Sci. 2016, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, J.; Ramdhani, R.; Panov, F.E.; Dimov, A.; Zhang, Y.; Cho, C.; Wang, Y.; Kopell, B.H. Utilization of Quantitative Susceptibility Mapping for Direct Targeting of the Subthalamic Nucleus During Deep Brain Stimulation Surgery. Oper. Neurosurg. 2017. [Google Scholar] [CrossRef] [PubMed]
- Brunenberg, E.J.L.; Platel, B.; Hofman, P.A.M.; ter Haar Romeny, B.M.; Visser-Vandewalle, V. Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. J. Neurosurg. 2011, 115, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Sudhyadhom, A.; Haq, I.U.; Foote, K.D.; Okun, M.S.; Bova, F.J. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: The Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage 2009, 47 (Suppl. 2), T44–T52. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Eskreis-Winkler, S.; Schweitzer, A.D.; Chen, W.; Kaplitt, M.G.; Tsiouris, A.J.; Wang, Y. Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology 2013, 269, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Jenkner, C.; Honey, C.R.; Mädler, B. Electrophysiologic Validation of Diffusion Tensor Imaging Tractography during Deep Brain Stimulation Surgery. Am. J. Neuroradiol. 2016, 37, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Mirzadeh, Z.; Chapple, K.; Lambert, M.; Dhall, R.; Ponce, F.A. “Asleep” deep brain stimulation for essential tremor. J. Neurosurg. 2016, 124, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Allert, N.; Mädler, B. A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir. 2011, 153, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Varkuti, B.; Parpaley, Y.; Skodda, S.; Prokop, T.; Urbach, H.; Li, M.; Reinacher, P.C. Postoperative neuroimaging analysis of DRT deep brain stimulation revision surgery for complicated essential tremor. Acta Neurochir. 2017, 159, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, M.A.; Anderson, S.; Murchison, C.; Seier, M.; Wilhelm, J.; Vederman, A.; Burchiel, K.J. Clinical outcomes of asleep vs. awake deep brain stimulation for Parkinson disease. Neurology 2017, 89, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Mirzadeh, Z.; Ponce, F.A. “Asleep” Deep Brain Stimulation Surgery: A Critical Review of the Literature. World Neurosurg. 2017, 105, 191–198. [Google Scholar] [CrossRef] [PubMed]
- LaHue, S.C.; Ostrem, J.L.; Galifianakis, N.B.; San Luciano, M.; Ziman, N.; Wang, S.; Racine, C.A.; Starr, P.A.; Larson, P.S.; Katz, M. Parkinson’s disease patient preference and experience with various methods of DBS lead placement. Parkinsonism Relat. Disord. 2017, 41, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Mirzadeh, Z.; Chapple, K.; Lambert, M.; Dhall, R.; Ponce, F.A. Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery. Mov. Disord. 2014, 29, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Starr, P.A.; Martin, A.J.; Ostrem, J.L.; Talke, P.; Levesque, N.; Larson, P.S. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: Technique and application accuracy. J. Neurosurg. 2010, 112, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Starr, P.A.; Markun, L.C.; Larson, P.S.; Volz, M.M.; Martin, A.J.; Ostrem, J.L. Interventional MRI-guided deep brain stimulation in pediatric dystonia: First experience with the ClearPoint system. J. Neurosurg. Pediatr. 2014, 14, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Larson, P.S.; Starr, P.A.; Bates, G.; Tansey, L.; Richardson, R.M.; Martin, A.J. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: Preliminary evaluation of targeting accuracy. Neurosurgery 2012, 70, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Chabardes, S.; Isnard, S.; Castrioto, A.; Oddoux, M.; Fraix, V.; Carlucci, L.; Payen, J.F.; Krainik, A.; Krack, P.; Larson, P. Surgical implantation of STN-DBS leads using intraoperative MRI guidance: Technique, accuracy, and clinical benefit at 1-year follow-up. Acta Neurochir. 2015, 157, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Kochanski, R.B.; Kerolus, M.G.; Pal, G.; Metman, L.V.; Sani, S. Use of intraoperative CT to predict the accuracy of microelectrode recording during deep brain stimulation surgery. A proof of concept study. Clin. Neurol. Neurosurg. 2016, 150, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Kochanski, R.B.; Pal, G.; Bus, S.; Metman, L.V.; Sani, S. Improving the accuracy of microelectrode recording in deep brain stimulation surgery with intraoperative CT. J. Clin. Neurosci. 2017, 40, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Kochanski, R.B.; Bus, S.; Pal, G.; Metman, L.V.; Sani, S. Optimization of Microelectrode Recording in DBS Surgery Using Intraoperative CT. World Neurosurg. 2017, 103, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Sidiropoulos, C.; Rammo, R.; Merker, B.; Mahajan, A.; LeWitt, P.; Kaminski, P.; Womble, M.; Zec, A.; Taylor, D.; Wall, J. Intraoperative MRI for deep brain stimulation lead placement in Parkinson’s disease: 1 year motor and neuropsychological outcomes. J. Neurol. 2016, 263, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Ostrem, J.L.; Ziman, N.; Galifianakis, N.B.; Starr, P.A.; Luciano, M.S.; Katz, M.; Racine, C.A.; Martin, A.J.; Markun, L.C.; Larson, P.S. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J. Neurosurg. 2016, 124, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Ostrem, J.L.; Galifianakis, N.B.; Markun, L.C.; Grace, J.K.; Martin, A.J.; Starr, P.A.; Larson, P.S. Clinical outcomes of PD patients having bilateral STN DBS using high-field interventional MR-imaging for lead placement. Clin. Neurol. Neurosurg. 2013, 115, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Mirzadeh, Z.; Chapple, K.; Lambert, M.; Evidente, V.G.; Mahant, P.; Ospina, M.C.; Samanta, J.; Moguel-Cobos, G.; Salins, N.; Lieberman, A.; et al. Parkinson’s disease outcomes after intraoperative CT-guided “asleep” deep brain stimulation in the globus pallidus internus. J. Neurosurg. 2016, 124, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Holloway, K.; Docef, A. A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery. Neurosurgery 2013, 72, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Geevarghese, R.; O’Gorman Tuura, R.; Lumsden, D.E.; Samuel, M.; Ashkan, K. Registration Accuracy of CT/MRI Fusion for Localisation of Deep Brain Stimulation Electrode Position: An Imaging Study and Systematic Review. Stereotact. Funct. Neurosurg. 2016, 94, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Ivan, M.E.; Yarlagadda, J.; Saxena, A.P.; Martin, A.J.; Starr, P.A.; Sootsman, W.K.; Larson, P.S. Brain shift during bur hole–based procedures using interventional MRI. J. Neurosurg. 2014, 121, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.P.; Bakay, R.A.E. Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article. J. Neurosurg. 2011, 115, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kamiryo, T.; Laws, E.R. Stereotactic frame-based error in magnetic-resonance-guided stereotactic procedures: A method for measurement of error and standardization of technique. Stereotact. Funct. Neurosurg. 1996, 67, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Mewes, K.; Gross, R.E.; Skrinjar, O. Assessment of Brain Shift Related to Deep Brain Stimulation Surgery. Stereotact. Funct. Neurosurg. 2008, 86, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Pallavaram, S.; Dawant, B.M.; Remple, M.S.; Neimat, J.S.; Kao, C.; Konrad, P.E.; D’Haese, P.-F. Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery. Int. J. Comput. Assist. Radiol. Surg. 2010, 5, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Elias, W.J.; Fu, K.-M.; Frysinger, R.C. Cortical and subcortical brain shift during stereotactic procedures. J. Neurosurg. 2007, 107, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Zrinzo, L.; Foltynie, T.; Olmos, I.A.; Taylor, C.; Hariz, M.I.; Limousin, P. MRI-Guided Subthalamic Nucleus Deep Brain Stimulation without Microelectrode Recording: Can We Dispense with Surgery under Local Anaesthesia? Stereotact. Funct. Neurosurg. 2011, 89, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.; Swanson, K.I.; Lake, W.B.; Sillay, K.A. Awake Neurophysiologically Guided versus Asleep MRI-Guided STN DBS for Parkinson Disease: A Comparison of Outcomes Using Levodopa Equivalents. Stereotact. Funct. Neurosurg. 2015, 93, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Mirzadeh, Z.; Chapple, K.; Lambert, M.; Ponce, F.A. Complication rates, lengths of stay, and readmission rates in “awake” and “asleep” deep brain simulation. J. Neurosurg. 2017, 127, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.S.; Khavanin, N.; Rambachan, A.; McCarthy, R.J.; Mlodinow, A.S.; De Oliveria, G.S.; Stock, M.C.; Gust, M.J.; Mahvi, D.M. Surgical duration and risk of venous thromboembolism. JAMA Surg. 2015, 150, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Rolston, J.D.; Englot, D.J.; Starr, P.A.; Larson, P.S. An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: Analysis of multiple databases. Parkinsonism Relat. Disord. 2016, 33, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Steigerwald, F.; Müller, L.; Johannes, S.; Matthies, C.; Volkmann, J. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. Mov. Disord. 2016, 31, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Swann, N.C.; de Hemptinne, C.; Miocinovic, S.; Qasim, S.; Wang, S.S.; Ziman, N.; Ostrem, J.L.; Luciano, M.S.; Galifianakis, N.B.; Starr, P.A. Gamma Oscillations in the Hyperkinetic State Detected with Chronic Human Brain Recordings in Parkinson’s Disease. J. Neurosci. 2016, 36, 6445–6458. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, F.; Martinez-Torres, I.; Pogosyan, A.; Holl, E.; Petersen, E.; Chen, C.C.; Foltynie, T.; Limousin, P.; Zrinzo, L.U.; Hariz, M.I.; et al. Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Little, S.; Pogosyan, A.; Neal, S.; Zavala, B.; Zrinzo, L.; Hariz, M.; Foltynie, T.; Limousin, P.; Ashkan, K.; FitzGerald, J.; et al. Adaptive Deep Brain Stimulation In Advanced Parkinson Disease. Ann. Neurol. 2013, 74, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Little, S.; Beudel, M.; Zrinzo, L.; Foltynie, T.; Limousin, P.; Hariz, M.; Neal, S.; Cheeran, B.; Cagnan, H.; Gratwicke, J.; et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2016, 87, 717–721. [Google Scholar] [CrossRef] [PubMed]
- De Hemptinne, C.; Swann, N.C.; Ostrem, J.L.; Ryapolova-Webb, E.S.; San Luciano, M.; Galifianakis, N.B.; Starr, P.A. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat. Neurosci. 2015, 18, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Telkes, I.; Jimenez-Shahed, J.; Viswanathan, A.; Abosch, A.; Ince, N.F. Prediction of STN-DBS Electrode Implantation Track in Parkinson’s Disease by Using Local Field Potentials. Front. Neurosci. 2016, 10, 198. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochanski, R.B.; Sani, S. Awake versus Asleep Deep Brain Stimulation Surgery: Technical Considerations and Critical Review of the Literature. Brain Sci. 2018, 8, 17. https://doi.org/10.3390/brainsci8010017
Kochanski RB, Sani S. Awake versus Asleep Deep Brain Stimulation Surgery: Technical Considerations and Critical Review of the Literature. Brain Sciences. 2018; 8(1):17. https://doi.org/10.3390/brainsci8010017
Chicago/Turabian StyleKochanski, Ryan B., and Sepehr Sani. 2018. "Awake versus Asleep Deep Brain Stimulation Surgery: Technical Considerations and Critical Review of the Literature" Brain Sciences 8, no. 1: 17. https://doi.org/10.3390/brainsci8010017
APA StyleKochanski, R. B., & Sani, S. (2018). Awake versus Asleep Deep Brain Stimulation Surgery: Technical Considerations and Critical Review of the Literature. Brain Sciences, 8(1), 17. https://doi.org/10.3390/brainsci8010017