On the Design of Broad-Based Neuropsychological Test Batteries to Assess the Cognitive Abilities of Individuals with Down Syndrome in the Context of Clinical Trials
Abstract
:1. Introduction
2. Neurocognitive Phenotype of Persons with DS
2.1. Intellectual Quotient
2.2. Hippocampus-Dependent Memory
2.3. Executive Functioning
2.4. Short-Term Memory and Working Memory
2.5. Visuoconstructive Functions
2.6. Speech and Language
3. Neurocognitive Batteries to Assess Cognition in Individuals with DS
3.1. The Study by Pennington and Colleagues
3.2. The Arizona Cognitive Test Battery (ACTB) for DS
3.3. The Test Battery by Liogier d’Ardhuy and Colleagues
3.4. The TESDAD Study Group’s Test Battery
4. Pilot Clinical Trial of Memantine in Young Adults with DS
4.1. Selection of the Test Battery for the Pilot Memantine Trial
4.2. Test-Retest Reliabilities for Measures Used in the Pilot Memantine Trial
4.3. Follow-up Memantine Trial in Adolescents and Young Adults with DS
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Down, J.L.H. Observations on an ethnic classification of idiots. Lond. Hosp. Clin. Lect. Rep. 1866, 3, 259–262. [Google Scholar]
- Lejeune, J.; Turpin, R.; Gautier, M. Le mongolisme premier exemple daberration autosomique humaine. Ann. Genet.-Paris 1959, 1, 41–49. [Google Scholar]
- Parker, S.E.; Mai, C.T.; Canfield, M.A.; Rickard, R.; Wang, Y.; Meyer, R.E.; Anderson, P.; Mason, C.A.; Collins, J.S.; Kirby, R.S.; et al. Updated national birth prevalence estimates for selected birth defects in the united states, 2004-2006. Birth Defects Res. A Clin. Mol. Teratol. 2010, 88, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Brandão, I.M.; Fonseca, V.; Madi, R.R. Prevalence of People with down Syndrome in Brazil. Scientia Plena. 2012. Available online: www.scientiaplena.org.br (accessed on 24 September 2018).
- De Graaf, G.; Buckley, F.; Skotko, B.G. Estimation of the number of people with down syndrome in the united states. Genet. Med. 2017, 19, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Bittles, A.H.; Glasson, E.J. Clinical, social, and ethical implications of changing life expectancy in down syndrome. Dev. Med. Child Neurol. 2004, 46, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Nadel, L. Down syndrome in cognitive neuroscience perspective. In Neurodevelopmental Disorders; Tager-Flusberg, H., Ed.; MIT Press: Cambridge, MA, USA, 1999; pp. 197–221. [Google Scholar]
- Pennington, B.F.; Moon, J.; Edgin, J.; Stedron, J.; Nadel, L. The neuropsychology of down syndrome: Evidence for hippocampal dysfunction. Child Dev. 2003, 74, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Lott, I.T.; Dierssen, M. Cognitive deficits and associated neurological complications in individuals with down’s syndrome. Lancet Neurol. 2010, 9, 623–633. [Google Scholar] [CrossRef]
- Schmidt-Sidor, B.; Wisniewski, K.E.; Shepard, T.H.; Sersen, E.A. Brain growth in down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clin. Neuropathol. 1990, 9, 181–190. [Google Scholar] [PubMed]
- Leverenz, J.B.; Raskind, M.A. Early amyloid deposition in the medial temporal lobe of young down syndrome patients: A regional quantitative analysis. Exp. Neurol. 1998, 150, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Zigman, W.; Schupf, N.; Haveman, M.; Silverman, W. The epidemiology of alzheimer disease in intellectual disability: Results and recommendations from an international conference. J. Intellect. Disabil. Res. 1997, 41 Pt 1, 76–80. [Google Scholar] [CrossRef]
- Zigman, W.B.; Lott, I.T. Alzheimer’s disease in down syndrome: Neurobiology and risk. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Sinai, A.; Mokrysz, C.; Bernal, J.; Bohnen, I.; Bonell, S.; Courtenay, K.; Dodd, K.; Gazizova, D.; Hassiotis, A.; Hillier, R.; et al. Predictors of age of diagnosis and survival of alzheimer’s disease in down syndrome. J. Alzheimers Dis. 2018, 61, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.; Costa, A.C. Down syndrome and genetics—A case of linked histories. Nat. Rev. Genet. 2005, 6, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Roizen, N.J.; Patterson, D. Down’s syndrome. Lancet 2003, 361, 1281–1289. [Google Scholar] [CrossRef]
- Gardiner, K.J. Molecular basis of pharmacotherapies for cognition in down syndrome. Trends Pharmacol. Sci. 2010, 31, 66–73. [Google Scholar] [CrossRef] [PubMed]
- McCabe, L.L.; Hickey, F.; McCabe, E.R. Down syndrome: Addressing the gaps. J. Pediatr. 2011, 159, 525–526. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C. The glutamatergic hypothesis for down syndrome: The potential use of n-methyl-d-aspartate receptor antagonists to enhance cognition and decelerate neurodegeneration. CNS Neurol. Disord. Drug Targets 2014, 13, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Boada, R.; Hutaff-Lee, C.; Schrader, A.; Weitzenkamp, D.; Benke, T.A.; Goldson, E.J.; Costa, A.C. Antagonism of nmda receptors as a potential treatment for down syndrome: A pilot randomized controlled trial. Transl. Psychiatry 2012, 2, e141. [Google Scholar] [CrossRef] [PubMed]
- NCT02304302. Available online: http://www.clinicaltrials.gov (accessed on 23 November 2018).
- Carr, J. Six weeks to twenty-one years old: A longitudinal study of children with down’s syndrome and their families. Third jack tizard memorial lecture. J. Child. Psychol. Psychiatry 1988, 29, 407–431. [Google Scholar] [CrossRef] [PubMed]
- Pueschel, S.; Hopmann, M. Speech and language abilities of children with down syndrome. In Enhancing Children’s Communication: Research Foundations for Interventions; Kaiser, A., Gray, D., Eds.; Brookes: London, UK; P.H. Brookes: Baltimore, MD, USA, 1993; Volume 2, pp. 335–362. [Google Scholar]
- Turner, S.; Alborz, A. Academic attainments of children with down’s syndrome: A longitudinal study. Br. J. Educ. Psychol. 2003, 73, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Carr, J. Stability and change in cognitive ability over the life span: A comparison of populations with and without down’s syndrome. J. Intellect. Disabil. Res. 2005, 49, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Nadel, L. Down’s syndrome: A genetic disorder in biobehavioral perspective. Genes Brain Behav. 2003, 2, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Abbeduto, L.; Warren, S.F.; Conners, F.A. Language development in down syndrome: From the prelinguistic period to the acquisition of literacy. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.S. Language learning in down syndrome: The speech and language profile compared to adolescents with cognitive impairment of unknown origin. Downs Syndr. Res. Pract. 2006, 10, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.S.; Hesketh, L.J. Behavioral phenotype of individuals with down syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2000, 6, 84–95. [Google Scholar] [CrossRef]
- Amaral, D.; Leavenex, P. Hippocampal neuroanatomy. In The Hippocampus Book; Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 37–114. [Google Scholar]
- Cohen, N.J.; Ryan, J.; Hunt, C.; Romine, L.; Wszalek, T.; Nash, C. Hippocampal system and declarative (relational) memory: Summarizing the data from functional neuroimaging studies. Hippocampus 1999, 9, 83–98. [Google Scholar] [CrossRef]
- Diana, R.A.; Yonelinas, A.P.; Ranganath, C. Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends Cogn. Sci. 2007, 11, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, B.; Laurent-Demir, C.; Destrade, C.; Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 1999, 400, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Frankland, P.W.; Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 2005, 6, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Hammond, R.S.; Tull, L.E.; Stackman, R.W. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol. Learn Mem. 2004, 82, 26–34. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, J.L. Memory--a century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Giese, K.P. Hippocampus-dependent memory formation: Do memory type-specific mechanisms exist? J. Pharmacol. Sci. 2005, 98, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Carlesimo, G.A.; Marotta, L.; Vicari, S. Long-term memory in mental retardation: Evidence for a specific impairment in subjects with down’s syndrome. Neuropsychologia 1997, 35, 71–79. [Google Scholar] [CrossRef]
- Vicari, S.; Bellucci, S.; Carlesimo, G.A. Implicit and explicit memory: A functional dissociation in persons with down syndrome. Neuropsychologia 2000, 38, 240–251. [Google Scholar] [CrossRef]
- Caltagirone, C.; Nocentini, U.; Vicari, S. Cognitive functions in adult down’s syndrome. Int. J. Neurosci. 1990, 54, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Devenny, D.A.; Hill, A.L.; Patxot, O.; Silverman, W.P.; Wisniewski, K.E. Ageing in higher functioning adults with down’s syndrome: An interim report in a longitudinal study. J. Intellect. Disabil. Res. 1992, 36 Pt 3, 241–250. [Google Scholar] [CrossRef]
- Ellis, N.R.; Woodley-Zanthos, P.; Dulaney, C.L. Memory for spatial location in children, adults, and mentally retarded persons. Am. J. Ment. Retard. 1989, 93, 521–526. [Google Scholar] [PubMed]
- Jernigan, T.L.; Bellugi, U.; Sowell, E.; Doherty, S.; Hesselink, J.R. Cerebral morphologic distinctions between williams and down syndromes. Arch. Neurol. 1993, 50, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Mangan, P.A. Spatial Memory Abilities and Abnormal Development of the Hippocampal Formation in down Syndrome. Doctoral Dissertation, University of Arizona, Tucson, AZ, USA, 1992, unpublished. [Google Scholar]
- Roberts, L.V.; Richmond, J.L. Preschoolers with down syndrome do not yet show the learning and memory impairments seen in adults with down syndrome. Dev. Sci. 2015, 18, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Emerson, M.J.; Friedman, N.P. Assessment of executive functions in clinical settings: Problems and recommendations. Semin. Speech Lang. 2000, 21, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Lanfranchi, S.; Carretti, B.; Spano, G.; Cornoldi, C. A specific deficit in visuospatial simultaneous working memory in down syndrome. J. Intellect. Disabil. Res. 2009, 53, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Lanfranchi, S.; Cornoldi, C.; Vianello, R. Verbal and visuospatial working memory deficits in children with down syndrome. Am. J. Ment. Retard. 2004, 109, 456–466. [Google Scholar] [CrossRef]
- Lanfranchi, S.; Jerman, O.; Dal Pont, E.; Alberti, A.; Vianello, R. Executive function in adolescents with down syndrome. J. Intellect. Disabil. Res. 2010, 54, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.; Lavender, A.; Turk, V. Cognitive executive function in down’s syndrome. Br. J. Clin. Psychol. 2006, 45, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Kogan, C.S.; Boutet, I.; Cornish, K.; Graham, G.E.; Berry-Kravis, E.; Drouin, A.; Milgram, N.W. A comparative neuropsychological test battery differentiates cognitive signatures of fragile x and down syndrome. J. Intellect. Disabil. Res. 2009, 53, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.D.; Scheibel, K.E.; Ringman, J.M.; Sayre, J.W. An experimental approach to detecting dementia in down syndrome: A paradigm for alzheimer’s disease. Brain Cogn. 2007, 64, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Das, J.P.; Divis, B.; Alexander, J.; Parrila, R.K.; Naglieri, J.A. Cognitive decline due to aging among persons with down syndrome. Res. Dev. Disabil. 1995, 16, 461–478. [Google Scholar] [CrossRef]
- Baddeley, A.D. Working Memory; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Baddeley, A.D. The psychology of memory. In The Handbook of Memory Disorders; Baddeley, A.D., Kopelman, M.D., Wilson, B.A., Eds.; Wiley: Chichester, UK, 2003; pp. 3–15. [Google Scholar]
- Lezak, M.D.; Howieson, D.B.; Bigler, E.D.; Tranel, D. Neuropsychological Assessment; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Chi, M.T. Age differences in memory span. J. Exp. Child Psychol. 1977, 23, 266–281. [Google Scholar] [CrossRef]
- Hulme, C.; Mackenzie, S. Working Memory and Severe Learning Disabilities; Lawrence Erlbaum Associates: Hove, UK, 1992. [Google Scholar]
- Jarrold, C.; Baddeley, A.D. Short-term memory for verbal and visuospatial information in down’s syndrome. Cogn. Neuropsychiatry 1997, 2, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Jarrold, C.; Baddeley, A.D.; Phillips, C.E. Verbal short-term memory in down syndrome: A problem of memory, audition, or speech? J. Speech Lang. Hear Res. 2002, 45, 531–544. [Google Scholar] [CrossRef]
- Mackenzie, S.; Hulme, C. Memory span development in down’s syndrome, severely subnormal and normal subjects. Cogn. Neuropsychol. 1987, 4, 303–319. [Google Scholar] [CrossRef]
- Marcell, M.M.; Harvey, C.F.; Cothran, L.P. An attempt to improve auditory short-term memory in down’s syndrome individuals through reducing distractions. Res. Dev. Disabil. 1988, 9, 405–417. [Google Scholar] [CrossRef]
- Marcell, M.M.; Weeks, S.L. Short-term memory difficulties and down’s syndrome. J. Ment. Defic. Res. 1988, 32 Pt 2, 153–162. [Google Scholar] [CrossRef]
- Numminen, H.; Service, E.; Ahonen, T.; Ruoppila, I. Working memory and everyday cognition in adults with down’s syndrome. J. Intellect. Disabil. Res. 2001, 45, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Bird, E.K.; Chapman, R.S. Sequential recall in individuals with down syndrome. J. Speech Hear Res. 1994, 37, 1369–1380. [Google Scholar] [CrossRef] [PubMed]
- Jarrold, C.; Baddeley, A.D.; Hewes, A.K. Genetically dissociated components of working memory: Evidence from down’s and williams syndrome. Neuropsychologia 1999, 37, 637–651. [Google Scholar] [CrossRef]
- Laws, G. Working memory in children and adolescents with down syndrome: Evidence from a colour memory experiment. J. Child Psychol. Psychiatry 2002, 43, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.P.; Bellugi, U. Evidence from two genetic syndromes for a dissociation between verbal and visual-spatial short-term memory. J. Clin. Exp. Neuropsychol. 1994, 16, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, A.B.; Legutki, G.; Friedman, S.L.; Takayama, D.L. Performance of down syndrome individuals on the stanford-binet intelligence scale. Am. J. Ment. Defic. 1982, 86, 548–551. [Google Scholar] [PubMed]
- Edgin, J.O. Cognition in down syndrome: A developmental cognitive neuroscience perspective. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Mosse, E.K.; Jarrold, C. Evidence for preserved novel word learning in down syndrome suggests multiple routes to vocabulary acquisition. J. Speech Lang. Hear Res. 2011, 54, 1137–1152. [Google Scholar] [CrossRef]
- Laws, G.; Briscoe, J.; Ang, S.Y.; Brown, H.; Hermena, E.; Kapikian, A. Receptive vocabulary and semantic knowledge in children with sli and children with down syndrome. Child Neuropsychol. 2015, 21, 490–508. [Google Scholar] [CrossRef] [PubMed]
- Cleave, P.; Bird, E.K.; Czutrin, R.; Smith, L. A longitudinal study of narrative development in children and adolescents with down syndrome. Intellect. Dev. Disabil. 2012, 50, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Liogier d’Ardhuy, X.; Edgin, J.O.; Bouis, C.; de Sola, S.; Goeldner, C.; Kishnani, P.; Noldeke, J.; Rice, S.; Sacco, S.; Squassante, L.; et al. Assessment of cognitive scales to examine memory, executive function and language in individuals with down syndrome: Implications of a 6-month observational study. Front. Behav. Neurosci. 2015, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Esbensen, A.J.; Hooper, S.R.; Fidler, D.; Hartley, S.L.; Edgin, J.; d’Ardhuy, X.L.; Capone, G.; Conners, F.A.; Mervis, C.B.; Abbeduto, L.; et al. Outcome measures for clinical trials in down syndrome. Am. J. Intellect. Dev. Disabil. 2017, 122, 247–281. [Google Scholar] [CrossRef] [PubMed]
- Sattler, A. Assessment of Children: Cognitive Applications, 4th ed.; Jerome M Sattler Publisher: San Diego, CA, USA, 2001. [Google Scholar]
- Bishop, D.V.M. The Test for Reception of Grammar (trog); Age and Cognitive Performance Research Centre, University of Manchester: Manchester, UK, 1983. [Google Scholar]
- Bishop, D.V.M. Test for Reception of Grammar: Trog-2; Psychological Corporation: London, UK, 2003. [Google Scholar]
- Bishop, D.V.M. The children’s communication checklist. In ccc–2 Manual; Psychological Corporation: Austin, TX, USA, 2006. [Google Scholar]
- Wiig, E.H.; Secord, W.A.; Semel, E. Clinical Evaluation of Language Fundamentals (Celf–Preschool); Psychological Corporation: San Antonio, TX, USA, 1992. [Google Scholar]
- Semel, E.; Wiig, E.H.; Secord, W.A. Clinical Evaluation of Language Fundamentals—Third Edition (celf–3); Psychological Corporation: San Antonio, TX, USA, 1995. [Google Scholar]
- Korkman, M.; Kirk, U.; Kemp, S. Nepsy: A Developmental Neuropsychological Assessment; The Psychological Corporation: San Antonio, TX, USA, 1998. [Google Scholar]
- Fernandez, G.; Weyerts, H.; Tendolkar, I.; Smid, H.G.; Scholz, M.; Heinze, H.J. Event-related potentials of verbal encoding into episodic memory: Dissociation between the effects of subsequent memory performance and distinctiveness. Psychophysiology 1998, 35, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Hermann, B.P.; Seidenberg, M.; Wyler, A.; Davies, K.; Christeson, J.; Moran, M.; Stroup, E. The effects of human hippocampal resection on the serial position curve. Cortex 1996, 32, 323–334. [Google Scholar] [CrossRef]
- Kohler, S.; Black, S.E.; Sinden, M.; Szekely, C.; Kidron, D.; Parker, J.L.; Foster, J.K.; Moscovitch, M.; Winocour, G.; Szalai, J.P.; et al. Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: An mr volumetry study in alzheimer’s disease. Neuropsychologia 1998, 36, 901–914. [Google Scholar] [CrossRef]
- Thomas, K.G.; Hsu, M.; Laurance, H.E.; Nadel, L.; Jacobs, W.J. Place learning in virtual space. Iii: Investigation of spatial navigation training procedures and their application to fmri and clinical neuropsychology. Behav. Res. Methods Instrum. Comput. 2001, 33, 21–37. [Google Scholar] [CrossRef] [PubMed]
- De Sola, S.; de la Torre, R.; Sanchez-Benavides, G.; Benejam, B.; Cuenca-Royo, A.; Del Hoyo, L.; Rodriguez, J.; Catuara-Solarz, S.; Sanchez-Gutierrez, J.; Duenas-Espin, I.; et al. A new cognitive evaluation battery for down syndrome and its relevance for clinical trials. Front. Psychol. 2015, 6, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgin, J.O.; Mason, G.M.; Allman, M.J.; Capone, G.T.; Deleon, I.; Maslen, C.; Reeves, R.H.; Sherman, S.L.; Nadel, L. Development and validation of the arizona cognitive test battery for down syndrome. J. Neurodev. Disord. 2010, 2, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.B.; Owen, A.M.; Johnsrude, I.S.; Passingham, R.E. Imaging the mental components of a planning task. Neuropsychologia 2001, 39, 315–327. [Google Scholar] [CrossRef]
- Kemp, S.L.; Kirk, U.; Korkman, M. Essentials of Nepsy Assessment; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Logan, G.D.; Cowan, W.B.; Davis, K.A. On the ability to inhibit simple and choice reaction time responses: A model and a method. J. Exp. Psychol. Hum. Percept. Perform 1984, 10, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Logan, G.D.; Schachar, R.; Tannock, R. Impulsivity and inhibitory control. Psychol. Sci. 1997, 8, 60–64. [Google Scholar] [CrossRef]
- Petrides, M.; Milner, B. Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 1982, 20, 249–262. [Google Scholar] [CrossRef]
- Case, R.; Kurland, D.M.; Goldberg, J. Operational efficiency and the growth of short-term memory span. J. Exp. Child Psychol. 1982, 33, 386–404. [Google Scholar] [CrossRef]
- Edgin, J.O.; Spano, G.; Kawa, K.; Nadel, L. Remembering things without context: Development matters. Child Dev. 2014, 85, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.R.; Fidler, D.J.; Blakeley-Smith, A.; Daunhauer, L.; Robinson, C.; Hepburn, S.L. Caregiver report of executive functioning in a population-based sample of young children with down syndrome. Am. J. Intellect. Dev. Disabil. 2011, 116, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Edgin, J.O.; Anand, P.; Rosser, T.; Pierpont, E.I.; Figueroa, C.; Hamilton, D.; Huddleston, L.; Mason, G.; Spano, G.; Toole, L.; et al. The arizona cognitive test battery for down syndrome: Test-retest reliability and practice effects. Am. J. Intellect. Dev. Disabil. 2017, 122, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms and Commentary; American Chemical Society: New York, NY, USA, 2006. [Google Scholar]
- Davidson, M.C.; Amso, D.; Anderson, L.C.; Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 2006, 44, 2037–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frith, U.; Frith, C.D. Specific motor disabilities in down’s syndrome. J. Child Psychol. Psychiatry 1974, 15, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Sherman, S.; Reeves, R.H.; Rosser, T.; Capone, G.; Spano, G.; Edgin, J.O. Assessing cognitive variability in down syndrome—Test-retest reliability & practice effects of the arizona cognitive test battery. Paper Presented at the DSMIG-USA Annual Symposium, Phoenix, AZ, USA, 26 June 2015. [Google Scholar]
- Desmond, J.E.; Gabrieli, J.D.; Wagner, A.D.; Ginier, B.L.; Glover, G.H. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional mri. J. Neurosci. 1997, 17, 9675–9685. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.S.; Kaufman, N.L. Kaufmann Brief Intelligence Test; Pearson, Inc.: Bloomington, MN, USA, 2004. [Google Scholar]
- Edgin, J.O.; Pennington, B.F.; Mervis, C.B. Neuropsychological components of intellectual disability: The contributions of immediate, working, and associative memory. J. Intellect. Disabil. Res. 2010, 54, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Bruininks, R.H.; Woodcock, R.W.; Weatherman, R.F.; Hill, B.K. Scales of Independent Behavior-Revised (sib-r); Riverside Publishing Company: Itasca, IL, USA, 1996. [Google Scholar]
- Gioia, G.A.; Isquith, P.K.; Guy, S.C.; Kenworthy, L. Test review behavior rating inventory of executive function. Child Neuropsychol. 2000, 6, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Aman, M.G.; Tasse, M.J.; Rojahn, J.; Hammer, D. The nisonger cbrf: A child behavior rating form for children with developmental disabilities. Res. Dev. Disabil. 1996, 17, 41–57. [Google Scholar] [CrossRef]
- Heller, J.H.; Spiridigliozzi, G.A.; Crissman, B.G.; McKillop, J.A.; Yamamoto, H.; Kishnani, P.S. Safety and efficacy of rivastigmine in adolescents with down syndrome: Long-term follow-up. J. Child Adolesc. Psychopharmacol. 2010, 20, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The repeatable battery for the assessment of neuropsychological status (rbans): Preliminary clinical validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Bedard, A.C.; Martinussen, R.; Ickowicz, A.; Tannock, R. Methylphenidate improves visual-spatial memory in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Semel, E.; Wiig, E.H.; Secord, W.A. Clinical Evaluation of Language Fundamentals®-Preschool-2 (celf®-Preschool-2); Psychological Corp.: San Antonio, TX, USA, 2004. [Google Scholar]
- Roid, G.H.; Miller, L.J. Leiter International Performance Scale-Revised: Examiner’s Manual; Stoelting Co.: Wood Dale, IL, USA, 1997. [Google Scholar]
- Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; Lawrence, A.D.; McInnes, L.; Rabbitt, P.M. A study of performance on tests from the cantab battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Cambridge neuropsychological test automated battery. J. Int. Neuropsychol. Soc. 1998, 4, 474–490. [Google Scholar] [PubMed]
- Costa, A.C.; Scott-McKean, J.J. Prospects for improving brain function in individuals with down syndrome. CNS Drugs 2013, 27, 679–702. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C. On the promise of pharmacotherapies targeted at cognitive and neurodegenerative components of down syndrome. Dev. Neurosci. 2011, 33, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C.; Scott-McKean, J.J.; Stasko, M.R. Acute injections of the nmda receptor antagonist memantine rescue performance deficits of the ts65dn mouse model of down syndrome on a fear conditioning test. Neuropsychopharmacology 2008, 33, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Lockrow, J.; Boger, H.; Bimonte-Nelson, H.; Granholm, A.C. Effects of long-term memantine on memory and neuropathology in ts65dn mice, a model for down syndrome. Behav. Brain Res. 2011, 221, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Rueda, N.; Llorens-Martin, M.; Florez, J.; Valdizan, E.; Banerjee, P.; Trejo, J.L.; Martinez-Cue, C. Memantine normalizes several phenotypic features in the ts65dn mouse model of down syndrome. J. Alzheimers Dis. 2010, 21, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Scott-McKean, J.J.; Roque, A.L.; Surewicz, K.; Johnson, M.W.; Surewicz, W.K.; Costa, A.C.S. Pharmacological modulation of three modalities of ca1 hippocampal long-term potentiation in the ts65dn mouse model of down syndrome. Neural Plast. 2018, 2018, 9235796. [Google Scholar] [CrossRef] [PubMed]
- Scott-McKean, J.J.; Costa, A.C. Exaggerated nmda mediated ltd in a mouse model of down syndrome and pharmacological rescuing by memantine. Learn Mem. 2011, 18, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Woods, S.P.; Delis, D.C.; Scott, J.C.; Kramer, J.H.; Holdnack, J.A. The california verbal learning test--second edition: Test-retest reliability, practice effects, and reliable change indices for the standard and alternate forms. Arch. Clin. Neuropsychol. 2006, 21, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Sample Size Calculator. Available online: https://www.ai-therapy.com/psychology-statistics/sample-size-calculator (accessed on 23 November 2018).
- Hanney, M.; Prasher, V.; Williams, N.; Jones, E.L.; Aarsland, D.; Corbett, A.; Lawrence, D.; Yu, L.M.; Tyrer, S.; Francis, P.T.; et al. Memantine for dementia in adults older than 40 years with down’s syndrome (meadows): A randomised, double-blind, placebo-controlled trial. Lancet 2012, 379, 528–536. [Google Scholar] [CrossRef]
- Spiridigliozzi, G.A.; Hart, S.J.; Heller, J.H.; Schneider, H.E.; Baker, J.A.; Weadon, C.; Capone, G.T.; Kishnani, P.S. Safety and efficacy of rivastigmine in children with down syndrome: A double blind placebo controlled trial. Am. J. Med. Genet. A 2016, 170, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Heller, J.H.; Spiridigliozzi, G.A.; Lott, I.; Escobar, L.; Richardson, S.; Zhang, R.; McRae, T. Donepezil for treatment of cognitive dysfunction in children with down syndrome aged 10–17. Am. J. Med. Genet. A 2010, 152A, 3028–3035. [Google Scholar] [CrossRef] [PubMed]
- Fidler, D.J.; Nadel, L. Education and children with down syndrome: Neuroscience, development, and intervention. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Silverman, W. Down syndrome: Cognitive phenotype. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 228–236. [Google Scholar] [CrossRef] [PubMed]
Measure | Test-Retest Reliability (Pearson r) |
---|---|
CVLT-II—Total Recall Discriminability | 0.75 |
CVLT-II—Total Recall Score | 0.76 |
CANTAB PRM—Raw Score Correct | 0.68 |
CANTAB SWM—Between Errors | 0.93 |
CANTAB SWM—Strategy Score | 0.33 |
CANTAB PAL First Trial Memory Score | 0.72 |
CANTAB PAL Stages Completed | 0.81 |
Rivermead Total Score | 0.62 |
DAS-II Recall of Digits Ability Score | 0.74 |
DAS-II Matrices Ability Score | 0.62 |
TROG-II Item Correct Raw Score | 0.81 |
PPVT-III Standard Score | 0.93 |
NEPSY Verbal Fluency Total Raw Score | 0.92 |
SIB-R Total Independence Standard Score | 0.95 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basten, I.A.; Boada, R.; Taylor, H.G.; Koenig, K.; Barrionuevo, V.L.; Brandão, A.C.; Costa, A.C.S. On the Design of Broad-Based Neuropsychological Test Batteries to Assess the Cognitive Abilities of Individuals with Down Syndrome in the Context of Clinical Trials. Brain Sci. 2018, 8, 205. https://doi.org/10.3390/brainsci8120205
Basten IA, Boada R, Taylor HG, Koenig K, Barrionuevo VL, Brandão AC, Costa ACS. On the Design of Broad-Based Neuropsychological Test Batteries to Assess the Cognitive Abilities of Individuals with Down Syndrome in the Context of Clinical Trials. Brain Sciences. 2018; 8(12):205. https://doi.org/10.3390/brainsci8120205
Chicago/Turabian StyleBasten, Ines A., Richard Boada, Hudson G. Taylor, Katherine Koenig, Veridiana L. Barrionuevo, Ana C. Brandão, and Alberto C. S. Costa. 2018. "On the Design of Broad-Based Neuropsychological Test Batteries to Assess the Cognitive Abilities of Individuals with Down Syndrome in the Context of Clinical Trials" Brain Sciences 8, no. 12: 205. https://doi.org/10.3390/brainsci8120205
APA StyleBasten, I. A., Boada, R., Taylor, H. G., Koenig, K., Barrionuevo, V. L., Brandão, A. C., & Costa, A. C. S. (2018). On the Design of Broad-Based Neuropsychological Test Batteries to Assess the Cognitive Abilities of Individuals with Down Syndrome in the Context of Clinical Trials. Brain Sciences, 8(12), 205. https://doi.org/10.3390/brainsci8120205