Novel Synthetic Opioids: The Pathologist’s Point of View
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Synthetic Opioid Overview
3.2. Circumstantial Data and External Examination
3.3. Autopsy-Pathological Findings
3.3.1. Central Nervous System
3.3.2. Cardiovascular System
3.3.3. Pulmonary
3.3.4. Others
3.4. Sampling
3.5. Lethal Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Office on Drugs and Crime. 2017 Global Synthetic Drugs Assessment. Available online: https://www.unodc.org/ (accessed on 17 August 2018).
- European Monitoring Centre for Drugs and Drug Addiction. Fentanils and Synthetic Cannabinoids: Driving Greater Complexity into the Drug Situation—An Update from the EU Early Warning System. Available online: http://www.emcdda.europa.eu/ (accessed on 19 June 2018).
- Lemmens, H. Pharmacokinetic-pharmacodynamic relationships for opioids in balanced anaesthesia. Clin. Pharmacokinet. 1995, 29, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zawilska, J.B. An Expanding World of Novel Psychoactive Substances: Opioids. Front. Psychiatry 2017, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Hempstead, K.; Yildirim, E.O. Supply-side response to declining heroin purity: Fentanyl overdose episode in New Jersey. Health Econ. 2014, 23, 688–705. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.J.; Marshall, B.D.L.; Rich, J.D.; Green, T.C. Exposure to fentanyl-contaminated heroin and overdose risk among illicit opioid users in Rhode Island: A mixed methods study. Int. J. Drug Policy 2017, 46, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, R.; Bruchas, M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115, 1363–1381. [Google Scholar] [CrossRef] [PubMed]
- Horsfall, J.T.; Sprague, J.E. The Pharmacology and Toxicology of the ‘Holy Trinity’. Basic Clin. Pharmacol. Toxicol. 2017, 120, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Schug, S.A.; Ting, S. Fentanyl Formulations in the Management of Pain: An update. Drugs 2017, 77, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.; Schwaner, R. Transdermal fentanyl: Pharmacology and toxicology. J. Med. Toxicol. 2009, 5, 230–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, T.H. The fentanyl story. J. Pain 2014, 15, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Eiden, C.; Mathieu, O.; Donnadieu-Rigole, H.; Marrot, C.; Peyrière, H. High opioids tolerance due to transmucosal fentanyl abuse. Eur. J. Clin. Pharmacol. 2017, 73, 1195–1196. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J.; El-Haddad, S. A review: Fentanyl and non-pharmaceutical fentanyls. Drug Alcohol Depend. 2017, 171, 107–116. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office on Drugs and Crime. Fentanyl and Its Analogues—50 Years on. Glob Smart Update. 2017, Volume 17, pp. 3–7. Available online: https://www.unodc.org/documents/scientific/Global_SMART_Update_17_web.pdf (accessed on 19 June 2018).
- Cox, B.M. Pharmacology of opioid drugs. In The Opiate Receptors; Humana Press: New York, NY, USA, 2011; pp. 23–58. ISBN 978-1-60761-993-2. [Google Scholar]
- Pasternak, G.W.; Pan, Y.X. Mu opioids and their receptors: Evolution of a concept. Pharmacol. Rev. 2013, 65, 1257–1317. [Google Scholar] [CrossRef] [PubMed]
- Ujváry, I.; Jorge, R.; Christie, R.; Le Ruez, T.; Danielsson, H.V.; Kronstrand, R.; Elliott, S.; Gallegos, A.; Sedefov, R.; Evans-Brown, M. Acryloylfentanyl, a recently emerged new psychoactive substance: A comprehensive review. Forensic Toxicol. 2017, 35, 232–243. [Google Scholar] [CrossRef]
- Dahan, A.; Sarton, E.; Teppema, L.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.; Kieffer, B.L. Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology 2001, 94, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, B.L. Opioids: First lessons from knockout mice. Trends Pharmacol. Sci. 1999, 20, 19–26. [Google Scholar] [CrossRef]
- Pattinson, K.T. Opioids and the control of respiration. Br. J. Anaesth. 2008, 100, 747–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczyńska, K.; Grzonkowski, P.; Kacprzak, L.; Zawilska, J.B. Abuse of fentanyl: An emerging problem to face. Forensic Sci. Int. 2018, 289, 207–214. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office on Drugs and Crime. Opioid Overdose: Preventing and Reducing Opioid Overdose Mortality; Discussion Paper UNOCD/WHO 2013; United Nations: New York, NY, USA, 2013; Available online: https://www.unodc.org/docs/treatment/overdose.pdf (accessed on 19 June 2018).
- Kim, H.K.; Nelson, L.S. Reducing the harm of opioid overdose with the safe use of naloxone: A pharmacologic review. Expert Opin. Drug Saf. 2015, 14, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Daniulaityte, R.; Juhascik, M.P.; Strayer, K.E.; Sizemore, I.E.; Harshbarger, K.E.; Antonides, H.M.; Carlson, R.R. Overdose deaths related to fentanyl and its analogs—Ohio, January–February 2017. MMWR Morb. Mortal Wkly. Rep. 2017, 66, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Green, T.C.; Gilbert, M. Counterfeit medications and fentanyl. JAMA Intern. Med. 2016, 176, 1555–1557. [Google Scholar] [CrossRef] [PubMed]
- Abdulahim, D.; Bowden-Jones, O. The Misuse of Synthetic Opioids: Harms and Clinical Management of Fentanyl, Fentanyl Analogues and Other Novel Synthetic Opioids. Available online: https://smmgp.org.uk/media/12031/neptune-fentanyl-clinical-management-mar-18.pdf (accessed on 19 June 2018).
- Volpe, D.A.; McMahon Tobin, G.A.; Mellon, R.D.; Katki, A.G.; Parker, R.J.; Colatsky, T.; Kropp, T.J.; Verbois, S.L. Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul. Toxicol. Pharmacol. 2011, 59, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Bot, G.; Blake, A.D.; Li, S.; Reisine, T. Fentanyl and its analogs desensitize the cloned Muopioid receptor. J. Pharmacol. Exp. Ther. 1998, 285, 1207–1218. [Google Scholar] [PubMed]
- Maguire, P.; Tsai, N.; Kamal, J.; Cometta-Morini, C.; Upton, C.; Loew, G. Pharmacological profiles of fentanyl analogs at mu, delta and kappa opiate receptors. Eur. J. Pharmacol. 1992, 213, 219–225. [Google Scholar] [CrossRef]
- Mounteney, J.; Giraudon, I.; Denissov, G.; Griffith, P. Fentanyl: Are we missing the signs? Highly potent and on the rise in Europe. Int. J. Drug Policy 2015, 26, 626–631. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA 2016. Acryloylfentanyl. EMCDDA—Europol Joint Report on a New Psychoactive Substance: N-(1-Phenylethylpiperidin-4-yl)-N-Phenylacrylamide(Acryloylfentanyl). Available online: http://www.emcdda.europa.eu/publications/joint-reports/acryloylfentanyl (accessed on 19 June 2018).
- Lucyk, S.N.; Nelson, L.S. Novel synthetic opioids: An opioid epidemic within an opioid epidemic. Ann. Emerg. Med. 2017, 69, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Bäckberg, M.; Singell, P.; Beck, O. Intoxications involving acrylfentanyl and other novel designer fentanyls–results from the Swedish STRIDA project. Clin. Toxicol. 2017, 55, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Bäckberg, M.; Beck, O. MT-45, a new psychoactive substance associated with hearing loss and unconsciousness. Clin. Toxicol. 2014, 52, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Bradley, M.; Hasselblad, A.; Norlén, L.; Vassilaki, I.; Bäckberg, M.; Lapins, J. Acute skin and hair symptoms followed by severe, delayed eye compli-cations in subjects using the synthetic opioid MT-45. Br. J. Dermatol. 2017, 176, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA. EMCDDA: Europol Joint Report on a New Psychoactive Substance: 1-Cyclohexyl-4-(1,2-diphenylethyl)piperazine (‘MT-45’) [Risk Assessment Report]. September 2014. Available online: http://www.emcdda.europa.eu/publications/joint-reports/MT-45 (accessed on 19 June 2018).
- Siddiqi, S.; Verney, C.; Dargan, P.; Wood, D.M. Understanding the availability, prevalence of use, desired effects, acute toxicity and dependence potential of the novel opioid MT-45. Clin. Toxicol. 2015, 53, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Ishii, D.; Yokoyama, Y.; Motoyoshi, S.; Natsuka, K.; Shimizu, M. Analgesic and other pharmacological activities of a new narcotic antagonist analgesic (−)-1-(3-methyl-2-butenyl)-4-[2-(3-hydroxyphenyl)-1-phenylethyl]-piperazine and its enantiomorph in experimental animals. J. Pharm. Pharmacol. 1980, 32, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Montesano, C.; Vannutelli, G.; Fanti, F.; Vincenti, F.; Gregori, A.; Rita Togna, A.; Canazza, I.; Marti, M.; Sergi, M. Identification of MT-45 Metabolites: In silico prediction, in vitro incubation with rat hepatocytes and in vivo confirmation. J. Anal. Toxicol. 2017, 41, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Harper, N.J.; Veitch, G.B.; Wibberley, D.G. 1-(3,4-Dichlorobenzamidomethyl) cyclohexyldimethylamine and related compounds as potential analgesics. J. Med. Chem. 1974, 17, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Brittain, R.T.; Kellett, D.N.; Neat, M.L.; Stables, R. Proceedings: Anti-nociceptive effects in N-substituted cyclohexylmethylbenzamides. Br. J. Pharmacol. 1973, 49, 158–159. [Google Scholar]
- EMCDDA. EMCDDA—Europol Joint Report on a New Psychoactive Substance: AH-7921. (2016). Available online: http://www.emcdda.europa.eu/system/files/publications/816/AH-7921_465209.pdf (accessed on 19 June 2018).
- Karinen, R.; Tuv, S.S.; Rogde, S.; Peres, M.D.; Johansen, U.; Frost, J.; Vindenes, V.; Øiestad, A.M. Lethal poisonings with AH-7921 in combination with other substances. Forensic Sci. Int. 2014, 244, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Kronstrand, R.; Thelander, G.; Lindstedt, D.; Roman, M.; Kugelberg, F.C. Fatal intoxications associated with the designer opioid AH-7921. J. Anal. Toxicol. 2014, 38, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Cheney, B.V.; Szmuszkovicz, J.; Lahti, R.A.; Zichi, D.A. Factors affecting binding of trans-N-[2-(methylamino)cyclohexyl]benzamides at the primary morphine receptor. J. Med. Chem. 1985, 28, 1853–1864. [Google Scholar] [CrossRef] [PubMed]
- Narita, M.; Imai, S.; Itou, Y.; Yajima, Y.; Suzuki, T. Possible involvement of mu1-opioid receptors in the fentanyl- or morphine-induced antinociception at supraspinal and spinal sites. Life Sci. 2002, 70, 2341–2354. [Google Scholar] [CrossRef]
- DEA. Schedules of Controlled Substances: Temporary Placement of U-47700 Into Schedule I [Docket No. DEA-440]. Available online: https://www.deadiversion.usdoj.gov (accessed on 19 June 2018).
- Mohr, A.L.; Friscia, M.; Papsun, D.; Kacinko, S.L.; Buzby, D.; Logan, B.K. Analysis of novel synthetic opioids U-47700, U-50488 and furanyl fentanyl by LC-MS/MS in postmortem casework. J. Anal. Toxicol. 2016, 40, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Chiravuri, S.; Kaye, A.D. Comparing fatal cases involving U-47700. Forensic Sci. Med. Pathol. 2016, 12, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.J.; Hernandez, B.S.; Janis, G.C.; Stellpflug, S.J. A case of U-47700 overdose with laboratory confirmation and metabolite identification. Clin. Toxicol. 2017, 55, 55–59. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.K.; Halpin, J.; Mattson, C.L.; Goldberger, B.A.; Gladden, R.M. Deaths Involving Fentanyl, Fentanyl Analogs, and U-47700-10 States, July–December 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Yonemitsu, K.; Sasao, A.; Mishima, S.; Ohtsu, Y.; Nishitani, Y. A fatal poisoning case by intravenous injection of “bath salts” containing acetyl fentanyl and 4-methoxy PV8. Forensic Sci. Int. 2016, 267, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycki, O.J.; Bevan, D.; Lucas, S. Fatal overdose due to pre-scription fentanyl patches in a patient with sickle cell/beta-thalassemia and acute chest syndrome: A case report and review of the literature. Am. J. Forensic Med. Pathol. 2009, 30, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Juebner, M.; Fietzke, M.; Beike, J.; Rothschild, M.A.; Bender, K. Assisted suicide by fentanyl intoxication due to excessive transdermal application. Int. J. Legal. Med. 2014, 128, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Denton, J.S.; Donoghue, E.R.; McReynolds, J.; Kalelkar, M.B. An epidemic of illicit fentanyl deaths in Cook County, Illinois: September 2005 through April 2007. J. Forensic Sci. 2008, 53, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Bakovic, M.; Nestic, M.; Mayer, D. Death by band-aid: Fatal misuse of transdermal fentanyl patch. Int. J. Legal. Med. 2014, 129, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.M.; Haikal, N.A.; Kraner, J.C. Fatal intoxication with acetyl fentanyl. J. Forensic Sci. 2016, 61, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Staeheli, S.N.; Baumgartner, M.R.; Gauthier, S.; Gascho, D.; Jarmer, J.; Kraemer, T.; Steuer, A.E. Time-dependent postmortem redistribution of butyrfentanyl and its metabolites in blood and alternative matrices in a case of butyrfentanyl intoxication. Forensic Sci. Int. 2016, 266, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, D.; Rapp, E.; Roman, M.; Druid, H.; Kronstrand, R. Postmortem and toxicological findings in a series of furanylfentanyl-related deaths. J. Anal. Toxicol. 2017, 41, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Martucci, H.F.H.; Ingle, E.A.; Hunter, M.D.; Rodda, L.N. Distribution of furanyl fentanyl and 4-ANPP in an accidental acute death: A case report. Forensic Sci. Int. 2018, 283, 170–177. [Google Scholar] [CrossRef]
- Dussy, F.E.; Hangartner, S.; Hamberg, C.; Berchtold, C.; Scherer, U.; Schlotterbeck, G.; Wyler, D.; Briellmann, T.A. An acute ocfentanil fatality: A case report with post-mortem concentrations. J. Anal. Toxicol. 2016, 40, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Vorce, S.P.; Knittel, J.L.; Holler, J.M.; Magluilo, J., Jr.; Levine, B.; Berran, P.; Bosy, T.Z. A fatality involving AH-7921. J. Anal. Toxicol. 2014, 38, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.W.; Cooley, J.C.; Johnson, L.; Frazee, C.C.; Domanski, K.; Kleinschmidt, K.; Garg, U. Analysis of U-47700, a novel synthetic opioid, in human urine by LC-MS-MS and LC-QToF. J. Anal. Toxicol. 2017, 41, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Fels, H.; Krueger, J.; Sachs, H.; Mussho, F.; Graw, M.; Roider, G.; Stoever, A. Two fatalities associated with synthetic opioids: AH-7921 and MT-45. Forensic Sci. Int. 2017, 77, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Bäckberg, M.; Beck, O. Intoxications involving the fentanyl analogs acetylfentanyl, 4-methoxybutyrfentanyl and furanylfentanyl: Results from the Swedish STRIDA project. Clin. Toxicol. 2016, 54, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Foy, L.; Seeyave, D.M.; Bradin, S.A. Toxic leukoencephalopathy due to trans-dermal fentanyl overdose. Pediatr. Emerg. Care 2011, 27, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Kucuk, H.O.; Kucuk, U.; Kolcu, Z.; Balta, S.; Demirkol, S. Misuse of fentanyl transdermal patch mixed with acute coronary syndrome. Hum. Exp. Toxicol. 2016, 35, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Poklis, J.; Poklis, A.; Wolf, C.; Hathaway, C.; Arbefeville, E.; Chrostowski, L.; Pearson, J. Two fatal intoxications involving butyryl fentanyl. J. Anal. Toxicol. 2016, 40, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.T.; Muto, J.J. Duragesic transdermal patch: Post- mortem tissue distribution of fentanyl in 25 cases. J. Anal. Toxicol. 2000, 24, 703–708. [Google Scholar] [CrossRef]
- Carson, H.J.; Knight, L.D.; Dudley, M.H.; Garg, U. A fatality involving an unusual route of fentanyl delivery: Chewing and aspirating the transdermal patch. Leg. Med. 2010, 12, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Kronstrand, R.; Druid, H.; Holmgren, P.; Rajs, J. A cluster of fentanyl-related deaths among drug addicts in Sweden. Forensic Sci. Int. 1997, 88, 185–193. [Google Scholar] [CrossRef]
- Takase, I.; Koizumi, T.; Fujimoto, I.; Yanai, A.; Fujimiya, T. An autopsy case of acetyl fentanyl intoxication caused by insufflation of ‘designer drugs’. Leg. Med. 2016, 21, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Coopman, V.; Cordonnier, J.; De Leeuw, M.; Cirimele, V. Ocfentanil overdose fatality in the recreational drug scene. Forensic Sci. Int. 2016, 266, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Burns, G.; DeRienz, R.T.; Baker, D.D.; Casavant, M.; Spiller, H.A. Could chest wall rigidity be a factor in rapid death from illicit fentanyl abuse? Clin. Toxicol. 2016, 54, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Rao, N.G.; Baird, J.R. A death due to self-administered fentanyl. J. Anal. Toxicol. 1990, 14, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.L. Fentanyl-related deaths: Demographics, circumstances, and toxicology of 112 cases. J. Forensic Sci. 1991, 36, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Coopman, V.; Cordonnier, J.; Pien, K.; Van Varenbergh, D. LC-MS/MS analysis of fentanyl and norfentanyl in a fatality due to application of multiple Durogesic transdermal therapeutic systems. Forensic Sci. Int. 2007, 169, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Winecker, R.; Pestaner, J.P. Unusual fentanyl patch administration. Am. J. Forensic Med. Pathol. 2008, 29, 162–163. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; Trochta, A.; Gary, R.D.; Malamatos, M.; Lucas, J.R. An acute acetyl fentanyl fatality: A case report with postmortem concentrations. J. Anal. Toxicol. 2015, 39, 490–494. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; Trochta, A.; Gary, R.D.; Wright, J.; Mena, O. An acute butyr-fentanyl fatality: A case report with postmortem concentrations. J. Anal. Toxicol. 2016, 40, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Lilleng, P.K.; Mehlum, L.I.; Bachs, L.; Morild, I. Deaths after intravenous misuse of transdermal fentanyl. J. Forensic Sci. 2004, 49, 1364–1366. [Google Scholar] [CrossRef] [PubMed]
- Ojanperä, I.; Gergov, M.; Liiv, M.; Riikoja, A.; Vuori, E. An epidemic of fatal 3-methylfentanyl poisoning in Estonia. Int. J. Legal. Med. 2008, 122, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Sinicina, I.; Sachs, H.; Keil, W. Post-mortem review of fentanyl-related overdose deaths among identified drug users in Southern Bavaria, Germany, 2005–2014. Drug Alcohol Depend. 2017, 180, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.B.; Janssen, J.; Luckasevic, T.M.; Williams, K.E. Report of increasing overdose deaths that include acetyl fentanyl in multiple counties of the southwestern region of the commonwealth of Pennsylvania in 2015–2016. J. Forensic Sci. 2018, 63, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Palamalai, V.; Olson, K.N.; Kloss, J.; Middleton, O.; Mills, K.; Strobl, A.Q.; Thomas, L.C.; Apple, F.S. Superiority of postmortem liver fentanyl concentrations over peripheral blood influenced by postmortem interval for determination of fentanyl toxicity. Clin. Biochem. 2013, 46, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, A.; Centola, C.; Giorgetti, R. Fentanyl novel derivative-related deaths. Hum. Psychopharmacol. 2017, 32. [Google Scholar] [CrossRef] [PubMed]
- Fort, C.; Curtis, B.; Nichols, C.; Niblo, C. Acetyl fentanyl toxicity: Two case reports. J. Anal. Toxicol. 2016, 40, 754–757. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, T.J.; Gandolfi, A.J.; Davis, T.P.; Morano, R.A. Identification and quantification of alpha-methylfentanyl in post mortem specimens. J. Anal. Toxicol. 1982, 6, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Sofalvi, S.; Schueler, H.E.; Lavins, E.S.; Kaspar, C.K.; Brooker, I.T.; Mazzola, C.D.; Dolinak, D.; Gilson, T.P.; Perch, S. An LC-MS-MS Method for the Analysis of Carfentanil, 3-Methylfentanyl, 2-Furanyl Fentanyl, Acetyl Fentanyl, Fentanyl and Norfentanyl in Postmortem and Impaired-Driving Cases. J. Anal. Toxicol. 2017, 41, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Rojkiewicz, M.; Majchrzak, M.; Celiński, R.; Kuś, P.; Sajewicz, M. Identification and physicochemical characterization of 4-fluorobutyrfentanyl (1-((4-fluorophenyl)(1-phenethylpiperidin-4-yl)amino)butan-1-one, 4-FBF) in seized materials and post-mortem biological samples. Drug Test. Anal. 2017, 9, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Ojanperä, I.; Gergov, M.; Rasanen, I.; Lunetta, P.; Toivonen, S.; Tiainen, E.; Vuori, E. Blood levels of 3-methylfentanyl in 3 fatal poisoning cases. Am. J. Forensic Med. Pathol. 2006, 27, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Ruzycki, S.; Yarema, M.; Dunham, M.; Sadrzadeh, H.; Tremblay, A. Intranasal fentanyl intoxication leading to diffuse alveolar hemorrhage. J. Med. Toxicol. 2016, 12, 185–188. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; Gary, R.D.; Joseph, S.; Stabley, R. A fatality related to the synthetic opioid U-47700: Postmortem concentration distribution. J. Anal. Toxicol. 2016, 41, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Dziadosz, M.; Klintschar, M.; Teske, J. Postmortem concentration distribution in fatal cases involving the synthetic opioid U-47700. Int. J. Legal. Med. 2017, 131, 1555–1556. [Google Scholar] [CrossRef] [PubMed]
- Papsun, D.; Krywanczyk, A.; Vose, J.C.; Bundock, E.A.; Logan, B.L. Analysis of MT-45, a novel synthetic opioid, in human whole blood by LC-MS-MS and its identification in a drug-related death. J. Anal. Toxicol. 2016, 40, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.L.; Woodall, K.L.; McLellan, B.A. Fentanyl-related deaths in Ontario, Canada: Toxicological findings and circumstances of death in 112 cases (2002–2004). J. Anal. Toxicol. 2006, 30, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Wiesbrock, U.O.; Rochholz, G.; Franzelius, C.; Schwark, T.; Grellner, W. Excessive use of fentanyl patches as the only means of suicide. Arch. Kriminol. 2008, 222, 23–30. [Google Scholar] [PubMed]
- Poklis, J.; Poklis, A.; Wolf, C.; Mainland, M.; Hair, L.; Devers, K.; Pearson, J. Postmortem tissue distribution of acetyl fentanyl, fentanyl and their respective nor-metabolites analyzed by ultrahigh performance liquid chromatography with tandem mass spectrometry. Forensic Sci. Int. 2015, 257, 435–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, J.; Poklis, J.; Poklis, A.; Wolf, C.; Mainland, M.; Hair, L.; Devers, K.; Chrostowski, L.; Arbefeville, E.; Merves, M. Postmortem toxicology findings of acetyl fentanyl, fentanyl, and morphine in heroin fatalities in tampa, florida. Acad. Forensic Pathol. 2015, 5, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.M.; Hair, L.S.; Strauch Rivers, S.R.; Smyth, B.C.; Brogan, S.C.; Ventoso, A.D.; Vaccaro, S.L.; Pearson, J.M. Fatalities involving carfentanil and furanyl fentanyl: Two case reports. J. Anal. Toxicol. 2017, 41, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Coopman, V.; Blanckaert, P.; Van Parys, G.; Van Calenbergh, S.; Cordonnier, J. A case of acute intoxication due to combined use of fentanyl and 3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylben-zamide (U-47700). Forensic Sci. Int. 2016, 266, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.G.; Baker, A.M.; Bracey, A.H.; Seningen, J.; Kloss, J.S.; Strobl, A.Q.; Apple, F.S. Fentanyl concentrations in 23 postmortem cases from the Hennepin County Medical Examiner’s Office. J. Forensic Sci. 2007, 52, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Krotulski, A.J.; Papsun, D.M.; Friscia, M.; Swartz, J.L.; Holsey, B.D.; Logan, B.K. Fatality following ingestion of tetrahydrofuranylfentanyl, U-49900 and methoxy-phencyclidine. J. Anal. Toxicol. 2018, 42, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Rudd, R.A.; Seth, P.; David, F.; Scholl, L. Increases in Drug and Opioid-Involved Overdose Deaths–United States, 2010–2015. MMWR Morb. Mortal Wkly. Rep. 2016, 65, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, C.S.; Lathrop, S.L.; Crossey, M.; Baker, G.; Zumwalt, R. A toxicology-based review of fentanyl-related deaths in New Mexico (1986–2007). Am. J. Forensic Med. Pathol. 2011, 32, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, C.S.; Lathrop, S.L.; Zumwalt, R. An examination of the postmortem redistribution of fentanyl and interlaboratory variability. J. Forensic Sci. 2014, 59, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Mogali, S.; Comer, S.D. Polydrug abuse: A review of opioid and benzodiazepine combination use. Drug Alcohol Depend. 2012, 125, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, S.; Taylor, D.A. The effect of buprenorphine and benzodiazepines on respiration in the rat. Drug Alcohol Depend. 2005, 79, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Darke, S.G.; Ross, J.; Hall, W. Overdose among heroin users in Sydney, Australia: I. Prevalence and correlates of non-fatal overdose. Addiction 1996, 91, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Perret, G.; Déglon, J.J.; Kreek, M.J.; Ho, A.; La Harpe, R. Lethal methadone intoxications in Geneva, Switzerland, from 1994 to 1998. Addiction 2000, 95, 1647–1653. [Google Scholar] [CrossRef] [PubMed]
- Stitzer, M.L.; Griffiths, R.R.; McLeIlan, A.T.; Grabowski, J.; Hawthorne, J.W. Diazepam use among methadone maintenance patients: Patterns and dosages. Drug Alcohol Depend. 1981, 8, 189–199. [Google Scholar] [CrossRef]
- Spiga, R.; Huang, D.B.; Meisch, R.A.; Grabowski, J. Human methadone self-administration: Effects of diazepam pretreatment. Exp. Clin. Psychopharmacol. 2001, 9, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Darke, S.G.; Ross, J.; Mills, K.; Teesson, M.; Williamson, A.; Havard, A. Benzodiazepine use among heroin users: Baseline use, current use and clinical outcome. Drug Alcohol Rev. 2010, 29, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.; Darke, S.; Hall, W. Benzodiazepine use among heroin users in Sydney: Patterns of use, availability and procurement. Drug Alcohol Rev. 1996, 15, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Haukka, J.; Kriikku, P.; Mariottini, C.; Partonen, T.; Ojanperä, I. Non-medical use of psychoactive prescription drugs is associated with fatal poisoning. Addiction 2018, 113, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Hakkinen, M.; Launiainen, T.; Vuori, E.; Ojanpera, I. Comparison of fatal poisonings by prescription opioids. Forensic Sci. Int. 2012, 222, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.R.; Cochella, S.; Dasgupta, N.; Fakata, K.L.; Fine, P.G.; Fishman, S.M.; Grey, T.; Johnson, E.M.; Lee, L.K.; Passik, S.D.; et al. An analysis of the root causes for opioid-related overdose deaths in the United States. Pain Med. 2011, 12, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Woolverton, W.L.; Wang, Z.; Vasterling, T.; Tallarida, R. Self-administration of cocaine-remifentanil mixtures by monkeys: An isobolographic analysis. Psychopharmacology 2008, 198, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Leri, F.; Bruneau, J.; Stewart, J. Understanding polydrug use: Review of heroin and cocaine co-use. Addiction 2003, 98, 7–22. [Google Scholar] [CrossRef] [PubMed]
- McCall Jones, C.; Baldwin, G.T.; Compton, W.M. Recent increases in cocaine-related overdose deaths and the role of opioids. Am. J. Public Health 2017, 107, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Klar, S.A.; Brodkin, E.; Gibson, E.; Padhi, S.; Predy, C.; Green, C.; Lee, V. Furanyl-fentanyl overdose events caused by smoking contaminated crack cocaine—British Columbia, Canada, 15–18 July. Health Promot. Chronic Dis. Prev. Can. 2016, 65, 1015–1016. [Google Scholar]
- Marinetti, L.J.; Ehlers, B.J. A series of forensic toxicology and drug seizure cases involving illicit fentanyl alone and in combination with heroin, cocaine or heroin and cocaine. J. Anal. Toxicol. 2014, 38, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, N.; Gray, R.; Goel, A.; Wood, E.; Buxton, J.A.; Rieb, L.M. Fentanyl and heroin contained in seized illicit drugs and overdose-related deaths in British Columbia, Canada: An observational analysis. Drug Alcohol Depend. 2018, 185, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Amlani, A.; McKee, G.; Khamis, N.; Raghukumar, G.; Tsang, E.; Buxton, J.A. Why the FUSS (Fentanyl Urine Screen Study)? A cross-sectional survey to characterize an emerging threat to people who use drugs in British Columbia, Canada. Harm Reduct. J. 2015, 12, 54. [Google Scholar] [CrossRef] [PubMed]
Potency Ratio to Morphine [14] | Administration Route Associated with Overdose | Blood Concentration (ng/mL) | Other Concentrations (Site, ng/mL) | |
---|---|---|---|---|
Acetylfentanyl [53,58,80,88] | 15.7 | Nasal, intravenous | 153–260 247.5–285 (heart) | Liver 100–2400 ng/g; urine 2.6–2720 ng/mL; stomach content 880 ng/mL; vitreous humor 131–240 ng/mL. |
Alpha-Methylfentanyl [89] | 56.9 | Intravenous | 3.1 | liver 78 ng/g; bile 6.4 ng/mL. |
Butyrylfentanyl [59,71] | 1.5–7.0 | Nasal, rectal, intravenous, sublingual | 66–99 ng/mL; 39–220 ng/mL (heart) | liver 41–57 ng/g; kidney 160 ng/g, muscle 100 ng/g; vitreous humor 32 ng/mL; bile 260 ng/mL; urine 64 ng/mL; gastric contents 590 ng/mL; brain 93 ng/g. |
Carfentanil [90] | 10,000 | 0.11–0.88 | ||
4-Fluorobutyrfentanyl [91] | Unknown | By smoking | 91–112 | urine, 200–414 ng/mL; liver, 411–902 ng/g; kidney 136–197 ng/g. |
Furanylfentanyl [49,60] | Unknown | Nasal, intravenous | 0.43–26 | |
3-Methylfentanyl [83,92] | 48.5–7000 | Intravenous | 0.3–1.9 | |
Ocfentanil [62,93] | 90 | Nasal, by smoking | 9.1–15.3; 23.3–27.9 (heart) | vitreous humor 12.5 ng/mL; urine 6.0 ng/mL; bile 13.7 ng/mL; liver 31.2 ng/g; kidney 51.2 ng/g; brain 37.9 ng/g; nasal swabs 2999 ng/swab. |
AH-7921 [5,44,64,66] | Unknown | Oral, nasal, by smoking, intravenous | 330–6600 480–3900 (heart) | urine 760–6000 ng/mL; bile 17,000 ng/mL; liver 530–26,000 ng/g; kidney 7200 ng/g; brain, 7700 ng/g; vitreous humor 190 ng/mL; stomach content, 40 μg/mL. |
U-47700 [5,49,94,95] | 7.5 | Oral, nasal, intrarectal, smoking, intravenous | 59–525 1347 (heart) | Urine 360–1393 ng/mL; liver 430–1700 ng/g; kidney 270 ng/g; lung 320 ng/g; brain 97 ng/g. |
MT-45 [5,66,96] | Unknown | Oral, nasal, intrarectal, intravenous | 520–660 1300 (heart) | Urine 370 ng/mL; vitreous humor 260 ng/mL; gastric content 49 μg/mL; liver 24 μg/g. |
Fentanyl [70,82,86,87,97,98] | 100 | Oral, transdermal, nasal, intravenous | 0.5–383 | Urine 2.9–895 ng/mL; gastric content 31.6–745 μg/mL; liver 5.8–613 μg/g. |
Associated Drugs | Blood Concentration (ng/mL) | Other Concentrations (Site, ng/mL) | |
---|---|---|---|
Acetylfentanyl | Butyrylfentanyl [69,81] | Acetylfentanyl: 21–38; 32–95 (heart) Butyrylfentanyl: 3.7–58; 9.2–97 (heart) | Acetylfentanyl: vitreous humor 38–68 ng/mL; bile 330 ng/mL; urine 8–690 ng/mL; gastric contents 170–28,000 ng/mL; brain 200 ng/g; liver 110–160 ng/g.
Butyrylfentanyl: vitreous humor 9.8–40 ng/mL; bile 49 ng/mL; urine 2–670 ng/mL; gastric contents 170–4000 ng/mL; brain 63 ng/g; liver 39–320 ng/g. |
Fentanyl [85,99] | Acetylfentanyl: 0.13–12 Fentanyl: 0.24–21 | ||
Fentanyl, heroin [100] | Acetylfentanyl: 12 Morphine (free): negative Morphine (total): 20 Fentanyl: 15 | ||
Fentanyl, heroin, cocaine [100] | Acetylfentanyl: 9 Morphine (free): 30 Morphine (total): 60 Fentanyl: 20 Cocaine: 70 Benzoylecgonine: 970 | ||
Fentanyl, heroin, alprazolam [100] | Acetylfentanyl: 2 Morphine (free): 20 Morphine (total) <20 Alprazolam 30 Fentanyl: 19 | ||
Furanylfentanyl, diphenhydramine [49] | Acetylfentanyl: 0.65 Furanylfentanyl: 12.9 Diphenhydramine: 140 | ||
Morphine [100] | Acetylfentanyl: 400 Morphine (free): 30 Morphine (total): 70 | ||
Alprazolam [100] | Acetyl Fentanyl 560–600 Alprazolam 20–230 | ||
4-MethoxyPV8 and others [53] | Acetylfentanyl: 153 4-MethoxyPV8: 389 7-Aminonitrazepam: 200 Phenobarbital: 7700 Methylphenidate: 30 | Acetylfentanyl: urine 240 ng/mL; gastric contents 880 ng/mL.
4-MethoxyPV8: urine 245 ng/mL; gastric contents 500 ng/mL. | |
Butyrylfentanyl | U-47700 [49] | Butyrylfentanyl: 26 U-47700: 17 | |
Furanylfentanyl | U-47700 [49] | Furanylfentanyl: 2.5–26 U-47700: 105–490 | |
U-47700, Heroin [49] | Furanylfentanyl: 56 U-47700: 107 Morphine: 48 | ||
Fentanyl [60] | Furanylfentanyl: 0.4 Fentanyl: 1.27 | ||
Carfentanil [101] | Furanylfentanyl: 0.34 Carfentanil: 1.3 | ||
U-47700 | Fentanyl [102] | U-47700: 13.8 Fentanyl: 10.9 | U-47700: urine 71 ng/mL |
Diphenhydramine [49] | U-47700: 103 Diphenhydramine: 694 | ||
Diphenhydramine, alprazolam, doxylamine [96] | U-4770:190 Diphenhydramine: 140 Alprazolam: 120 Doxylamine: 300 | ||
Fentanyl | Heroin [82,98,100] | Fentanyl: 2.7–16 Morphine (free): <20–100 Morphine (total): 30–240 | |
Heroin, hydromorphone [100] | Fentanyl: 15 Morphine (free): 20 Morphine (total): 60 Hydromorphone (free:) <20 Hydromorphone (total): 40 | ||
Heroin, methamphetamine [100] | Fentanyl: 0.004 Morphine (free): 100 Morphine (total): 90 Methamphetamine: 270 | ||
Heroin, methadone, alprazolam [100] | Fentanyl 7–38 Morphine (free): 20–50 Morphine (total): 40–80 Methadone: 320–400 Alprazolam: 30 | ||
Oxycodone [97] | Fentanyl: 14 Oxycodone: 420 | ||
Oxycodone, citalopram [97] | Fentanyl: 6.7 Oxycodone: 500 Citalopram: 200 | ||
Oxycodone, codeine [97] | Fentanyl: 10 Oxycodone: 270 Codeine: 280 | ||
Methadone [103] | Fentanyl: 5 Methadone: 540 Oxycodone: 70 Trazodone: 246 | ||
Hydrocodone [103] | Fentanyl: 90 Hydrocodone: 240 | ||
Morphine [103] | Fentanyl: 10 Morphine (total): 3230 | ||
Cocaine [97,103] | Fentanyl: 12–34 Cocaine: 50–780 Benzoylecgonine: 31–4100 | ||
Methanphetamine [71] | Fentanyl: 8.6 Methanphetamine: 1456 | ||
Phenobarbital, nordiazepam, diazepam | Fentanyl: 20 Phenobarbital: 7000 Nordiazepam: 72 Diazepam: 58 | ||
Bromazepam [55] | Fentanyl: 60.6; 94.1 (heart) Norfentanyl: 19.8; 50.1 (heart) Bromazepam: 874 | Fentanyl: urine 152.2 ng/mL; brain 70.4 ng/g; kidney 161.3 ng/g; stomach content 536.8 ng/mL; liver 203.2 ng/g; bile 274.2 ng/mL Norfentanyl: urine 172.2 ng/mL; brain 5.6 ng/g; kidney 172.9 ng/g; stomach content 54.4 ng/mL; liver 164.6 ng/g; bile 436.4 ng/mL | |
Alprazolam, tramadol [103] | Fentanyl: 12 Alprazolam: 13 Tramadol: 1500 | ||
7-Aminoclonazepam, Sertraline [82] | Fentanyl: 13.8 7-Aminoclonazepam: 57.1 Sertraline: 91.9 | ||
Tetrahydrofuranylfentanyl | U-49900, Methoxy-Phencyclidine [104] | Tetrahydrofuranylfentanyl: 339 U-49900: 1.5 Methoxy-Phencyclidine: 1.0 | Tetrahydrofuranylfentanyl: urine >5000 ng/mL U-49900: urine 2.2 ng/mL Methoxy-Phencyclidine: 31.8 ng/mL |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frisoni, P.; Bacchio, E.; Bilel, S.; Talarico, A.; Gaudio, R.M.; Barbieri, M.; Neri, M.; Marti, M. Novel Synthetic Opioids: The Pathologist’s Point of View. Brain Sci. 2018, 8, 170. https://doi.org/10.3390/brainsci8090170
Frisoni P, Bacchio E, Bilel S, Talarico A, Gaudio RM, Barbieri M, Neri M, Marti M. Novel Synthetic Opioids: The Pathologist’s Point of View. Brain Sciences. 2018; 8(9):170. https://doi.org/10.3390/brainsci8090170
Chicago/Turabian StyleFrisoni, Paolo, Erica Bacchio, Sabrine Bilel, Anna Talarico, Rosa Maria Gaudio, Mario Barbieri, Margherita Neri, and Matteo Marti. 2018. "Novel Synthetic Opioids: The Pathologist’s Point of View" Brain Sciences 8, no. 9: 170. https://doi.org/10.3390/brainsci8090170
APA StyleFrisoni, P., Bacchio, E., Bilel, S., Talarico, A., Gaudio, R. M., Barbieri, M., Neri, M., & Marti, M. (2018). Novel Synthetic Opioids: The Pathologist’s Point of View. Brain Sciences, 8(9), 170. https://doi.org/10.3390/brainsci8090170