Electrophysiological Markers of Visuospatial Attention Recovery after Mild Traumatic Brain Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.2.1. Neuropsychological Testing
2.2.2. ERP Paradigm
2.2.3. EEG recording and Analysis
2.3. Statistical Analysis
3. Results
3.1. Neuropsychological Results
3.2. Task Performance
3.3. Electrophysiological Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaetz, M. The neurophysiology of brain injury. Clin. Neurophysiol. 2004, 115, 4–18. [Google Scholar] [CrossRef]
- Giza, C.C.; Hovda, D.A. The neurometabolic cascade of concussion. J. Athl. Train. 2001, 36, 228–235. [Google Scholar] [CrossRef]
- Rizzo, M.; Tranel, D. Overview of head injury and postconcussive syndrome. In Head Injury and Postconcussive Syndrome; Rizzo, M., Tranel, D., Eds.; Churchill Livingstone: New York, NY, USA, 1996. [Google Scholar]
- Mathias, J.L.; Bigler, E.D.; Jones, N.R.; Bowden, S.C.; Barrett-Woodbridge, M.; Brown, G.C.; Taylor, D.J. Neuropsychological and information processing performance and its relationship to white matter changes following moderate and severe traumatic brain injury: A preliminary study. Appl. Neuropsychol. 2004, 11, 134–152. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.C.; Tremblay, S.; Boulanger, Y.; Ellemberg, D.; Lassonde, M. Neurometabolics changes in the acute phase after sports concussions correlate with symptoms severity. J. Neurotrauma 2010, 27, 65–76. [Google Scholar] [CrossRef]
- Yeo, R.A.; Gasparovic, C.; Merideth, F.; Ruhl, D.; Doezema, D.; Mayer, A.R. A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. J. Neurotrauma 2011, 28, 1–11. [Google Scholar] [CrossRef]
- Beauchamp, M.H.; Ditchfield, M.; Babl, F.E.; Kean, M.; Catroppa, C.; Yeates, K.O.; Anderson, V. Detecting traumatic brain lesions in children: CT versus MRI versus susceptibility weighted imaging (SWI). J. Neurotrauma 2011, 28, 915–927. [Google Scholar] [CrossRef]
- Wu, X.; Kirov, I.I.; Gonen, O.; Ge, Y.; Grossman, R.I.; Lui, Y.W. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update. Radiology 2016, 279, 693–707. [Google Scholar] [CrossRef]
- Alexander, M.P. Mild traumatic brain injury: Pathophysiology, natural history, and clinical management. Neurology 1995, 45, 1253–1260. [Google Scholar] [CrossRef]
- Katz, D.I.; Cohen, S.I.; Alexander, M.P. Mild Traumatic Brain Injury. Handb. Clin. Neurol. 2015, 127, 131–156. [Google Scholar]
- Dikmen, S.; Machamer, J.; Fann, J.R.; Temkin, N.R. Rates of symptoms reporting following traumatic brain injury. J. Int. Neuropsychol. Soc. 2010, 16, 401–411. [Google Scholar] [CrossRef]
- Halterman, C.I.; Langan, J.; Drew, A.; Rodriguez, E.; Osternig, L.R.; Chou, L.S.; van Donkelaar, P. Tracking the recovery of visuospatial attention deficits in mild traumatic brain injury. Brain 2006, 129, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Kwok, F.Y.; Lee, T.M.; Leung, C.H.; Poon, W.S. Changes of cognitive functioning following mild traumatic brain injury over a 3-month period. Brain Inj. 2008, 22, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Paré, N.; Rabin, L.A.; Fogel, J.; Pépin, M. Mild traumatic brain injury and its sequelae: Characterisation of divided attention deficits. Neuropsychol. Rehabil. 2009, 19, 110–137. [Google Scholar]
- Echemendia, R.J.; Cantu, R.C. Return to play following sports-related mild traumatic brain injury: The role for neuropsychology. Appl. Neuropsychol. 2003, 10, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Vanderploeg, R.D.; Curtiss, G.; Belanger, H.G. Long-term neuropsychological outcomes following mild traumatic brain injury. J. Int. Neuropsychol. Soc. 2005, 11, 228–236. [Google Scholar] [CrossRef]
- McInnes, K.; Friesen, C.L.; MacKenzie, D.E.; Westwood, D.A.; Boe, S.G. Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS ONE 2017, 12, e0174847. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Comerchero, M.D.; Polich, J. P3a and P3b from typical auditory and visual stimuli. Clin. Neurophysiol. 1999, 11, 24–30. [Google Scholar] [CrossRef]
- Broglio, S.P.; Moore, R.D.; Hillman, C.H. A history of sport-related concussion on event-related brain potentials correlates of cognition. Int. J. Psychophysiol. 2011, 82, 16–23. [Google Scholar] [CrossRef]
- De Beaumont, L.; Théoret, H.; Mongeon, D.; Messier, J.; Leclerc, S.; Tremblay, S.; Ellemberg, D.; Lassonde, M. Brain function decline in healthy retired athletes who sustained their last concussion in early adulthood. Brain 2009, 132, 695–708. [Google Scholar] [CrossRef]
- Lachapelle, J.; Bolduc-Teasdale, J.; Ptito, A.; McKerral, M. Deficits in complex visual information processing after mild TBI: Electrophysiological markers and vocational outcome prognosis. Brain Inj. 2008, 22, 265–274. [Google Scholar] [CrossRef]
- Gosselin, N.; Bottari, C.; Chen, J.K.; Huntgeburth, S.C.; de Beaumont, L.; Petrides, M.; Cheung, B.; Ptito, A. Evaluating the cognitive consequences of mild traumatic brain injury and concussion by using electrophysiology. Neurosurg. Focus 2012, 33, 1–7. [Google Scholar] [CrossRef]
- Rapp, P.E.; Keyser, D.O.; Albano, A.; Hernandez, R.; Gibson, D.B.; Zambon, R.A.; Hairston, W.D.; Hughes, J.D.; Krystal, A.; Nichols, A.S. Traumatic brain injury detection using electrophysiological methods. Front. Hum. Neurosci. 2015, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Brisson, B.; Jolicoeur, P. A psychological refractory period in access to visual short-term memory and the deployment of visual-spatial attention: Multitasking processing deficits revealed by event-related potentials. Psychophysiology 2007, 44, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.K.; Luck, S.J. The visual N1 component as an index of a discrimination process. Psychophysiology 2000, 37, 190–203. [Google Scholar] [CrossRef]
- Luck, S.J.; Heinze, H.J.; Mangun, G.R.; Hillyard, S.A. Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 528–542. [Google Scholar] [CrossRef]
- Luck, S.J.; Hillyard, S.A. Spatial filtering during visual search: Evidence from human electrophysiology. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 1000–1014. [Google Scholar] [CrossRef]
- Hilimire, M.R.; Mounts, J.R.W.; Parks, N.A.; Corballis, P.M.H. Event-Related Potentials Dissociate Effects of Salience and Space in Biased Competition for Visual Representation. PLoS ONE 2010, 5, e12677. [Google Scholar] [CrossRef]
- Vogel, E.K.; Machizawa, M.G. Neural activity predicts individual differences in visual working memory capacity. Nature 2004, 428, 748–751. [Google Scholar] [CrossRef]
- Arlinghaus, K.A.; Shoaib, A.M.; Price, T.R.P. Neuropsychiatric assessment. In Textbook of Traumatic Brain Injury; Silver, J., McAllister, T.W., Yudofsky, S., Eds.; American Psychiatric Publishing: Washington, DC, USA, 2007; pp. 59–78. [Google Scholar]
- Hagen, G.F.; Gatherwright, J.R.; Lopez, B.A.; Polich, J. P3a from visual stimuli: Task difficulty effects. Int. J. Psychophysiol. 2006, 59, 8–14. [Google Scholar] [CrossRef]
- Lovell, M.R.; Iverson, G.L.; Collins, M.W.; Podell, K.; Johnston, K.M.; Pardini, D.; Pardini, J.; Norwig, J.; Maroon, J.C. Measurement of Symptoms Following Sports-Related Concussion: Reliability and Normative Data for the Post-Concussion Scale. Appl. Neuropsychol. 2006, 13, 166–174. [Google Scholar] [CrossRef]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the Beck Depression Inventory-II; Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- Robertson, I.H.; Ward, T.; Ridgeway, V.; Nimmo-Smith, I. The structure of normal human attention: The test of everyday attention. J. Int. Neuropsychol. Soc. 1996, 2, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Holdnack, J. Reliability and validity of the Delis-Kaplan Executive Function System: An Update. J. Int. Neuropsychol. Soc. 2004, 10, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Bolduc-Teasdale, J.; Jolicoeur, P.; McKerral, M. Multiple electrophysiological markers of visual-attentional processing in a novel task directed toward clinical use. J. Ophthalmol. 2012, 2012, 618654. [Google Scholar] [CrossRef] [PubMed]
- Donchin, E. Surprise! Surprise? Psychophysiology 1981, 18, 493–513. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J.; Girelli, M.; McDermott, M.T.; Ford, M.A. Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cogn. Psychol. 1997, 33, 64–87. [Google Scholar] [CrossRef] [Green Version]
- Polich, J. Neuropsychology of P3a and P3b: A theoretical Overview. In Brainwaves and Mind: Recent Developments; Moore, N.C., Arikan, K., Eds.; Kjellberg Inc.: Wheaton, IL, USA, 2004. [Google Scholar]
- Sessa, P.; Luria, R.; Verleger, R.; Dell’Acqua, R. P3 latency shifts in the attentional blink: Further evidence for second target processing postponement. Brain Res. 2007, 1137, 131–139. [Google Scholar] [CrossRef]
- Brisson, B.; Jolicoeur, P. Cross-modal multitasking processing deficits prior to the central bottleneck revealed by event-related potentials. Neuropsychologia 2007, 45, 3038–3053. [Google Scholar] [CrossRef]
- Qian, C.; Al-Aidroos, N.; West, G.; Abrams, R.A.; Pratt, J. The visual P2 is attenuated for attended objects near the hands. Cogn. Neurosci. 2012, 3, 98–104. [Google Scholar] [CrossRef]
- McCrory, P.; Meeuwisse, W.; Dvorak, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; et al. Consensus statement on concussion in sport–the 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 2018, 51, 838–847. [Google Scholar]
- Vagnozzi, R.; Signoretti, S.; Cristofori, L.; Alessandrini, F.; Floris, R.; Isgro, E.; Ria, A.; Marziale, S.; Zoccatelli, G.; Tavazzi, B.; et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: A multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 2010, 133, 3232–3234. [Google Scholar] [CrossRef] [PubMed]
- Lange, R.T.; Brickell, T.A.; French, L.M.; Merritt, V.C.; Bhagwat, A.; Pancholi, S.; Iverson, G.L. Neuropsychological outcome from uncomplicated mild, complicated mild and moderate traumatic brain injury in US military personnel. Arch. Clin. Neuropsychol. 2012, 27, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Dean, P.; Sterr, A. Long-term effects of mild traumatic brain injury on cognitive performance. Front. Hum. Neurosci. 2013, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Beaumont, L.; Brisson, B.; Lassonde, M.; Jolicoeur, P. Long-term electrophysiological changes in athletes with a history of multiple concussions. Brain Inj. 2007, 21, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Thériault, M.; de Beaumont, L.; Tremblay, S.; Lassonde, M.; Jolicoeur, P. Cumulative effects of concussions in athletes revealed by electrophysiological abnormalities on visual working memory. J. Clin. Exp. Neuropsychol. 2011, 33, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Thériault, M.; de Beaumont, L.; Gosselin, N.; Filipinni, M.; Lassonde, M. Electrophysiological abnormalities in well functioning multiple concussed athletes. Brain Inj. 2009, 23, 899–906. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.W.; Sparling, M.B.; Flashman, L.A.; Guerin, S.J.; Mamourian, A.C.; Saykin, A.J. Differential working memory load effects after mild traumatic brain injury. Neuroimage 2001, 14, 1004–1012. [Google Scholar] [CrossRef]
- McCrory, P.; Davis, G.; Makdissi, M. Second impact syndrome or cerebral swelling after sporting head injury. Curr. Sports Med. Rep. 2012, 11, 21–23. [Google Scholar] [CrossRef]
Task | Controls Mean (SD) | Subacute mTBI Mean (SD) | Chronic mTBI Mean (SD) | F |
---|---|---|---|---|
PCS Number of symptoms | 2.97 (2.78) | 8.69 (5.75) | 7.37 (5.37) | 8.78 * |
PCS Total score | 5.16 (5.76) | 21.62 (18.12) | 19.67 (21.04) | 6.57 * |
BAI | 4.57 (3.72) | 8.04 (7.60) | 7.94 (11.69) | 0.25 |
BDI-II | 5.36 (3.97) | 11.94 (8.23) | 10.41 (10.43) | 4.09 * |
Map Search 1 min (targets) | 59.64 (13.91) | 52.58 (12.28) | 53.90 (14.93) | 1.55 |
Map Search 2 min (targets) | 77.06 (4.85) | 74.84 (6.88) | 75.60 (7.38) | 1.04 |
Trail 1 (s) | 16.59 (2.92) | 19.42 (8.20) | 18.35 (5.82) | 1.19 |
Trail 2 (s) | 27.37 (7.63) | 33.94 (9.52) | 34.47 (12.93) | 3.17 * |
Trail 3 (s) | 25.94 (7.28) | 33.57 (9.89) | 30.88 (8.73) | 4.14 * |
Trail 4 (s) | 57.95 (15.70) | 75.50 (29.28) | 68.71 (15.52) | 3.62 * |
Trail 5 (s) | 23.82 (10.23) | 35.79 (32.09) | 31.65 (17.84) | 1.62 |
Task Condition | Controls Mean (SD) | Subacute mTBI Mean (SD) | Chronic mTBI Mean (SD) |
---|---|---|---|
Same colour | 96.3 (4.8) | 95.7 (9.7) | 92.8 (23.6) |
Infrequent target position | 90.3 (6.0) | 83.1 (19.9) | 90.2 (9.2) |
Frequent target position | 96.3 (4.3) | 94.6 (4.3) | 95.4 (5.7) |
Infrequent target colour | 95.8 (3.5) | 89.7 (9.6) | 90.3 (13.6) |
Frequent target colour | 94.6 (5.1) | 92.3 (6.5) | 95.1 (4.9) |
Right | 95.1 (3.7) | 91.7 (7.4) | 93.3 (7.2) |
Left | 94.5 (4.8) | 91.8 (7.1) | 94.9 (4.4) |
Task Condition | Controls Mean (SD) | Subacute mTBI Mean (SD) | Chronic mTBI Mean (SD) |
---|---|---|---|
Same colour | No-go trial | No-go trial | No-go trial |
Infrequent target position | 769 (122) | 876 (150) | 801 (99) |
Frequent target position | 754 (129) | 832 (143) | 776 (138) |
Infrequent target colour | 778 (114) | 878 (164) | 830 (155) |
Frequent target colour | 752 (132) | 832 (141) | 771 (115) |
Right | 746 (123) | 839 (144) | 782 (137) |
Left | 769 (131) | 842 (141) | 781 (110) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolduc-Teasdale, J.; Jolicoeur, P.; McKerral, M. Electrophysiological Markers of Visuospatial Attention Recovery after Mild Traumatic Brain Injury. Brain Sci. 2019, 9, 343. https://doi.org/10.3390/brainsci9120343
Bolduc-Teasdale J, Jolicoeur P, McKerral M. Electrophysiological Markers of Visuospatial Attention Recovery after Mild Traumatic Brain Injury. Brain Sciences. 2019; 9(12):343. https://doi.org/10.3390/brainsci9120343
Chicago/Turabian StyleBolduc-Teasdale, Julie, Pierre Jolicoeur, and Michelle McKerral. 2019. "Electrophysiological Markers of Visuospatial Attention Recovery after Mild Traumatic Brain Injury" Brain Sciences 9, no. 12: 343. https://doi.org/10.3390/brainsci9120343
APA StyleBolduc-Teasdale, J., Jolicoeur, P., & McKerral, M. (2019). Electrophysiological Markers of Visuospatial Attention Recovery after Mild Traumatic Brain Injury. Brain Sciences, 9(12), 343. https://doi.org/10.3390/brainsci9120343