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Abstract: Brain–computer interfaces (BCIs) measure brain activity and translate it to control computer
programs or external devices. However, the activity generated by the BCI makes measurements for
objective fatigue evaluation very difficult, and the situation is further complicated due to different
movement artefacts. The BCI performance could be increased if an online method existed to measure
the fatigue objectively and accurately. While BCI-users are moving, a novel automatic online artefact
removal technique is used to filter out these movement artefacts. The effects of this filter on BCI
performance and mainly on peak frequency detection during BCI use were investigated in this paper.
A successful peak alpha frequency measurement can lead to more accurately determining objective
user fatigue. Fifteen subjects performed various imaginary and actual movements in separate tasks,
while fourteen electroencephalography (EEG) electrodes were used. Afterwards, a steady-state visual
evoked potential (SSVEP)-based BCI speller was used, and the users were instructed to perform
various movements. An offline curve fitting method was used for alpha peak detection to assess
the effect of the artefact filtering. Peak detection was improved by the filter, by finding 10.91% and
9.68% more alpha peaks during simple EEG recordings and BCI use, respectively. As expected, BCI
performance deteriorated from movements, and also from artefact removal. Average information
transfer rates (ITRs) were 20.27 bit/min, 16.96 bit/min, and 14.14 bit/min for the (1) movement-free,
(2) the moving and unfiltered, and (3) the moving and filtered scenarios, respectively.

Keywords: Brain-Computer Interface (BCI); Steady-State Visual Evoked Potential (SSVEP); artefact
removal; Individual Alpha Peak; movement artefact; Electroencephalography (EEG)

1. Introduction

Electroencephalography (EEG) recordings of brain activity are used for multiple purposes, from
medical diagnostics to brain–computer interfaces (BCIs) [1,2]. The recorded activity is analysed with
various methods according to the end goal, and one or several features are extracted and interpreted.

BCIs evaluate specific components of brain activity and try to classify them according to criteria
set previously, in order to execute a corresponding command when such a component is detected.
By providing multiple types of commands, the control of a BCI system can be handled by the users’
brain activity alone (interpreted by the BCI) without the need for muscle movements. Steady-state
visual evoked potentials (SSVEPs) are one of the specific brain activities which BCIs can utilise. They
are generated when the user is looking at a source of light that flickers with a constant frequency
(for example, by changing colour or luminance). BCI performance can be easily influenced by the
recording environment. The lighting conditions in the room, movements of the users, or even the
attention and fatigue levels significantly alter the speed of the BCI.
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User fatigue could be partially or even totally countered by changing the parameters of the BCI.
For this, a measure of the subjects’ fatigue is necessary. Although there are subjective methods for
acquiring fatigue levels from the users, for example, questionnaires, there are two main drawbacks
to these methods. The subjectivity can cause mistakes in the following parameter changes, possibly
not improving the BCI performance at all, or even detrimentally affecting it. Secondly, these methods
require the users to stop using the BCI and, for example, fill out a questionnaire. As BCIs are online
systems taking breaks during their use does not make sense. Therefore an online and objective measure
is required for optimal use with BCIs.

EEG recordings are also commonly utilised in the research of brain activity and functions [3,4].
For example alpha activity can be associated with attention [5]. Alpha peaks and mean powers of
different frequency bands have been proposed to indicate user attention or tiredness during BCI
use [6–9]. The reported results of these investigations vary and are sometimes contradicting.

Moreover, there are findings in the field of neurosciences, which were not considered
by the previously mentioned researches for measuring fatigue associated with BCIs. Namely,
the inter-individual differences, how these affect the bandwidths, already discussed in [10], and
the methods for determining the peak frequency in a band [11]. The traditional band limits may be
inappropriate, as there are differences between the subjects to such an extent that their peak alpha
frequency, for example, may fall entirely out of the traditional alpha range. Although this will not
affect finding the peak in most cases, as it is still likely within the range, the mean power or any ratio
calculated from it will be affected, however. To determine the individual peaks, a robust and accurate
method is required, which can handle the common pitfalls of peak detection, such as split peaks.

There are several different techniques, with benefits and drawbacks, that have been applied for
determining peak frequencies. They include simple and complicated methods alike [11]. One of the
most common methods is specifying the frequency band, by extracting data from the fast Fourier
transform (FFT), which is limited by traditional, personalised, or in some way generalised frequency
borders (e.g., 8–13 Hz for alpha band), and finding the local maximum. Determining the peak alpha
frequency in a condition where the eyes are closed is usually straightforward; however, with open
eyes this task can become quite challenging. If there are no obvious peaks in the range, or there is a
split peak, the estimation can become biased and incorrect [11]. Since visual BCIs require open eyes,
this method is not suitable for peak detection during SSVEP-based BCI use.

An alternative method of determining the highest peak in a frequency band was developed
originally by [12]. The estimation is done by calculating a weighted average of the power contained in
the frequency band that is sensitive to the spectral distribution. This method can yield results even if a
clear peak is not detectable. However, it requires a clear definition of the boundaries of the band. Since
brain activity has a high inter-subject variance, the boundaries cannot be defined in a generalised way
without somehow biasing the estimation. The behaviour of the frequency components of the recorded
brain activity can also be profoundly different. This makes the estimation of the peak frequency
challenging to automate, even when utilising data recorded with different conditions (e.g., eyes open
and closed) [11].

A less commonly used method is curve fitting, which can alleviate several of the previous
issues [13,14]. The problems split peaks have caused can be alleviated, for example, and the boundaries
play a lesser role in finding the peak frequency. A curve fitting method for finding peak alpha
frequencies was introduced by [13] and was improved later to account for split peaks [15].

A promising and already implemented approach with curve fitting is provided by [11], who
utilises a Savitzky–Golay filter for the smoothing of the FFT, which can ease peak detection. It also
includes calculating the derivatives of the FFT spectrum and finding inflexion points before applying
curve fitting based on the least-squares approach. Savitzky–Golay filters have the important property
of not altering the properties of the peaks. In this experiment this method is used for individual alpha
frequency (IAF) detection during simple EEG recordings and SSVEP-based BCI tasks.
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With the individual alpha frequency (IAF), the individual alpha ranges can be defined, and phase
information can be calculated, which seem to be promising approaches to measuring attention or
fatigue. They can show whether the target brain area is receiving external information from the stimuli,
or if the information gathering is blocked by the alpha activity [5,16].

There is another issue to consider when using BCIs and neural activity measurements, which
is the artefacts present in the recorded EEG data. All previously mentioned peak detection methods
can suffer from ocular or muscular artefacts, which can easily occur during a recording. With all
different methods of peak estimation, it is crucial to have data with a high signal to noise ratio (SNR),
or preferably, without any noise. Most of the studies handling EEG data, to minimise noise, require
the subjects to sit in a comfortable position and move as little as possible, or even physically fix the
position of the head by using head-mounts.

However, BCIs aim to develop solutions for people with disabilities or for use in everyday
scenarios, and as such they have to consider head movements and blinking, which are unavoidable for
any prolonged use of the system. This is especially true with mobile systems, as more movements are
expected if the wires do not restrict the users. Commonly offline analysis is used after rejecting all
noisy data from further calculations, however, this cannot be done with BCI systems. BCIs require
online and therefore (semi-)automatic artefact removal and analysis. Optimally BCI systems require
an artefact correction (and not rejection) method, in order to always be able to process the users’ EEG
activity. The exact choice of artefact removal algorithm is not simple. These usually remove one or
both of the most common EEG artefacts, eye movements, and muscle movements.

The authors in [17] presented a method based on correlation index and the feature of
power distribution to automatically detect eye blink components, using extended infomax ICA.
Ref. [18] presented a way of removing ocular artefacts by using blind source separation on the raw
EEG recording.

Regarding muscular artefacts, Ref. [19] demonstrated muscular artefact cancellation in
single-channel EEG recordings with a combination of ensemble empirical mode decomposition and
joint blind source separation. They successfully removed muscular artefacts without altering the
underlying EEG activity.

More recently, Ref. [20] introduced the source-estimate-utilizing noise-discarding (SOUND)
algorithm. It uses Wiener estimators and employs anatomical information to identify and suppress
noise and artefacts in EEG and MEG. Also recently, Ref. [21] developed a generic EEG artefact removal
algorithm, which allows the annotation of artefact segments and clear segments. With this information
the algorithm based on the multi-channel Wiener filter (MWF) can remove a wide variety of artefacts
from EEG data. The result was a high-performance semi-automatic artefact removal algorithm able
to remove both muscular and ocular artefacts. This algorithm requires only a short time to do
computations and handles both common EEG artefact types—ocular and muscular—therefore, it is
optimal for use with BCIs. Authors in [21] tested their algorithm performance using both hybrid and
real EEG recordings. However, the calculations were offline, and the selection of the artefact segments
is made manually by the experimenter. For this experiments’ purpose the calculations had to be done
online. Moreover, the effect of such a filter on the measurement of peak frequencies from an FFT
transformed signal needed to be investigated.

In this experiment, we wished to create a scenario that could easily occur when using a mobile
BCI system. Therefore, the experiment necessitated movements which would occur in everyday
scenarios, such as chewing, speaking, and head gestures, freely selected and even combined by the
users. We then used the automatised version of the presented artefact removal algorithm in online
EEG recordings, and BCI experiments to filter out these common movements, and used the recorded
EEG data to determine the IAFs using curve fitting methods.
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By checking the effect of online artefact removal on peak detection, we can grasp how effective
is it to measure attention and fatigue-related EEG parameters while the users are mobile. For BCIs
whose target user group is healthy people, mobility or movements are expected and indeed necessary
to account for. Although the exact parameters or combination of them for describing objective user
fatigue or attention is not clear yet, IAFs can be used as a base for many parameter estimations. Once
determined, the negative effects of fatigue could be countered by altering BCI parameters. For both
artefact removal and peak detection we utilised novel methods and algorithms. In our study we
used IAF measurement methods as an indicator, or starting step for determining objective fatigue.
However, it is out of the scope of this paper to make measurements or assumptions measuring either
fatigue or attention during BCI use. Additionally we measured the effect of the artefact removal on
BCI performance. However, the main goal remains the evaluation of the artefact removal combined
with peak detection during BCI use. Even if BCI performance is worse using these methods, it can be
easily amended by simply not filtering the data for BCI classification.

First, the materials are described, followed by the description of the implementation and changes
to the artefact removal method, followed by the peak detection method and finally the experimental
protocol including the used BCI system. The results of the simple EEG recordings and the BCI use are
detailed separately and discussed in the respective sections of the paper.

2. Materials and Methods

2.1. Participants

Fifteen healthy users (eight female) participated. All of them were students of the Rhine-Waal
University of Applied Sciences. The average age (SD) was 23.8 (2.9) years. After discussing the
experimental protocol with each subject, they signed a consent form according to the Declaration
of Helsinki. The experiment was approved by the ethical committee of the Medical Faculty of the
University Duisburg-Essen. Subjects were paid a small fee to participate in the experiment.

2.2. Hardware

For recording EEG, a biosignal amplifier, g.USBamp (Guger Technologies, Graz, Austria) was
utilised. Passive Ag/AgCl electrodes were used to measure EEG signals, fourteen of them were placed
at the following positions: PZ, PO3, PO4, O1, POZ, O2, O9, O10, P3, CZ, P4, F1, FZ, and F2 according to
the international 10-5 electrode placement system. AFZ was used as a ground, and the left earlobe
was used for reference. Before the experiment, all electrodes were prepared with an electrolytic gel to
lower impedances below 5 kΩ.

Data were recorded at a sampling rate of 256 Hz. A bandpass filter between 2 Hz and 60 Hz, as
well as a notch filter between 45 Hz and 55 Hz to remove power line noise were applied. These filters
were applied before utilising the artefact removal method, specified in Section 2.4. Data were sent to
be processed in blocks of 64 samples (250 ms long recordings).

The BCI program, including the graphical user interface (GUI) and all calculations, ran on a laptop
(MSI GE72MVR 7RG Apache Pro (17.3 inches), resolution: 1920 × 1080 pixels, vertical refresh rate:
120 Hz, Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz, operating on Microsoft Windows 10 Education).

2.3. Experimental Protocol

The experiment was divided into three phases, each with its subsequent tasks. After signing the
consent form, subjects were prepared for recording. Electrode gel was applied at all recording sites.
This was followed by the first phase, setting up the artefact removal filter (Section 2.4).
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In the filter setup phase users had to follow the instructions on screen, altogether six of them,
while keeping their gaze as much as possible in the middle of the screen, marked by a cross. Between
the tasks they could take short breaks as needed, during which no EEG data were saved. Each task
required a specific activity for ten s, and they were the following: blink, move your head, do face
movements/gesticulation and remain as still as possible (for three times in total). The order of the
tasks was randomised. The data recorded during these tasks was used to create the multi-channel
Wiener filter. For further details on this phase please see Section 2.4.

After the filter has been created, in the second phase of the experiment, users had to do ten specific
tasks. The tasks were in a randomised order, presented by the GUI. During this phase there was no
stimulation presented to the users; simply EEG was recorded. The tasks were the combination of
three distinct settings, eyes open or closed, filter on or off, and relaxing/imagining movements/doing
movements. The relaxing conditions with both eyes open and closed were only measured without the
filter being on, as there was nothing to filter out and consequently precise results were expected even
with less data, thus resulting in 2 × 2 × 3 − 2 = 10 tasks. The GUI did not show any information about
the filter, only whether to keep eyes closed/open and what activity to do. Subjects were instructed to
do any combination of the movements they had done during the first phase, but not any new type of
movement. Each user could freely select any combination of the movements done previously, however
during the recording they were monitored by the experimenter to assure they kept moving/still during
the whole recording as per instructed. If not all conditions were fulfilled (e.g., a subject opened his or
her eyes, did not keep still, or did not move according to the specific task) the task was repeated. Each
task had to be maintained for 45 s, during which EEG was recorded.

For the third phase of the experiment, users had to use an SSVEP-based BCI speller to write a word
selected by them (approximately 5–6 characters long, or 15–18 selections with the BCI, respectively,
but otherwise not specified). Due to its robustness in previous experiments, a three step speller was
used (see Section 2.5.2). The same word had to be written thrice while executing one of the tasks:
keeping as still as possible, moving according to the movements in phase one of the experiment, and
the same movements, but with the filter active. For the keeping still task, no filter was used. However,
during the later offline analysis the filtered data was calculated from the corresponding unfiltered data.
The state of the filter was, again, not shown to users, and they were instructed when necessary by the
experimenter not to stop moving, similarly as in phase two. These three tasks were randomised as well.
The experiment was finished if the user has written the preferred word thrice, or if after a prolonged
time no progress was made towards finishing the spelling task. In the latter case the condition was
deemed unsuccessful for spelling with the BCI.

The whole experiment lasted approximately one hour, with possibilities for short breaks between
the tasks (when needed by the users) For an overview of the phases of the experiment, please see
Figure 1.
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Figure 1. Three phases of the online experiment. Electroencephalography (EEG), brain–computer
interface (BCI), steady-state visual evoked potential (SSVEP).

2.4. Artefact Removal

The artefact removal algorithm presented by [21] was adopted for this experiment. As a summary
of their method: The algorithm calculates an estimate of the multi-channel artefact signal by linearly
combining the channels of observations. The input data, as mentioned before, is labelled as artefact
segments and artefact-free segments, which are used in acquiring an optimal filter solution using
only covariance matrix estimates. The neural responses can be obtained by subtracting this estimated
artefact from the data.

Furthermore the spectral properties of the data (different effects on different electrode locations)
are also considered, and the algorithm can be extended by performing a finite impulse response
filtering in each channel, which acts as a per-channel spectral filter. This way, the algorithm can
optimally remove the pre-defined artefact types while at the same time minimises the removal of
actual EEG components. For a detailed description of methods and calculation please refer to [21].

This algorithm was applied in our custom made BCI program (Section 2.5.2), which was also
handling EEG recordings. For this, the algorithm was made automatic and online, calculations being
done after each block of recorded EEG data (every 250 ms) to remove possible artefacts before being
processed by the BCI classification. For the automation a training phase was added, where the generic
marking of artefact segments was done.

The experiment started with this training phase for creating the filter. Users were asked to follow
instructions presented in the GUI, which told them to remain as still as possible for several seconds or
to do movements. Six tasks were listed in a randomised order, requiring blinking, head movements,
face movements/gesticulation and remaining as still as possible (three times in total), for ten seconds
each. The instructions were closely monitored by the experimenter, and if any deviation from them
was noted, the whole phase was repeated. There were no limitations on the movement types, e.g., for
head movements nodding or shaking of the head could be done as well as any other head movement,
however subjects were instructed to remember the movements they made in this phase and replicate
them in the later phases. By specifying whole data segments of this phase as artefact segments or clean
segments, the manual marking was omitted, making the artefact removal automatic. This, however,
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could have influenced the performance of the removal process. In a practical application the users
are not in the presence of experts, and since their knowledge of EEG artefacts can be minimal or even
non-existent, they cannot be asked to mark these artefacts segments themselves.

During this training phase, four targets were flickering, precisely as in the spelling task later,
with the same frequencies. This was done to mitigate the effect of the filter on the signal the BCI was
searching for. Although there was flickering, no interaction was possible for the users (no selection, no
feedback, no classification). Users were instructed to do the movements while looking at the middle
of the screen, marked by a cross. Thus the four flickering targets were in their visual field, but the
users were not looking directly at them. The tasks where users had to remain still were marked as
artefact-free data, while all other recordings were marked as artefacts.

The filter was created with a delay of four samples. This means that time-lagged versions of
each channel (up to ±four samples, or ∼16 ms) are stacked to the observation matrix, which is used
to calculate the multichannel Wiener filter. This delay was selected considering the temporal and
spatial effects (e.g., blink artefacts can have large autocorrelation coefficients after tens of milliseconds)
of artefacts on EEG. For details please refer to [21]. The resulting filter was a 126 × 126 matrix,
9 (from −4 to +4 sample time lags) × 14 (electrodes). This was applied to each incoming block
(14 electrodes × 64 samples) of data when the filter was active. First, the time-lagged versions of the
incoming data were calculated with zero-padding to match the original dimensions and the dimension
of the filter. Then the artefact estimate was calculated for the original (not time-lagged) channels using
the filter. The artefact estimate was then removed from the EEG to get the filtered data as described
in [21].

2.5. Offline Analysis

After the experiment, an offline analysis was conducted to determine peak frequencies in the
theta, alpha, and beta ranges. The program recorded EEG data after the notch filtering at 50 Hz and the
bandpass filtering between 2 Hz and 60 Hz in every case (referred to as unfiltered from here on), and
additionally when the artefact removal filter was operational, it recorded the data after the removal
process as well (referred to as filtered from here on). The offline analysis was done differently for the
data recorded in phases two and three of the experiment.

In phase two, after the training phase for the artefact removal, the users had to do different
movement-related tasks or imaginary movements while EEG data were being recorded. In the cases
where the artefact removal was not applied online during the recording, the filtered data was calculated
offline from the corresponding unfiltered data, this way providing more data for the statistical analysis,
providing more robust results. Altogether ten different tasks were required from the users, and for both
the unfiltered and the filtered data the peak detection algorithm from [11] was applied to find IAFs.

First, the FFT was normalised, then a smoothing filter (Savitzky–Golay filter) was applied.
Potential alpha peaks were determined by finding zero crossings in the first derivative of the smoothed
normalised FFT. If there were multiple crossings, the highest peak was used. If the peak was higher
than the next highest peak by a predefined threshold, it became a peak frequency. Inflexion points
were determined from the second derivative of the FFT, and the area under the curve (Q) between the
two inflexion points around the peak was calculated.

The EEG data were separated into three sets, according to the spatial position of the recording
electrodes. The occipital area had seven recording electrodes: PO3, PO4, O1, POZ, O2, O9, and O10 the
centro-parietal area consisted of PZ, PO3, PO4, P3, CZ, and P4, while the frontal area encompassed only
F1, FZ, and F2. This was done, so the results are easier to present here.

2.5.1. Center of Gravity

Center of Gravity (CoG) calculation is a more global method of peak frequency detection,
as information is given about the shape of the peak as well, and even not so pronounced peaks
can be detected. First, the FFT of the epoch has to be calculated, and a frequency range specified for
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the calculations. Originally, as proposed by Klimesh et al. [22], this was done by visually inspecting
the signal, and finding the beginning of the “ascent” and the end of the “descent” of the alpha peak.
The peak frequency is calculated using the following formula:

IAF = ∑(a( f )x f )/ ∑ a( f ), (1)

where IAF is the individual peak frequency, and a( f ) is the power spectral estimate from the FFT at
frequency f . The frequency range for this equation was the previously determined start of “ascent”
and end of “descent”.

Corcoran et al. [11], used the centre of gravity calculation with an automatic search for the
frequency range. After finding the alpha peak as described above, for the CoG calculation the
first derivative of the FFT was searched for local minima or near horizontal functions prior and after
the peak. If there were multiple minima before/after the peak, the closest ones to the peak were used.

2.5.2. BCI

Classification was done only during the third phase of the experiment when the users had to write
a word using BCI. In the other phases the EEG data was only processed using the method described in
Section 2.4 and offline.

Minimum energy combination (MEC) was used to classify the recorded EEG data, similarly
to [23]. MEC combines the data from the least noisy channels. The amount of noise in the data
recorded by each channel is calculated by removing the target signals and assessing the rest. The
combination is executed for each target frequency, resulting in comparable SNR measures for all targets.
After normalization, the result of the classifier is given in percentages for each investigated frequency.
For more details please see [23].

In our case, not a single classifier, but four of them were analysing data simultaneously. The only
difference between them was the amount of data to analyse, which was 3, 4, 5, and 6 s respectively.
The calculations of a classifier started only if enough data were available (for example the 5-second
classifier started after 5 s of recording). However, once started they would analyse after each block of
incoming data, by shuffling out the oldest block of data and appending the new block. If more than six
seconds of recording were available, all four classifiers were calculating simultaneously. The results
were combined by weighted averaging, by assigning the highest weights to the longest classifiers.
For more details please see [24].

After selecting a target, the flickering stopped for two seconds, and the data recording for the
classifiers was started from the beginning (3, 4, 5, 6, or more seconds were needed again for the
respective classifiers to start calculating). This gaze shifting time was implemented to allow users to
find the next target and to allow the dissipation of the SSVEPs generated by the previous flickering.

In phase four flickering targets were utilised, however, to reduce the occurrence of false positives,
three additional frequencies were involved in the calculations of the classifier, without being presented
to the users as flickering stimuli. If one of the additional stimuli was classified, no output was produced.
The four target frequencies were: 14.0 Hz,14.2 Hz,14.4 Hz, and 14.6 Hz, while the additional three
(not displayed) were: 14.13 Hz,14.33 Hz, and 14.53 Hz. This makes measuring activities in the different
wavebands easier as there is minimal overlap. The range 14–15 Hz is above the traditional alpha
range and the expected peak alpha frequency. Conversely, the range is below the expected peak beta
frequency and as such the SSVEPs should have little or no effect on finding these peak values.

2.5.3. Graphical User Interface

The GUI was presented to the users throughout the entire experiment. However, the users could
not interact with it during the first two phases. No selection was possible there, and in phase two even
the flickering effect was not present. For the third phase (BCI spelling task) it had full functionality.
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This speller was a three-step speller; three selections were necessary to write any letter, similar
to [24]. Twenty-seven characters (letters of the English alphabet and ’_’ for space) were organised
into three flickering targets in the initial layout, and an additional target enabled the users to delete
the last written character (Figure 2). Each selection narrowed down the presented characters to the
ones contained in the selected target, e.g., selecting the first target from the initial layout resulted in
the first nine characters of the English alphabet to be distributed among three targets. If a target was
selected that only contained a single letter, that letter was written. At each layout other than the initial,
the option to go back to the previous layout was provided to the users (replacing the delete option).
For more details on the spelling logic please see for example [25].

Figure 2. An image of the GUI, with the size of the stimuli and the distances between them. Users
were looking at it from approximately 80 cm distance. The stimuli are the smaller squares, surrounded
by non-flickering frames, and the length of their sides are equal.

3. Results

3.1. Peak Detection

With the methods mentioned in Section 2.5, an alpha peak was determined for each subject and
each electrode with each task. To provide more compact, comprehensible results, the electrodes have
been grouped according to their areas into three groups, occipital, centro-parietal, and frontal. Between
the first two groups there was a small overlap, PO3, and PO4 are a part of both groups.

The parameters for the offline analysis, according to [11] were as described above (e.g., the
sampling rate was 256 Hz, 45 s of EEG data was used for 14 recording electrodes). Additionally, alpha
peaks were expected in the range of 7–14 Hz, with the Savitzky–Golay filter of frame width 15 and
ninth polynomial order. In the case of competing peaks 20% peak height difference was set as the
threshold, and the minimum number of channel estimates to resolve for calculating average CoG
and peak alpha frequency estimates were 4, 3, and 2 for the occipital, centro-parietal, and frontal
areas, respectively.

A few examples of the FFT from electrode OZ from the occipital area, after the Savitzky–Golay
smoothing filter was applied, are shown in Figures 3–5.
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Figure 3. Smoothed fast Fourier transform (FFT) from Subject 1, electrode OZ, eyes open, executing
movements. The artefact removal in this case did not result in better peak detection. The borders of the
automatic detection range, 7 Hz and 14 Hz are marked on the plot as well.

Figure 4. Smoothed FFT from Subject 3, electrode OZ, eyes open, relaxing. The artefact removal in this
case resulted in better peak detection. The borders of the automatic detection range, 7 Hz and 14 Hz
are marked on the plot as well.
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Figure 5. Smoothed FFT from Subject 5, electrode OZ, eyes open, imagining movements. In this case,
both the unfiltered and the filtered data could be used to find a clear peak. The borders of the automatic
detection range, 7 Hz and 14 Hz are marked on the plot as well.

For each area specified, a mean and standard deviation were calculated. Peaks of individual
channel estimates were weighted by Q f , which is calculated by dividing Q (area under the curve
between the inflexion points) by the bandwidth of this range (the number of frequency bins between
the inflexion points). Q f aims to quantify the relative strength of each channel peak, as described
by [11]. As an example, the results of Subject 6 are shown in Table 1.

Table 1. Examples of the calculated peak alpha frequencies with the curve fitting and Center of Gravity
(CoG) methods for Subject 6. The results are presented by task, with “Mov.” indicating movements
during the recording and “Imag.” indicating imaginary movements done by the subject. The column
“Ch.” lists the number of channels that were used to calculate the Peak and SD values. If a channel
could not be used for detecting a peak, it was excluded from the average calculation. For the Occipital,
Centro-Parietal and Frontal areas 4, 3, and 2 electrodes were the minimum to calculate the average
peaks, respectively.

Occipital

Curve Fitting Center of Gravity

Eyes State Unfiltered Filtered Unfiltered Filtered

Peak SD Ch. Peak SD Ch. Peak SD Ch. Peak SD Ch.
(Hz) (Hz) (Hz) (Hz)

Closed Relax 9.43 0.12 7 9.47 0.09 7 9.48 0.02 7 9.51 0.04 7
Open Relax 10.80 0.17 7 10.79 0.09 7 10.66 0.05 7 10.70 0.03 7

Closed Mov. 9.88 0.13 7 9.96 0.09 7 9.77 0.03 7 10.04 0.03 7
Closed Mov. 9.75 0.00 7 9.78 0.09 7 9.74 0.05 7 9.81 0.03 7
Closed Imag. 9.53 0.09 7 9.71 0.09 7 9.67 0.04 7 9.84 0.04 7
Closed Imag. 9.64 0.13 7 9.75 0.00 7 9.69 0.03 7 9.76 0.02 7
Open Mov. - - 0 - - 0 - - 0 - - 1
Open Mov. - - 3 - - 0 - - 3 - - 0
Open Imag. 10.50 0.00 7 10.50 0.00 7 9.85 0.06 7 10.05 0.02 7
Open Imag. 10.50 0.00 7 10.50 0.00 7 10.11 0.06 7 10.25 0.01 7
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Table 1. Cont.

Centro-Parietal

Eyes State Curve Fitting Center of Gravity

Unfiltered Filtered Unfiltered Filtered

Peak SD Ch. Peak SD Ch. Peak SD Ch. Peak SD Ch.
(Hz) (Hz) (Hz) (Hz)

Closed Relax 9.50 0.00 6 9.50 0.00 6 9.50 0.04 6 9.57 0.03 6
Open Relax 10.85 0.13 6 10.85 0.13 6 10.70 0.08 6 10.67 0.06 6

Closed Mov. 9.71 0.10 6 9.82 0.13 6 9.76 0.06 6 10.05 0.08 6
Closed Mov. 9.75 0.00 6 9.87 0.14 6 9.83 0.05 6 9.84 0.03 6
Closed Imag. 9.70 0.10 6 9.75 0.00 6 9.78 0.06 6 9.90 0.02 6
Closed Imag. 9.67 0.13 6 9.75 0.00 6 9.71 0.05 6 9.72 0.04 6
Open Mov. - - 0 - - 0 - - 0 - - 2
Open Mov. - - 0 - - 0 - - 0 - - 0
Open Imag. 10.52 0.16 6 10.46 0.10 6 9.69 0.18 6 9.93 0.07 6
Open Imag. 10.40 0.21 6 10.39 0.21 6 10.14 0.14 6 10.21 0.08 6

Frontal

Curve Fitting Center of Gravity

Unfiltered Filtered Unfiltered Filtered

Peak SD Ch. Peak SD Ch. Peak SD Ch. Peak SD Ch.
(Hz) (Hz) (Hz) (Hz)

Closed Relax 9.25 0.00 3 9.50 0.00 3 9.37 0.01 3 9.47 0.01 3
Open Relax 10.50 0.00 3 10.75 0.00 3 9.24 0.03 3 10.06 0.01 3

Closed Mov. 9.75 0.00 3 9.75 0.00 3 9.59 0.01 3 9.78 0.00 3
Closed Mov. 9.75 0.00 3 9.75 0.00 3 9.77 0.00 3 9.83 0.01 3
Closed Imag. 9.50 0.00 3 9.75 0.00 3 9.70 0.01 3 9.69 0.00 3
Closed Imag. 9.50 0.00 3 9.75 0.00 3 9.66 0.00 3 9.59 0.01 3
Open Mov. - - 0 - - 0 - - 0 - - 0
Open Mov. - - 0 - - 0 - - 0 - - 0
Open Imag. 10.58 0.14 3 10.00 0.00 3 9.47 0.01 3 9.61 0.01 3
Open Imag. 10.42 0.14 3 10.00 0.00 3 9.97 0.01 3 9.89 0.00 3

The measured peaks were manually inspected to check the results provided by the algorithm.
This was done for each electrode separately. The previously used areas are not used here. The results
of the manual inspection are shown in Table 2.

Table 2. Manual inspection of peaks from phase two of the experiment. Values in parenthesis mark
cases when the automatic and manual inspections both found peaks, however the peaks were more
than 0.5 Hz apart, so they are considered wrong. The not parenthesized numbers in the same cells
include these cases.

Manual
Inspection

Manual Peaks

Unfiltered Filtered

Peak Found No Peak Peak Found No Peak

Automatic
Peaks

Peak Found 1266 70 (10) 1447 41 (6)

No Peak 113 651 189 423

Using this confusion matrix, the accuracy of the automatic peak measurement can be assessed by
dividing the number of true negative and true positive cases by the number of all cases. An online
tool for accuracy calculation can be found at https://bci-lab.hochschule-rhein-waal.de/en/acc.html.
It was found to be 89.69% accurate if manual inspection is considered ground truth. The true correct

https://bci-lab.hochschule-rhein-waal.de/en/acc.html
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peaks divided by all cases can be used to compare the efficacy of the algorithm in finding peaks in
different scenarios. The comparisons with these values are solely used here for grasping the difficulty
of finding alpha peaks in different scenarios. The tasks were inspected individually, each with its
confusion matrix, and the summary of these results is shown in Figure 6, with the accuracy and the
previously mentioned efficacy.

Figure 6. The accuracy and efficacy (true positive divided by the total) of the second phase of the
experiment, shown individually for each task the users had to do during the recordings. “Cl.” notes
tasks with closed eyes, “O.” is for open eyes, “Imag.” notes imaginary movement, and "Mov." stands
for actual movements. The results of the same task from the online recordings were averaged, e.g.,
“Cl. Eye Mov.” shows the combined accuracy and efficacy of two tasks. As mentioned in Section 2.3 the
relaxation tasks were only done once, every other case contains twice the amount of data.

The accuracy results from Figure 6 are mixed; in some cases the unfiltered data is more accurate; in
other cases the artefact removal increases accuracy. The average difference is 2.18%, with the unfiltered
data being more accurate. However, the efficacy, or how often a true peak was found in the different
tasks, is always higher for the filtered data (Figure 6). In some cases there is not much difference, e.g.,
with closed eyes relaxing there is only a 3.22% increase, but in the most pronounced case, with eyes
open and relaxing, 27.51% more alpha peaks were found when the artefact removal was applied.

To statistically evaluate the effectiveness of peak detection with and without artefact removal, the
cases when the peak was successfully determined were compared. For each subject, each electrode and
each task the results of the peak detection were deemed unsuccessful if no peak could be determined
with the above-mentioned settings, or successful if a peak was found. This way 2100 (15 Subjects,
14 Electrodes, and 10 Tasks) data points were gathered for both the filtered and unfiltered conditions.
The comparison was done by using McNemar’s test, for both the automatic detection method (without
changing false positive and negative findings) and the manually corrected results. The automatic
results showed a significant difference (p < 0.0001), with an average successful detection rate of 65%
for the unfiltered condition and 72% for the filtered condition, while the manual results also showed a
significant difference (p < 0.0001), with detection rates of 67% and 78% respectively. By examining the
tasks separately (merging data from separate recordings with the same task), McNemar tests show
significant differences for the eyes closed relaxing task, p = 0.011 and p = 0.004 for the automatic
and manual results respectively and for eyes closed moving, eyes open relaxing, eyes open imaginary
movement, and eyes open moving conditions, p < 0.0001 in every case for both automatic and
manual results. The only not significantly different condition was with eyes closed and imaginary
movement, p = 0.70 and p = 0.286 for the automatic and manual results respectively. For all cases
which were significantly different, the filtered data provided a better rate of finding peaks.

The results were also compared task-wise to see if different alpha peaks were detected using the
filtered/unfiltered data. For this comparison, the grouped data was used, with a separate condition
for each group. For the occipital group at least four out of the seven electrodes needed a determined
peak to calculate an average, for the centro-parietal area this was three out of six, and for the frontal
area, two out of three. As in some cases no peak was detected, the number of samples for which this
comparison could be done was varied and limited. The measured average values were compared
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for each task separately with a repeated measures two factor ANOVA, as this enabled more samples
for some of the comparisons, and the data were checked with regard to filtering (movement artefacts
filtered out in the specified way or not), and the peak detection method (curve fitting or center of
gravity). The results are shown in Table 3.

Table 3. The results of the comparison (repeated measures two factor ANOVA) of the detected peaks
for all tasks. The values are p values, the significant results (under 0.05) are marked with an ‘*’. Methods
are CoG and curve fitting, Filtering notes the presence/absence of the artefact removal.

ANOVA Results Area Method Filtering Method*Filtering

Closed Eyes Relax
Occipital 0.112 0.084 0.830
Parietal 0.025 * 0.989 0.831
Frontal 0.057 0.061 0.831

Open Eyes Relax
Occipital 0.933 0.109 0.377
Parietal 0.332 0.297 0.139
Frontal 0.382 0.540 0.268

Closed Eyes Move 1
Occipital 0.104 0.049 * 0.090
Parietal 0.104 0.525 0.301
Frontal 0.146 0.588 0.320

Closed Eyes Move 2
Occipital 0.313 0.882 0.853
Parietal 0.047 * 0.397 0.252
Frontal 0.059 0.133 0.077

Closed Eyes Imaginary 1
Occipital 0.026 * 0.050 * 0.707
Parietal 0.078 0.587 0.491
Frontal 0.012 * 0.088 0.940

Closed Eyes Imaginary 2
Occipital 0.634 0.002 * 0.580
Parietal 0.919 0.260 0.222
Frontal 0.024 * 0.253 0.818

Open Eyes Move 1
Occipital - - -
Parietal - - -
Frontal - - -

Open Eyes Move 2
Occipital - - -
Parietal - - -
Frontal - - -

Open Eyes Imaginary 1
Occipital 0.191 0.924 0.070
Parietal 0.013 * 0.372 0.580
Frontal 0.821 0.168 0.070

Open Eyes Imaginary 2
Occipital 0.189 0.236 0.423
Parietal 0.002 * 0.956 0.728
Frontal 0.235 0.162 0.891

As can be seen from the table, the majority of the detected peaks were not significantly different.
More details about the significant differences are shown in Table 4. The largest difference in means
when the filtering is concerned is 0.141 Hz. Regarding the selected algorithm, the difference of means
can be as high as 0.353 Hz. If more precise peak detection is necessary in the future, the parameters of
the artefact removal and peak detection methods likely have to be adjusted.



Brain Sci. 2019, 9, 347 15 of 21

Table 4. The significantly different cases from Table 3. Most differences arose from the used peak
determination method, but there are examples of the filtering-out of artefacts causing differences.

Significant
Cl. Eyes Relax Cl. Eyes Move Cl. Eyes Imag. Cl. Eyes Imag.

Parietal Parietal Occipital Frontal

Mean SD Mean SD Mean SD Mean SD

Method Curve Fitting 9.950 0.250 100.003 0.357 100.094 0.324 90.670 0.267
CoG 90.780 0.222 90.904 0.359 90.985 0.305 90.473 0.247

Cl0. Eyes Imag0. O0. Eyes Imag0. O0. Eyes Imag0.

Frontal Parietal Parietal

Mean SD Mean SD Mean SD

Method Curve Fitting 90.716 0.328 100.325 0.328 100.457 0.385
CoG 90.505 0.269 90.972 0.325 100.210 0.402

Cl0. Eyes Move Cl0. Eyes Imag0. Cl0. Eyes Imag0.

Occipital Occipital Occipital

Mean SD Mean SD Mean SD

Filtering Unfiltered 100.448 0.405 100.015 0.317 90.948 0.244
Filtered 100.307 0.413 100.064 0.311 100.042 0.246

3.2. Peak Detection During BCI Phase

The analysis of IAF during BCI use was done as it would be for fatigue or attention level analysis.
This means the EEG data was separated into flicker-free and flickering segments. These segments were
then further subdivided into different time segments of the recording. This way, peak detection could
be done for different time segments of the experiment, which could be used to track the properties
of the IAF throughout the recording. For all these segments the manual inspections proved to be
more complicated than the previous phase due to the frequent lack of clear peaks, and even when
peaks were found they were mostly flat or distorted. The analysis of the flicker-free and flickering
segments was done on an electrode basis (not grouped into areas) and is discussed separately in the
next sections.

3.2.1. Flicker-Free Segments

After every selection, a two-second gaze shifting time was implemented in the BCI, for the users
to have enough time to find the next target letter. During this gaze shifting time the flickering of the
stimuli was turned off. These segments were merged and divided into eight-second long segments
(or 4096 samples with the sampling rate 256 Hz). These segments were separately checked for peaks
in the alpha range with the curve fitting method described above. This was followed by manual
inspection, and the results of this are shown in Table 5. The accuracy of the automatic detection is
85.12% if the manually detected peaks are considered ground truth. The accuracy and efficacy (as
described above) values calculated for the two cases are shown in Figure 7, together with the same
results from the flickering segments, which are described in the next section.
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Table 5. Manual inspection of peaks from the BCI recordings (phase three of the experiment), when the
stimuli were not flickering. Values in parenthesis mark cases when both the automatic and manual
inspections found peaks, however, the peaks were more than 0.5 Hz apart, so they were considered
wrong. The not parenthesized numbers in the same cells include these cases.

Manual
Inspection

Manual Peaks

Unfiltered Filtered

Peak Found No Peak Peak Found No Peak

Automatic
Peaks

Peak Found 594 86 (16) 781 43 (11)

No Peak 243 939 182 856

Figure 7. The accuracy and efficacy (true positive divided by the total) of the third phase of
the experiment, shown for using the BCI while relaxing/moving, as well as open eyes while
relaxing/moving from phase two.

3.2.2. Flickering Segments

The rest of the recordings during BCI use (when the stimuli were flickering), were merged and
divided into 15 second long segments for this analysis. Since the recording time was different for each
subject, the available data was also varied. The length of the segments (15 s) was chosen to provide
at least three segments from each participants’ data. For this analysis, all subjects’ EEG data was
used, regardless of whether they could finish the BCI spelling task or not. The peak detection method
was slightly altered to avoid mistakes from the SSVEPs. The boundaries for the search were altered,
to 8–13 Hz (this way the ∼14 Hz SSVEP and ∼7 Hz subharmonic were both excluded from the range).
The following manual inspection results are shown in Table 6 and Figure 7.

Table 6. Manual inspection of peaks from the BCI recordings (phase three of the experiment), when
the stimuli were flickering. Values in parenthesis mark cases when both the automatic and manual
inspections found peaks, however, the peaks were more than 0.5 Hz apart, so they were considered
wrong. The not parenthesized numbers in the same cells include these cases.

Manual
Inspection

Manual Peaks

Unfiltered Filtered

Peak Found No Peak Peak Found No Peak

Automatic
Peaks

Peak Found 893 183 (12) 1206 60 (8)

No Peak 528 1882 600 1620
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3.3. BCI Performance

The accuracy, the total time and the Information Transfer Rate (ITR) of the spelling tasks were used
to evaluate the BCI performance of the three different scenarios, relaxing, moving without applying
artefact removal, and moving while applying artefact removal. An online tool for ITR calculation
can be found at https://bci-lab.hochschule-rhein-waal.de/en/itr.html. These measures are shown in
Table 7 together with the mean and SD for the scenarios. The cases when users could not finish the
spelling tasks are excluded, and not used in the statistical evaluation. The scenarios were compared
with one factor repeated measures ANOVA, and the respective results are p = 0.036, p = 0.001 and
p = 0.011 (with Greenhouse-Geisser correction) for the accuracy, ITR and spelling time respectively.
All three parameters show significant difference.

Further investigations were done by pairwise tests (paired t-tests). For brevity, the relaxing
scenario is marked RE, the moving without filter MW, and the moving while filtering MF, from here
on. The pairwise accuracy results are: p = 0.556, p = 0.024, and p = 0.085 for RE-MW, RE-MF,
and MW-MF, respectively. For ITR: p = 0.048, p = 0.003, and p = 0.014 for RE-MW, RE-MF,
and MW-MF, respectively. Finally, for spelling time: p = 0.020, p = 0.012, and p = 0.049 for
RE-MW, RE-MF, and MW-MF, respectively. This translates into the MW and MF scenarios performing
significantly worse than the movement-free scenario in every aspect, except accuracy, which is not
different significantly between the MW and RE scenarios.

Table 7. Performance results of the online BCI tasks. The top row indicates the scenario.

Relaxing Move & No Filter Move & Filter

Acc
(%)

ITR
(bpm)

Time
(s)

Acc
(%)

ITR
(bpm)

Time
(s)

Acc
(%)

ITR
(bpm)

Time
(s)

S1 92.3 17.2 67.3 100.0 19.2 75.0 92.3 11.0 105.0
S2 100.0 24.5 73.5 100.0 19.6 91.8 94.1 15.8 102.0
S3 100.0 22.9 78.5 - - - 89.5 7.9 194.0
S4 100.0 24.0 120.0 100.0 23.2 124.0 93.3 16.3 170.0
S5 95.0 11.6 169.0 87.5 7.0 258.0 95.5 8.8 249.0
S6 100.0 23.8 90.8 - - - - - -
S7 100.0 24.6 73.3 94.1 9.9 163.0 90.5 6.4 275.0
S8 100.0 13.2 136.0 94.7 15.0 123.0 93.8 12.5 120.0
S9 100.0 24.5 103.0 100.0 23.8 106.0 100.0 24.0 105.0

S10 94.1 17.5 92.5 100.0 22.4 80.3 100.0 21.9 82.3
S11 100.0 18.0 102.0 94.0 11.0 142.0 86.0 7.0 202.0
S12 94.1 16.2 99.8 100.0 13.8 130.0 80.0 5.4 267.0
S13 100.0 24.2 74.3 100.0 22.8 78.8 100.0 22.6 79.8
S14 100.0 23.8 75.5 94.1 12.4 130.0 94.1 14.8 109.0
S15 100.0 24.2 74.3 100.0 20.3 88.5 100.0 17.3 104.0

Mean 98.37 20.68 95.32 97.26 16.96 122.34 93.51 13.69 154.58
SD 20.68 4.57 28.22 4.00 5.71 49.00 5.81 6.27 70.40

Additionally two subjects could not finish the spelling task with the MW scenario, and one could
not finish the task with the MF scenario. Furthermore, the MF scenarios’ performance is worse than
the MW scenarios’ regarding ITR and spelling time. The potential causes of this are examined in the
Discussion section.

4. Discussion

The online automatic artefact removal method applied proved to improve IAF detection.
For simple EEG recordings the method from [21] proved to result in data significantly better for
determining alpha peaks using the described curve fitting method from [11]. The detection rate
increased from 64.87% to 71.52%. After manual inspection and correction the increase is from 66.57%

https://bci-lab.hochschule-rhein-waal.de/en/itr.html
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to 78.48%. The increase was even more pronounced in some cases, especially while the users were
relaxing with open eyes.

Generally, movements did not affect alpha peak detection, which is likely the combined result of
several effects. Movement control is associated with the central brain area, which in this experiment
was measured by a single electrode. The effect of these potentials in the central area did not influence
the occipital area, where most recording electrodes were located. Furthermore the movements did not
require any visualisation or precision, and thus while the movements were executed by the users likely
the visual cortex pertained a high alpha activity, possibly even higher than in a relaxing condition.

As opposed to movement-related artefacts not influencing the alpha peak detection, imaginary
movement tasks resulted in a more considerable decrease in the amount of found peaks. Without
artefact removal, this decrease was 17.61% and 35.00% of the total for the closed and open-eyed
conditions, respectively. With artefact removal it changed to 13.23% and 46.18% of the total, respectively.
This effect is likely the result of users not trained for executing imaginary movement tasks; thus they
were likely visualising the movements. This, in turn, decreases alpha activity in the occipital area,
and a peak is harder to detect. In these cases the artefact removal algorithm made the peak detection
substantially more effective.

The most substantial effect of filtering, however, was for the eyes open and relaxing condition.
The reason for this is hard to pinpoint and requires further investigation. One reason could be that
users were inspecting their surroundings during this task, which would then reduce alpha activity in
the occipital area.

When the SSVEP-based BCI was used by subjects while relaxing, compared to the open eyes
relaxing condition from phase two, there was no substantial decrease in efficacy (5.33% and 2.84% of
the total for the flicker-free and the flickering conditions, respectively), when checking the unfiltered
results. With artefact removal, the differences increased to 25.96% and 18.61% of the total. These
differences confirm the degradation of peak detection efficacy when our SSVEP-based BCI is used.
The substantial change in efficacy after artefact removal is due to the substantial improvement of peak
detection in phase two for the eyes open and relaxing condition.

When users were moving during BCI use, the decrease was 31.61% and 38.94% of the total for the
flicker-free and the flickering conditions with the unfiltered data, respectively. With artefact removal,
these differences remained high, 38.94% and 39.05% of the total, respectively. This result shows that
BCI use while the users are moving effects the detectable peaks substantially.

Although the BCI use, especially with the users moving degraded peak detection by a large
amount, the artefact removal provided an improvement in every condition, the efficacy (true positive
rate) increased on average by 9.68% of the total (combining flicker-free and flickering conditions, as
well as relaxing and moving scenarios) if the filtering is applied.

The performance of the BCI decreased for the scenarios when users were moving as expected.
However, the filtering had no positive effect. Instead the opposite occurred, performance was worse
than without filtering. There can be several reasons for this, the most obvious one being the filter
affecting the prevalence of the SSVEPs generated by the flickering. This could be the result of setting
up the filter, and defining the coefficients for filtering. If the SSVEP during this phase (phase one of
this experiment) is not comparable in strength to the one during the experiment, the filter can decrease
the power of the frequency component during the online task to the levels of the training phase,
which decreases BCI performance. As shown by [26], attention affects the properties of the generated
activity, and, as in our experiment, users were instructed to look at the middle of the screen in the
training phase, not directly at the stimuli, the decrease in performance can very well be a consequence.
To investigate this and other potential causes, further studies are necessary.

Another important detail of note is the classification method, MEC, which selects the least
noise-ridden electrodes data for classification. As in our case, eight electrodes were providing data
for the classifier; if half of them were influenced by artefacts, the four remaining could still be used to
classify without too much difficulty. This can be another factor in the performance difference between
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the filtered and unfiltered BCI tasks. As the classification method is robust against noise, and the
artefacts in this experiment did not cause enough noise to necessitate the artefact removal, the only
effect of the filter was the attenuation of SSVEP responses, which resulted in slower classification.
The use of fewer electrodes to necessitate the use of slightly noisy electrode channels or the use of a
different classification algorithm can be used to investigate this effect further.

Although the detection rate can be improved, during BCI use a considerably lower number of
peaks was found. This can be the result of a less boring task (BCI use), or change in mental fatigue, or
just from the difficulty of finding peaks during BCI use. However, the investigation of this is not in the
scope of this paper. Peak alpha frequency determined during the eyes open condition for example
can be measured with the filtering method (providing an improvement), which could then be used to
calculate the individual alpha range and provide a list of other parameters based on the alpha range
(area under the curve, power in the lower alpha range/higher alpha range etc.).

5. Conclusions

The measurement of objective user fatigue can provide a way to minimize its negative effects on
BCI performance, by adjusting parameters of the BCI accordingly. Methods which help to measure
user fatigue objectively, accurately, and online are therefore highly beneficial for BCIs that are planned
to be used for a prolonged time. As mentioned previously, BCIs in the future are expected to be used
in everyday, practical scenarios. In these cases, movements can cause artefacts in EEG recordings,
this was also observed in this experiment as well. Therefore, some movements have to be anticipated
and handled accordingly. The measurement of fatigue or attention with EEG has the same difficulties
regarding movement artefacts, as the cases where fatigue measurements are needed are always related
to some activity, e.g., after prolonged driving phases. The presented online automatic artefact removal
showed an average 9.68% of the total increase in the number of peaks found during an SSVEP-based
BCI use, where the users were moving to generate artefacts. When no BCI was used, the increase was
on average 10.91% of the total.

This means that the used techniques are beneficial for detecting the peak alpha frequency from
the EEG recordings, even during BCI use under noisy conditions. Utilising artefact removal and curve
fitting for peak alpha frequency measurements, the basis for determining objective fatigue accurately
was greatly improved. These results were achieved without restrictions on the specific movements.
Furthermore, the artefact removal was trained in a generic way without a specific artefact detection
algorithm. Refining the parameters of both the removal method and the peak detection algorithm can
lead to even better results, as can the implementation of an online artefact detection algorithm.

Our experiment employed movements which would occur in everyday scenarios, such as talking
or chewing gum. The next step regarding mobility will be testing in a noisy environment using a
mobile amplifier.

Regarding objective fatigue and attention measurement, increasing the number of measured
parameters is planned, e.g., by determining theta peaks, extracting phase information for alpha peaks,
as well as assessing the spatial information, to find a reliable way to measure fatigue and at the final
end e.g., the level of attention of BCI users.

To conclude, the presented system provided, on average, a nearly 10% (of the total) increase in
the amount of detected alpha peak frequencies. Even when users were moving or executing imaginary
movement tasks it provided a better peak finding rate. With small adjustments, further improvements
can be expected, providing a promising way towards extracting information from EEG in practical,
everyday, mobile scenarios.
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