Metabotropic Glutamate Receptor Subtype 5 in Alcohol-Induced Negative Affect
Abstract
:1. Introduction
2. Ethanol Intake
3. Ethanol-Associated Cues and Contexts
4. Behavioral Despair
5. Anxiety-Like Activity
6. Synaptic Plasticity
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peterlik, D.; Flor, P.J.; Uschold-Schmidt, N. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders. Curr. Neuropharmacol. 2016, 14, 514–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olive, M.F. Metabotropic glutamate receptor ligands as potential therapeutics for addiction. Curr. Drug Abuse Rev. 2009, 2, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Goodwani, S.; Saternos, H.; Alasmari, F.; Sari, Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci. Biobehav. Rev. 2017, 77, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of Addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.A.; Barlow, D.H. A proposal for a dimensional classification system based on the shared features of the DSM-IV anxiety and mood disorders: Implications for assessment and treatment. Psychol. Assess. 2009, 21, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.S.; Panksepp, J. Toward affective circuit-based preclinical models of depression: Sensitizing dorsal PAG arousal leads to sustained suppression of positive affect in rats. Neurosci. Biobehav. Rev. 2011, 35, 1902–1915. [Google Scholar] [CrossRef] [PubMed]
- Kirlic, N.; Aupperle, R.L.; Rhudy, J.L.; Misaki, M.; Kuplicki, R.; Sutton, A.; Alvarez, R.P. Latent variable analysis of negative affect and its contributions to neural responses during shock anticipation. Neuropsychopharmacology 2019, 44, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Goodwill, H.L.; Manzano-Nieves, G.; Gallo, M.; Lee, H.-I.; Oyerinde, E.; Serre, T.; Bath, K.G. Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology 2019, 44, 711–720. [Google Scholar] [CrossRef]
- Becker, H.C. Alcohol dependence, withdrawal, and relapse. Alcohol Res. Health 2008, 31, 348–361. [Google Scholar]
- Becker, H.C. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017, 122, 115–126. [Google Scholar] [CrossRef]
- Craske, M.G.; Stein, M.B.; Eley, T.C.; Milad, M.R.; Holmes, A.; Rapee, R.M.; Wittchen, H.-U. Anxiety disorders. Nat. Rev. Dis. Prim. 2017, 3, 17024. [Google Scholar] [CrossRef] [PubMed]
- McHugh, R.K.; Votaw, V.R.; Sugarman, D.E.; Greenfield, S.F. Sex and gender differences in substance use disorders. Clin. Psychol. Rev. 2018, 66, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, C.; Huber, K.M. Group 1 mGluR-dependent synaptic long-term depression: Mechanisms and implications for circuitry and disease. Neuron 2010, 65, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Chiamulera, C.; Epping-Jordan, M.P.; Zocchi, A.; Marcon, C.; Cottiny, C.; Tacconi, S.; Corsi, M.; Orzi, F.; Conquet, F. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat. Neurosci. 2001, 4, 873–874. [Google Scholar] [CrossRef] [PubMed]
- Parkitna, J.R.; Sikora, M.; Gołda, S.; Gołembiowska, K.; Bystrowska, B.; Engblom, D.; Bilbao, A.; Przewlocki, R. Novelty-Seeking Behaviors and the Escalation of Alcohol Drinking After Abstinence in Mice Are Controlled by Metabotropic Glutamate Receptor 5 on Neurons Expressing Dopamine D1 Receptors. Biol. Psychiatry 2013, 73, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Eisenhardt, M.; Leixner, S.; Spanagel, R.; Bilbao, A. Quantification of alcohol drinking patterns in mice. Addict. Biol. 2015, 20, 1001–1011. [Google Scholar] [CrossRef]
- Bird, M.K.; Kirchhoff, J.; Djouma, E.; Lawrence, A.J. Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice. Int. J. Neuropsychopharmacol. 2008, 11, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Cozzoli, D.K.; Goulding, S.P.; Zhang, P.W.; Xiao, B.; Hu, J.-H.; Ary, A.W.; Obara, I.; Rahn, A.; Abou-Ziab, H.; Tyrrel, B.; et al. Binge drinking upregulates accumbens mGluR5-Homer2-PI3K signaling: Functional implications for alcoholism. J. Neurosci. 2009, 29, 8655–8668. [Google Scholar] [CrossRef]
- Campbell, R.R.; Domingo, R.D.; Williams, A.R.; Wroten, M.G.; McGregor, H.A.; Waltermire, R.S.; Greentree, D.I.; Goulding, S.P.; Thompson, A.B.; Lee, K.M.; et al. Increased Alcohol-Drinking Induced by Manipulations of mGlu5 Phosphorylation within the Bed Nucleus of the Stria Terminalis. J. Neurosci. 2019, 39, 2745–2761. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, S.R. Progress toward positive allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGluR5). ACS Chem. Neurosci. 2011, 2, 450–470. [Google Scholar] [CrossRef]
- Pagano, A.; Ruegg, D.; Litschig, S.; Stoehr, N.; Stierlin, C.; Heinrich, M.; Floersheim, P.; Prezèau, L.; Carroll, F.; Pin, J.P.; et al. The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J. Biol. Chem. 2000, 275, 33750–33758. [Google Scholar] [CrossRef] [PubMed]
- Gould, R.W.; Amato, R.J.; Bubser, M.; Joffe, M.E.; Nedelcovych, M.T.; Thompson, A.D.; Nickols, H.H.; Yuh, J.P.; Zhan, X.; Felts, A.S.; et al. Partial mGlu5 Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects. Neuropsychopharmacology 2016, 41, 1166–1178. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.L.; Short, J.L.; Lawrence, A.J. Cue-conditioned alcohol seeking in rats following abstinence: Involvement of metabotropic glutamate 5 receptors. Br. J. Pharmacol. 2010, 159, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.P.; Overstreet, D.H.; Hodge, C.W. The mGluR5 antagonist MPEP decreases operant ethanol self-administration during maintenance and after repeated alcohol deprivations in alcohol-preferring (P) rats. Psychopharmacology 2005, 179, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Lominac, K.D.; Kapasova, Z.; Hannun, R.A.; Patterson, C.; Middaugh, L.D.; Szumlinski, K.K. Behavioral and neurochemical interactions between Group 1 mGluR antagonists and ethanol: Potential insight into their anti-addictive properties. Drug Alcohol Depend. 2006, 85, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Hodge, C.W.; Miles, M.F.; Sharko, A.C.; Stevenson, R.A.; Hillmann, J.R.; Lepoutre, V.; Besheer, J.; Schroeder, J.P. The mGluR5 antagonist MPEP selectively inhibits the onset and maintenance of ethanol self-administration in C57BL/6J mice. Psychopharmacology 2006, 183, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Cowen, M.S.; Djouma, E.; Lawrence, A.J. The metabotropic glutamate 5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine reduces ethanol self-administration in multiple strains of alcohol-preferring rats and regulates olfactory glutamatergic systems. J. Pharmacol. Exp. Ther. 2005, 315, 590–600. [Google Scholar] [CrossRef]
- Cowen, M.S.; Krstew, E.; Lawrence, A.J. Assessing appetitive and consummatory phases of ethanol self-administration in C57BL/6J mice under operant conditions: Regulation by mGlu5 receptor antagonism. Psychopharmacology 2007, 190, 21–29. [Google Scholar] [CrossRef]
- Besheer, J.; Faccidomo, S.; Grondin, J.J.M.; Hodge, C.W. Regulation of motivation to self-administer ethanol by mGluR5 in alcohol-preferring (P) rats. Alcohol. Clin. Exp. Res. 2008, 32, 209–221. [Google Scholar] [CrossRef]
- Bäckström, P.; Bachteler, D.; Koch, S.; Hyytiä, P.; Spanagel, R. mGluR5 Antagonist MPEP Reduces Ethanol-Seeking and Relapse Behavior. Neuropsychopharmacology 2004, 29, 921–928. [Google Scholar] [CrossRef]
- Cozzoli, D.K.; Strong-Kaufman, M.N.; Tanchuck, M.A.; Hashimoto, J.G.; Wiren, K.M.; Finn, D.A. The effect of mGluR5 antagonism during binge drinking on subsequent ethanol intake in C57BL/6J mice: Sex- and age-induced differences. Alcohol. Clin. Exp. Res. 2014, 38, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Blednov, Y.A.; Adron Harris, R. Metabotropic glutamate receptor 5 (mGluR5) regulation of ethanol sedation, dependence and consumption: Relationship to acamprosate actions. Int. J. Neuropsychopharmacol. 2008, 11, 775–793. [Google Scholar] [CrossRef] [PubMed]
- McMillen, B.A.; Crawford, M.S.; Kulers, C.M.; Williams, H.L. Effects of a metabollic, mGlu5, glutamate receptor antagonist on ethanol consumption by genetic drinking rats. Alcohol Alcohol. 2005, 40, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Cozzoli, D.K.; Courson, J.; Wroten, M.G.; Greentree, D.I.; Lum, E.N.; Campbell, R.R.; Thompson, A.B.; Maliniak, D.; Worley, P.F.; Jonquieres, G.; et al. Binge alcohol drinking by mice requires intact group1 metabotropic glutamate receptor signaling within the Central nucleus of the Amygdale. Neuropsychopharmacology 2014, 39, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Gass, J.T.; Olive, M.F. Role of protein kinase C epsilon (PKCvarepsilon) in the reduction of ethanol reinforcement due to mGluR5 antagonism in the nucleus accumbens shell. Psychopharmacology 2009, 204, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Sidhpura, N.; Weiss, F.; Martin-Fardon, R. Effects of the mGlu2/3 Agonist LY379268 and the mGlu5 Antagonist MTEP on Ethanol Seeking and Reinforcement Are Differentially Altered in Rats with a History of Ethanol Dependence. Biol. Psychiatry 2010, 67, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Besheer, J.; Grondin, J.J.M.; Cannady, R.; Sharko, A.C.; Faccidomo, S.; Hodge, C.W. Metabotropic Glutamate Receptor 5 Activity in the Nucleus Accumbens Is Required for the Maintenance of Ethanol Self-Administration in a Rat Genetic Model of High Alcohol Intake. Biol. Psychiatry 2010, 67, 812–822. [Google Scholar] [CrossRef] [Green Version]
- Leurquin-Sterk, G.; Postnov, A.; de Laat, B.; Casteels, C.; Celen, S.; Crunelle, C.L.; Bormans, G.; Koole, M.; Van Laere, K. Kinetic modeling and long-term test-retest reproducibility of the mGluR5 PET tracer 18F-FPEB in human brain. Synapse 2016, 70, 153–162. [Google Scholar] [CrossRef]
- Nandi, A.; Valentine, H.; McCaul, M.; Wong, D. Glutamatergic abnormalities in a rodent model of alcohol abuse. J. Nucl. Med. 2016, 57, 1866a. [Google Scholar]
- de Laat, B.; Weerasekera, A.; Leurquin-Sterk, G.; Gsell, W.; Bormans, G.; Himmelreich, U.; Casteels, C.; Van Laere, K. Effects of alcohol exposure on the glutamatergic system: A combined longitudinal 18F-FPEB and 1H-MRS study in rats. Addict. Biol. 2019, 24, 696–706. [Google Scholar] [CrossRef]
- Leurquin-Sterk, G.; Ceccarini, J.; Crunelle, C.L.; Weerasekera, A.; de Laat, B.; Himmelreich, U.; Bormans, G.; Van Laere, K. Cerebral dopaminergic and glutamatergic transmission relate to different subjective responses of acute alcohol intake: An in vivo multimodal imaging study. Addict. Biol. 2018, 23, 931–944. [Google Scholar] [CrossRef] [PubMed]
- Leurquin-Sterk, G.; Ceccarini, J.; Crunelle, C.L.; de Laat, B.; Verbeek, J.; Deman, S.; Neels, H.; Bormans, G.; Peuskens, H.; Van Laere, K. Lower Limbic Metabotropic Glutamate Receptor 5 Availability in Alcohol Dependence. J. Nucl. Med. 2018, 59, 682–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarini, J.; Leurquin-Sterk, G.; Crunelle, C.; De Laat, B.; Bormans, G.; Peuskens, H.; Van Laere, K. Recovery of decreased metabotropic glutamate receptor 5 availability in abstinent alcohol-dependent subjects. J. Nucl. Med. 2017, 58, 14. [Google Scholar]
- Akkus, F.; Mihov, Y.; Treyer, V.; Ametamey, S.M.; Johayem, A.; Senn, S.; Rösner, S.; Buck, A.; Hasler, G. Metabotropic glutamate receptor 5 binding in male patients with alcohol use disorder. Transl. Psychiatry 2018, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Meyers, J.L.; Salling, M.C.; Almli, L.M.; Ratanatharathorn, A.; Uddin, M.; Galea, S.; Wildman, D.E.; Aiello, A.E.; Bradley, B.; Ressler, K.; et al. Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways. Transl. Psychiatry 2015, 5, e586. [Google Scholar] [CrossRef] [PubMed]
- Nixon, K.; McClain, J.A. Adolescence as a critical window for developing an alcohol use disorder: Current findings in neuroscience. Curr. Opin. Psychiatry 2010, 23, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Peltier, M.R.; Verplaetse, T.L.; Mineur, Y.S.; Petrakis, I.L.; Cosgrove, K.P.; Picciotto, M.R.; McKee, S.A. Sex differences in stress-related alcohol use. Neurobiol. Stress 2019, 10, 100149. [Google Scholar] [CrossRef] [PubMed]
- Smart, K.; Cox, S.M.L.; Scala, S.G.; Tippler, M.; Jaworska, N.; Boivin, M.; Séguin, J.R.; Benkelfat, C.; Leyton, M. Sex differences in [11C]ABP688 binding: A positron emission tomography study of mGlu5 receptors. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1179–1183. [Google Scholar] [CrossRef]
- Zerbib, F.; Bruley des Varannes, S.; Roman, S.; Tutuian, R.; Galmiche, J.-P.; Mion, F.; Tack, J.; Malfertheiner, P.; Keywood, C. Randomised clinical trial: Effects of monotherapy with ADX10059, a mGluR5 inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 2011, 33, 911–921. [Google Scholar] [CrossRef]
- Cleva, R.M.; Olive, M.F. Positive allosteric modulators of type 5 metabotropic glutamate receptors (mGluR5) and their therapeutic potential for the treatment of CNS disorders. Molecules 2011, 16, 2097–2106. [Google Scholar] [CrossRef]
- Valyear, M.D.; Villaruel, F.R.; Chaudhri, N. Alcohol-seeking and relapse: A focus on incentive salience and contextual conditioning. Behav. Process. 2017, 141, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Martin-Fardon, R.; Weiss, F. Modeling Relapse in Animals. In Behavioral Neurobiology of Alcohol Addiction; Springer: Berlin/Heidelberg, Germany, 2012; pp. 403–432. [Google Scholar]
- Gass, J.T.; Trantham-Davidson, H.; Kassab, A.S.; Glen, W.B.; Olive, M.F.; Chandler, L.J.; Chandler, L.J. Enhancement of extinction learning attenuates ethanol-seeking behavior and alters plasticity in the prefrontal cortex. J. Neurosci. 2014, 34, 7562–7574. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, C.M.; Cleva, R.M.; Hood, L.E.; Olive, M.F.; Gass, J.T. mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacol. Biochem. Behav. 2012, 101, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, J.P.; Spanos, M.; Stevenson, J.R.; Besheer, J.; Salling, M.; Hodge, C.W. Cue-induced reinstatement of alcohol-seeking behavior is associated with increased ERK1/2 phosphorylation in specific limbic brain regions: Blockade by the mGluR5 antagonist MPEP. Neuropharmacology 2008, 55, 546–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-Y.; Choe, E.S.; Yang, C.H.; Choi, K.H.; Cheong, J.H.; Jang, C.-G.; Seo, J.-W.; Yoon, S.S. The mGluR5 antagonist MPEP suppresses the expression and reinstatement, but not the acquisition, of the ethanol-conditioned place preference in mice. Pharmacol. Biochem. Behav. 2016, 140, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.L.; Cowen, M.S.; Short, J.L.; Lawrence, A.J. Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. Int. J. Neuropsychopharmacol. 2008, 11, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Kotlinska, J.H.; Bochenski, M.; Danysz, W. The role of group I mGlu receptors in the expression of ethanol-induced conditioned place preference and ethanol withdrawal seizures in rats. Eur. J. Pharmacol. 2011, 670, 154–161. [Google Scholar] [CrossRef] [PubMed]
- McGeehan, A.J.; Olive, M.F. The mGluR5 antagonist MPEP reduces the conditioned rewarding effects of cocaine but not other drugs of abuse. Synapse 2003, 47, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Simonyi, A.; Schachtman, T.R.; Christoffersen, G.R.J. Metabotropic glutamate receptor subtype 5 antagonism in learning and memory. Eur. J. Pharmacol. 2010, 639, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Slattery, D.A.; Neumann, I.D.; Flor, P.J.; Zoicas, I. Pharmacological modulation of metabotropic glutamate receptor subtype 5 and 7 impairs extinction of social fear in a time-point-dependent manner. Behav. Brain Res. 2017, 328, 57–61. [Google Scholar] [CrossRef]
- Sethna, F.; Wang, H. Pharmacological enhancement of mGluR5 facilitates contextual fear memory extinction. Learn. Mem. 2014, 21, 647–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethna, F.; Wang, H. Acute inhibition of mGluR5 disrupts behavioral flexibility. Neurobiol. Learn. Mem. 2016, 130, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fontanez-Nuin, D.E.; Santini, E.; Quirk, G.J.; Porter, J.T. Memory for fear extinction requires mGluR5-mediated activation of infralimbic neurons. Cereb. Cortex 2011, 21, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rivera, A.; Rodríguez-Borrero, E.; Matías-Alemán, M.; Montalvo-Acevedo, A.; Guerrero-Figuereo, K.; Febo-Rodríguez, L.J.; Morales-Rivera, A.; Maldonado-Vlaar, C.S. Metabotropic glutamate receptor 5 within nucleus accumbens shell modulates environment-elicited cocaine conditioning expression. Pharmacol. Biochem. Behav. 2013, 110, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrold, A.A.; Voigt, R.M.; Napier, T.C. mGluR5 is necessary for maintenance of methamphetamine-induced associative learning. Eur. Neuropsychopharmacol. 2013, 23, 691–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marszalek-Grabska, M.; Gibula-Bruzda, E.; Bodzon-Kulakowska, A.; Suder, P.; Gawel, K.; Talarek, S.; Listos, J.; Kedzierska, E.; Danysz, W.; Kotlinska, J.H. ADX-47273, a mGlu5 receptor positive allosteric modulator, attenuates deficits in cognitive flexibility induced by withdrawal from ‘binge-like’ ethanol exposure in rats. Behav. Brain Res. 2018, 338, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Bertholomey, M.L.; Nagarajan, V.; Torregrossa, M.M. Sex differences in reinstatement of alcohol seeking in response to cues and yohimbine in rats with and without a history of adolescent corticosterone exposure. Psychopharmacology 2016, 233, 2277–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffey, S.F.; Saladin, M.E.; Drobes, D.J.; Brady, K.T.; Dansky, B.S.; Kilpatrick, D.G. Trauma and substance cue reactivity in individuals with comorbid posttraumatic stress disorder and cocaine or alcohol dependence. Drug Alcohol Depend. 2002, 65, 115–127. [Google Scholar] [CrossRef]
- Nesic, J.; Duka, T. Gender specific effects of a mild stressor on alcohol cue reactivity in heavy social drinkers. Pharmacol. Biochem. Behav. 2006, 83, 239–248. [Google Scholar] [CrossRef]
- Thomas, S.E.; Randall, P.K.; Brady, K.; See, R.E.; Drobes, D.J. An acute psychosocial stressor does not potentiate alcohol cue reactivity in non-treatment-seeking alcoholics. Alcohol. Clin. Exp. Res. 2011, 35, 464–473. [Google Scholar] [CrossRef]
- Torres, O.V.; Walker, E.M.; Beas, B.S.; O’Dell, L.E. Female rats display enhanced rewarding effects of ethanol that are hormone dependent. Alcohol. Clin. Exp. Res. 2014, 38, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Melón, L.C.; Nolan, Z.T.; Colar, D.; Moore, E.M.; Boehm, S.L. II Activation of extrasynaptic δ-GABAA receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion. Horm. Behav. 2017, 95, 65–75. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, O.F.; Cryan, J.F. Towards translational rodent models of depression. Cell Tissue Res. 2013, 354, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Coelho, M.A.; Class, M.A.; Szumlinski, K.K. mGlu5-dependent modulation of anxiety during early withdrawal from binge-drinking in adult and adolescent male mice. Drug Alcohol Depend. 2018, 184, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Coelho, M.A.; Class, M.A.; Sern, K.R.; Bocz, M.D.; Szumlinski, K.K. mGlu5 Receptor Blockade Within the Nucleus Accumbens Shell Reduces Behavioral Indices of Alcohol Withdrawal-Induced Anxiety in Mice. Front. Pharmacol. 2018, 9, 1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.M.; Coelho, M.A.; Sern, K.R.; Class, M.A.; Bocz, M.D.; Szumlinski, K.K. Anxiolytic Effects of Buspirone and MTEP in the Porsolt Forced Swim Test. Chronic Stress 2017, 1, 2470547017712985. [Google Scholar] [CrossRef]
- Hales, C.A.; Stuart, S.A.; Anderson, M.H.; Robinson, E.S.J. Modelling cognitive affective biases in major depressive disorder using rodents. Br. J. Pharmacol. 2014, 171, 4524–4538. [Google Scholar] [CrossRef] [Green Version]
- Esterlis, I.; Holmes, S.E.; Sharma, P.; Krystal, J.H.; DeLorenzo, C. Metabotropic Glutamatergic Receptor 5 and Stress Disorders: Knowledge Gained From Receptor Imaging Studies. Biol. Psychiatry 2018, 84, 95–105. [Google Scholar] [CrossRef]
- Chandley, M.J.; Szebeni, A.; Szebeni, K.; Crawford, J.D.; Stockmeier, C.A.; Turecki, G.; Kostrzewa, R.M.; Ordway, G.A. Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. Int. J. Neuropsychopharmacol. 2014, 17, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Esterlis, I.; DellaGioia, N.; Pietrzak, R.H.; Matuskey, D.; Nabulsi, N.; Abdallah, C.G.; Yang, J.; Pittenger, C.; Sanacora, G.; Krystal, J.H.; et al. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: An [11C]ABP688 and PET imaging study in depression. Mol. Psychiatry 2017, 23, 824–832. [Google Scholar] [CrossRef]
- Deschwanden, A.; Karolewicz, B.; Feyissa, A.M.; Treyer, V.; Ametamey, S.M.; Johayem, A.; Burger, C.; Auberson, Y.P.; Sovago, J.; Stockmeier, C.A.; et al. Reduced Metabotropic Glutamate Receptor 5 Density in Major Depression Determined by [11C]ABP688 PET and Postmortem Study. Am. J. Psychiatry 2011, 168, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, C.G.; Hannestad, J.; Mason, G.F.; Holmes, S.E.; DellaGioia, N.; Sanacora, G.; Jiang, L.; Matuskey, D.; Satodiya, R.; Gasparini, F.; et al. Metabotropic Glutamate Receptor 5 and Glutamate Involvement in Major Depressive Disorder: A Multimodal Imaging Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Matosin, N.; Fernandez-Enright, F.; Frank, E.; Deng, C.; Wong, J.; Huang, X.-F.; Newell, K. Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: Implications for novel mGluR-based therapeutics. J. Psychiatry Neurosci. 2014, 39, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Folsom, T.D.; Rooney, R.J.; Thuras, P.D. mRNA and protein expression for novel GABAA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Transl. Psychiatry 2013, 3, e271. [Google Scholar] [CrossRef] [PubMed]
- DeLorenzo, C.; Sovago, J.; Gardus, J.; Xu, J.; Yang, J.; Behrje, R.; Kumar, J.S.D.; Devanand, D.P.; Pelton, G.H.; Mathis, C.A.; et al. Characterization of brain mGluR5 binding in a pilot study of late-life major depressive disorder using positron emission tomography and [11C]ABP688. Transl. Psychiatry 2015, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca 6-week Study Treatment to Evaluate the Safety and Effectiveness of AZD2066 in Patients with Major Depressive Disorder. Available online: https://clinicaltrials.gov/ct2/show/NCT01145755 (accessed on 22 July 2019).
- Quiroz, J.A.; Tamburri, P.; Deptula, D.; Banken, L.; Beyer, U.; Rabbia, M.; Parkar, N.; Fontoura, P.; Santarelli, L. Efficacy and Safety of Basimglurant as Adjunctive Therapy for Major Depression. JAMA Psychiatry 2016, 73, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, F.; Ho, J.; Woo, J.H.; Lim, C.L.; Poon, D.J.J.; Lamba, B.; Claridge-Chang, A. Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neurosci. Biobehav. Rev. 2016, 68, 504–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.; Burant, A.; Bui, N.; Graham, D.; Yuva-Paylor, L.A.; Paylor, R. Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology 2009, 204, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Albelda, N.; Joel, D. Animal models of obsessive-compulsive disorder: Exploring pharmacology and neural substrates. Neurosci. Biobehav. Rev. 2012, 36, 47–63. [Google Scholar] [CrossRef]
- Kotlinska, J.; Bochenski, M. The influence of various glutamate receptors antagonists on anxiety-like effect of ethanol withdrawal in a plus-maze test in rats. Eur. J. Pharmacol. 2008, 598, 57–63. [Google Scholar] [CrossRef]
- Kumar, J.; Hapidin, H.; Bee, Y.-T.G.; Ismail, Z. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats. Behav. Brain Funct. 2013, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Griebel, G.; Holmes, A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat. Rev. Drug Discov. 2013, 12, 667–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riaza Bermudo-Soriano, C.; Perez-Rodriguez, M.M.; Vaquero-Lorenzo, C.; Baca-Garcia, E. New perspectives in glutamate and anxiety. Pharmacol. Biochem. Behav. 2012, 100, 752–774. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Coehlo, M.A.; Solton, N.R.; Szumlinski, K.K. Negative Affect and Excessive Alcohol Intake Incubate during Protracted Withdrawal from Binge-Drinking in Adolescent, But Not Adult, Mice. Front. Psychol. 2017, 8, 1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loxton, D.; Canales, J.J. Long-term cognitive, emotional and neurogenic alterations induced by alcohol and methamphetamine exposure in adolescent rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 74, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rico-Barrio, I.; Peñasco, S.; Puente, N.; Ramos, A.; Fontaine, C.J.; Reguero, L.; Giordano, M.E.; Buceta, I.; Terradillos, I.; Lekunberri, L.; et al. Cognitive and neurobehavioral benefits of an enriched environment on young adult mice after chronic ethanol consumption during adolescence. Addict. Biol. 2018, 14. [Google Scholar] [CrossRef] [PubMed]
- Szumlinski, K.K.; Coelho, M.A.; Lee, K.M.; Tran, T.; Sern, K.R.; Bernal, A.; Kippin, T.E. DID it or DIDn’t it? Exploration of a failure to replicate binge-like alcohol-drinking in C57BL/6J mice. Pharmacol. Biochem. Behav. 2019, 178, 3–18. [Google Scholar] [CrossRef]
- Van Skike, C.E.; Diaz-Granados, J.L.; Matthews, D.B. Chronic Intermittent Ethanol Exposure Produces Persistent Anxiety in Adolescent and Adult Rats. Alcohol. Clin. Exp. Res. 2015, 39, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Coelho, M.A.; Sern, K.R.; Szumlinski, K.K. Homer2 within the central nucleus of the amygdala modulates withdrawal-induced anxiety in a mouse model of binge-drinking. Neuropharmacology 2018, 128, 448–459. [Google Scholar] [CrossRef]
- Van Waes, V.; Darnaudéry, M.; Marrocco, J.; Gruber, S.H.; Talavera, E.; Mairesse, J.; Van Camp, G.; Casolla, B.; Nicoletti, F.; Mathé, A.A.; et al. Impact of early life stress on alcohol consumption and on the short- and long-term responses to alcohol in adolescent female rats. Behav. Brain Res. 2011, 221, 43–49. [Google Scholar] [CrossRef]
- Grueter, B.A.; Gosnell, H.B.; Olsen, C.M.; Schramm-Sapyta, N.L.; Nekrasova, T.; Landreth, G.E.; Winder, D.G. Extracellular-Signal Regulated Kinase 1-Dependent Metabotropic Glutamate Receptor 5-Induced Long-Term Depression in the Bed Nucleus of the Stria Terminalis Is Disrupted by Cocaine Administration. J. Neurosci. 2006, 26, 3210–3219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grueter, B.A.; McElligott, Z.A.; Robison, A.J.; Mathews, G.C.; Winder, D.G. In Vivo Metabotropic Glutamate Receptor 5 (mGluR5) Antagonism Prevents Cocaine-Induced Disruption of Postsynaptically Maintained mGluR5-Dependent Long-Term Depression. J. Neurosci. 2008, 28, 9261–9270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.E.; Tseng, K.Y. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how, and why? Front. Mol. Neurosci. 2012, 5, 72. [Google Scholar] [CrossRef] [PubMed]
- Loweth, J.A.; Tseng, K.Y.; Wolf, M.E. Using metabotropic glutamate receptors to modulate cocaine’s synaptic and behavioral effects: mGluR1 finds a niche. Curr. Opin. Neurobiol. 2013, 23, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Loweth, J.A.; Tseng, K.Y.; Wolf, M.E. Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology 2014, 76, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-Y.; Lee, B.R.; Wang, X.; Guo, C.; Liu, L.; Cui, R.; Lan, Y.; Balcita-Pedicino, J.J.; Wolf, M.E.; Sesack, S.R.; et al. Bidirectional Modulation of Incubation of Cocaine Craving by Silent Synapse-Based Remodeling of Prefrontal Cortex to Accumbens Projections. Neuron 2014, 83, 1453–1467. [Google Scholar] [CrossRef] [Green Version]
- Szumlinski, K.K.; Lominac, K.D.; Oleson, E.B.; Walker, J.K.; Mason, A.; Dehoff, M.H.; Klugmann, M.; Klugman, M.; Cagle, S.; Welt, K.; et al. Homer2 Is Necessary for EtOH-Induced Neuroplasticity. J. Neurosci. 2005, 25, 7054–7061. [Google Scholar] [CrossRef] [Green Version]
- Szumlinski, K.K.; Ary, A.W.; Lominac, K.D.; Klugmann, M.; Kippin, T.E. Accumbens Homer2 overexpression facilitates alcohol-induced neuroplasticity in C57BL/6J mice. Neuropsychopharmacology 2008, 33, 1365–1378. [Google Scholar] [CrossRef]
- Cozzoli, D.K.; Courson, J.; Caruana, A.L.; Miller, B.W.; Greentree, D.I.; Thomspon, A.B.; Wroten, M.G.; Zhang, P.-W.; Xiao, B.; Hu, J.-H.; et al. Nucleus Accumbens mGluR5-Associated Signaling Regulates Binge Alcohol Drinking Under Drinking-in-the-Dark Procedures. Alcohol. Clin. Exp. Res. 2012, 36, 1623–1633. [Google Scholar] [CrossRef]
- Cozzoli, D.K.; Kaufman, M.N.; Nipper, M.A.; Hashimoto, J.G.; Wiren, K.M.; Finn, D.A. Functional regulation of PI3K-associated signaling in the accumbens by binge alcohol drinking in male but not female mice. Neuropharmacology 2016, 105, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Lum, E.N.; Campbell, R.R.; Rostock, C.; Szumlinski, K.K. mGluR1 within the nucleus accumbens regulates alcohol intake in mice under limited-access conditions. Neuropharmacology 2014, 79, 679–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, L.A.; Peterson, B.M.; Meisel, R.L.; Mermelstein, P.G. Estradiol facilitation of cocaine-induced locomotor sensitization in female rats requires activation of mGluR5. Behav. Brain Res. 2014, 271, 39–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, L.A.; Gross, K.S.; Himmler, B.T.; Emmitt, N.L.; Peterson, B.M.; Zlebnik, N.E.; Foster Olive, M.; Carroll, M.E.; Meisel, R.L.; Mermelstein, P.G. Estradiol Facilitation of Cocaine Self-Administration in Female Rats Requires Activation of mGluR5. eNeuro 2016, 3. [Google Scholar] [CrossRef] [PubMed]
- Tonn Eisinger, K.R.; Gross, K.S.; Head, B.P.; Mermelstein, P.G. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm. Behav. 2018, 104, 130–137. [Google Scholar] [CrossRef] [PubMed]
Continuous Access | |||||||
Manipulation | Average Reported Ethanol Intake | Treatment Details | Species/Strain/Sex | Housing | Effect | Dose | Reference |
GRM5 mutation | TS/TS: greater than 6.0 g/kg | Male & female GRM5TS/TS, TS/AA, AA/AA mice | Grouped | Increased | AA/AA | [19] | |
MTEP | Up to 20 g/kg | Repeated systemic prior to access | Female B6 mice | Individual | Increased & Decreased | 20 mg/kg | [31] |
mGlu5 receptor deficiency | Wild type: greater than 9.0 g/kg | Male Grm5tm1Rod mice | Decreased | n/a | [17] | ||
mGlu5 receptor knockout | Wild type: up to 3.0 g/kg | Female mGlu5−/− mice | Decreased, no change | n/a | [32] | ||
MTEP | Up to 5 g/kg | Repeated systemic | Male FH rats | Decreased | 2 mg/kg | [27] | |
MTEP | Up to 15 g/kg | Repeated systemic prior to access | Male B6 mice | Individual | Decreased | 20 mg/kg | [31] |
MPEP | 0.53 ± 0.05 g/kg | Repeated systemic | Male Wistar rats | Individual | Decreased | 3, 10 mg/kg | [30] |
MPEP | Greater than 5.0 g/kg | Repeated systemic | Meyers rats | Individual | Decreased | 1, 3 mg/kg | [33] |
MPEP | 17.9 ± 8.2 g/kg | Repeated systemic | Male B6 mice | Individual | Decreased | 10 mg/kg | [25] |
mGlu5 receptor knockdown on D1 neurons | Up to 6 g/kg | Male mGlu5KD−D1 mice | Individual | No change | n/a | [16] | |
mGlu5 receptor knockout | Wild type: up to 2.0 g/kg | Male mGlu5−/− mice | No change | n/a | [32] | ||
Impaired mGlu5/Homer interaction | Wild type: 10.84 ± 2.26 g/kg | Male mGlu5-F1128R mice | Grouped | No change | n/a | [18] | |
Limited Access | |||||||
Manipulation | Average Reported Ethanol Intake | Treatment Details | Species/Strain/Sex | Housing | Effect | Dose | Reference |
mGlu5 receptor knockout | Wild type: greater than 2.0 g/kg | Female mGlu5−/− mice | Decreased | n/a | [32] | ||
MTEP | Up to 3 g/kg | Repeated systemic | Female B6 mice | Individual | Decreased | 20 mg/kg | [31] |
MTEP | Up to 3.5 g/kg | Repeated systemic | Male B6 mice | Individual | Decreased | 10, 20 mg/kg | [31] |
MTEP | Up to 4.5 g/kg | Acute intra-CeA | Male B6 mice | Individual | Decreased | 3 µg/side | [34] |
MPEP | Up to 1.5 g/kg | Acute intra-NAc | Male B6 mice | Individual | Decreased | 0.1, 0.3, 1 µg/side | [18] |
mGlu5 receptor knockout | Wild type: up to 1.5 g/kg | Female mGlu5−/− mice | No change | n/a | [32] | ||
MTEP | Up to 2.0 g/kg | Acute intra-adBNST | Male & female GRM5TS/TS, TS/AA, AA/AA mice | Individual | No change | 30 µg/side | [19] |
MPEP | Greater than 0.75 g/kg | Acute intra-NAc | Male mGlu5-F1128R mice | Individual | No change | 1 µg/side | [18] |
Operant Responding | |||||||
Manipulation | Average Reported Ethanol Intake | Treatment Details | Species/Strain/Sex | Housing | Effect | Dose | Reference |
GRM5 mutation | TS/TS: up to 1.5 g/kg | Male & female GRM5TS/TS, TS/AA, AA/AA mice | Grouped | Increased | AA/AA | [19] | |
mGlu5 receptor knockdown on D1 neurons | Wild type: up to 3000 licks | Female mGlu5KD−D1 mice | Grouped | Decreased | n/a | [15] | |
MTEP | Up to 80 responses | Acute systemic | Male FH rats | Decreased | 2 mg/kg | [27] | |
MTEP | Greater than 100 responses | Acute systemic | Male iP rats | Decreased | 1, 2 mg/kg | [27] | |
MTEP | Greater than 100 responses | Acute systemic | Male B6 mice | Grouped | Decreased | 20, 40 mg/kg | [28] |
MTEP | Up to 20 responses | Acute intra-NAc shell | Male Wistar rats | Decreased | 1.5 µg/side | [35] | |
MTEP | Non-dependent: up to 30 responses Dependent: up to 40 responses | Acute systemic | Male Wistar rats | Grouped | Decreased | 1, 3 mg/kg | [36] |
MPEP | Up to 80 responses | Acute systemic | Male iP rats | Individual | Decreased | 3, 10 mg/kg | [24] |
MPEP | Greater than 8.0 g/kg | Acute systemic | Male B6 mice | Individual | Decreased | 3, 10 mg/kg | [25] |
MPEP | Up to 5 g/kg | Acute systemic | Male B6 mice | Decreased | 3, 10 mg/kg | [26] | |
MPEP | Greater than 0.6 g/kg | Acute systemic | Male iP rats | Pair | Decreased | 3, 10 mg/kg | [29] |
MPEP | 0.96 ± 0.22 g/kg | Acute intra-NAc medial core | Male iP rats | Individual | Decreased | 10 µg/side | [37] |
MTEP | Up to 15 responses | Acute intra-NAc core | Male Wistar rats | No change | 1.5 µg/side | [35] | |
MTEP | 0.60 ± 0.1 g/kg | Acute systemic | iP rats | Pair | No change | 2.5 mg/kg | [23] |
MPEP | 1.15 ± 0.18 g/kg | Acute intra-dorsomedial caudate | Male iP rats | Individual | No change | 1, 3, 10 µg/side | [37] |
MPEP | 1.02 ± 0.08 g/kg | Acute intra-medial PFC | Male iP rats | Individual | No change | 1, 3, 10, 30 µg/side | [37] |
Ethanol Cue-Induced Reinstatement | |||||||
Manipulation | Average Reported Ethanol Intake | Treatment Details | Species/Strain/Sex | Housing | Effect | Dose | Reference |
CDPPB | Up to 80 responses | Repeated systemic, during extinction | Male Wistar rats | Individual | Decreased | 20 mg/kg | [53] |
MTEP | Greater than 60 responses | Acute intra-BLA, prior to reinstatement test | Male Wistar rats | Individual | Decreased | 3.0 µg/µl | [54] |
MTEP | Greater than 40 responses | Acute intra-NAc core, prior to reinstatement test | Male Wistar rats | Individual | Decreased | 3.0 µg/µl | [54] |
MPEP | Up to 60 responses | Acute systemic, prior to reinstatement test | Male iP rats | Pair | Decreased | 1, 10 mg/kg | [55] |
MPEP | 0.53 ± 0.05 g/kg | Acute systemic, prior to reinstatement test | Male Long Evans rats | Pair | Decreased | 3, 10 mg/kg | [30] |
MPEP | 2.0 g/kg | Acute systemic, prior to reinstatement test | Male B6 mice | Grouped | Decreased | 20 mg/kg | [56] |
MTEP | 0.54 ± 0.04 g/kg | Acute systemic, prior to reinstatement test | iP rats | Pair | No change | 2.5 mg/kg | [57] |
MTEP | 0.60 ± 0.1 g/kg | Acute systemic, prior to reinstatement test | iP rats | Pair | No change | 2.5 mg/kg | [23] |
Ethanol Conditioned Place Preference | |||||||
Manipulation | Ethanol Dose | Treatment Details | Species/Strain/Sex | Housing | Effect | Dose | Reference |
GRM5 mutation | 1.0–3.0 g/kg | Male & female GRM5TS/TS, TS/AA, AA/AA mice | Grouped | Increased Decreased | TS/TS AA/AA | [19] | |
mGlu5 receptor deficiency | 1.0 g/kg | Male Grm5tm1Rod mice | Decreased | n/a | [17] | ||
MTEP | 0.5 g/kg | Acute systemic, prior to test | Male Wistar rats | Grouped | Decreased | 2.5, 5 mg/kg | [58] |
MPEP | 2.0 g/kg | Acute systemic, prior to test | Male B6 mice | Grouped | Decreased | 20 mg/kg | [56] |
MPEP | 2.0 g/kg | Acute systemic, prior to test | Male B6 mice | Individual | Decreased | 10 mg/kg | [25] |
mGlu5 receptor knockdown on D1 neurons | 1.5 g/kg | Male & female mGlu5KD−D1 mice | Grouped | No change | n/a | [15] | |
MPEP | 2.0 g/kg | Repeated systemic, during acquisition | Male B6 mice | Grouped | No change | 5, 10, 20 mg/kg | [56] |
MPEP | 2.0 g/kg | Repeated systemic, during acquisition | Male D2 mice | Grouped | No change | 1, 5, 20 mg/kg | [59] |
Manipulation | Average Reported Ethanol Intake | Treatment Details | Species/Strain/Sex | Housing | Alcohol × Drug Effect | Dose | Reference |
---|---|---|---|---|---|---|---|
MTEP | 4.00 ± 0.05 g/kg | Acute systemic | Adult male B6 mice | Grouped | Rescued | 30 mg/kg | [77] |
MTEP | Greater than 4.0 g/kg | Acute systemic | Adult male B6 mice | Grouped | Rescued | 30 mg/kg | [75] |
CDPPB | Greater than 4.0 g/kg | Acute systemic | Adult male B6 mice | Grouped | Exacerbated | 30 mg/kg | [75] |
MTEP | Greater than 5.0 g/kg | Acute systemic | Adolescent male B6 mice | Grouped | No change | 30 mg/kg | [75] |
MTEP | Up to 7.0 g/kg | Acute intra-NAc shell | Adolescent male B6 mice | Grouped | No change | 1, 10 µg/side | [76] |
MTEP | Up to 5.0 g/kg | Acute intra-NAc shell | Adult male B6 mice | Grouped | No change | 1, 10 µg/side | [76] |
CDPPB | Greater than 5.0 g/kg | Acute systemic | Adolescent male B6 mice | Grouped | No change | 30 mg/kg | [75] |
Manipulation | Task | Average Reported Ethanol Intake | Treatment Details | Species/Strain/Sex | Housing | Alcohol × Drug Effect | Dose | Reference |
---|---|---|---|---|---|---|---|---|
MTEP | EPM | Up to 2 g/kg | Acute systemic | Adult male Wistar rats | Grouped | Rescued | 2.5, 5 mg/kg | [92] |
MPEP | EPM | Greater than 10.0 g/kg | Acute systemic | Male Wistar rats | Individual | Rescued | 2.5, 5, 10, 20, 30 mg/kg | [93] |
MTEP | LD | Greater than 4.0 g/kg | Acute systemic | Adult male B6 mice | Grouped | Rescued | 30 mg/kg | [75] |
MTEP | LD | Up to 5.0 g/kg | Acute intra-NAc shell | Adult male B6 mice | Grouped | Rescued | 1 µg/side | [76] |
CDPPB | LD | Greater than 4.0 g/kg | Acute systemic | Adult male B6 mice | Grouped | Exacerbated | 30 mg/kg | [75] |
MTEP | LD | Greater than 5.0 g/kg | Acute systemic | Adolescent male B6 mice | Grouped | No change | 30 mg/kg | [75] |
CDPPB | LD | Greater than 5.0 g/kg | Acute systemic | Adolescent male B6 mice | Grouped | No change | 30 mg/kg | [75] |
MTEP | LD | Up to 7.0 g/kg | Acute intra-NAc shell | Adolescent male B6 mice | Grouped | No change | 1, 10 µg/side | [76] |
MPEP | OF | Greater than 10.0 g/kg | Acute systemic | Male Wistar rats | Individual | Rescued | 2.5, 5, 10 mg/kg | [93] |
MTEP | MB | Greater than 4.0 g/kg | Acute systemic | Adult male B6 mice | Grouped | Rescued | 30 mg/kg | [75] |
MTEP | MB | Up to 5.0 g/kg | Acute intra-NAc shell | Adult male B6 mice | Grouped | Rescued | 1 µg/side | [76] |
MTEP | MB | Up to 7.0 g/kg | Acute intra-NAc shell | Adolescent male B6 mice | Grouped | Rescued | 10 µg/side | [76] |
MTEP | MB | Greater than 5.0 g/kg | Acute systemic | Adolescent male B6 mice | Grouped | Decreased | 30 mg/kg | [75] |
CDPPB | MB | Greater than 5.0 g/kg | Acute systemic | Adolescent male B6 mice | Grouped | Increased | 30 mg/kg | [75] |
CDPPB | MB | Greater than 4.0 g/kg | Acute systemic | Adult male B6 mice | Grouped | No change | 30 mg/kg | [75] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasten, C.R.; Holmgren, E.B.; Wills, T.A. Metabotropic Glutamate Receptor Subtype 5 in Alcohol-Induced Negative Affect. Brain Sci. 2019, 9, 183. https://doi.org/10.3390/brainsci9080183
Kasten CR, Holmgren EB, Wills TA. Metabotropic Glutamate Receptor Subtype 5 in Alcohol-Induced Negative Affect. Brain Sciences. 2019; 9(8):183. https://doi.org/10.3390/brainsci9080183
Chicago/Turabian StyleKasten, Chelsea R., Eleanor B. Holmgren, and Tiffany A. Wills. 2019. "Metabotropic Glutamate Receptor Subtype 5 in Alcohol-Induced Negative Affect" Brain Sciences 9, no. 8: 183. https://doi.org/10.3390/brainsci9080183
APA StyleKasten, C. R., Holmgren, E. B., & Wills, T. A. (2019). Metabotropic Glutamate Receptor Subtype 5 in Alcohol-Induced Negative Affect. Brain Sciences, 9(8), 183. https://doi.org/10.3390/brainsci9080183