Role of Melatonin on Virus-Induced Neuropathogenesis—A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Neurological Syndromes Induced by Viral Infections
2.1. Acute Viral Neurological Syndromes
2.1.1. Encephalitis
2.1.2. Aseptic Meningitis
2.1.3. Acute Flaccid Paralysis
2.1.4. Encephalomyelitis-Post Infectious
2.2. Chronic Viral Neurological Syndromes
2.2.1. Retrovirus Disease
2.2.2. Subacute Sclerosing Panencephalitis (SSPE)
2.2.3. Progressive Multifocal Leukoencephalopathy
2.2.4. Spongiform Encephalopathies
2.2.5. Acute Disseminated Encephalomyelitis (ADEM)
3. Viral Neuropathogenesis
3.1. BBB Invasion and Neuroimmune Interactions
3.2. Virus Infection Induces Alzheimer’s Like Features
3.3. Virus Infections That Induce Cognitive Impairment
3.4. Coronaviruses: Neuropathogenesis
4. Roles of Melatonin on Controlling Viral Infections
- (a)
- (b)
- The antioxidant effects limit free radical production and lipid peroxidation, subsequently reducing oxidative stress in virus-infected cells. Maintaining a balance in the redox reactions, together with the regulatory effects of the mitochondria and ER in virus-infected cells, promotes the survival of infected cells [82,83,84,85,86,87,88];
- (c)
- (d)
- (e)
- (f)
- (g)
4.1. Observations on the Role of Melatonin in Virus-Associated Encephalitis
4.2. Molecular Mechanism of Melatonin against Other Viruses
4.3. Melatonin as a Potential Neuroimmune Modulator in Viral Infection
4.4. Melatonin Regulates Autonomic Nervous System in Viral Infection
5. Therapeutic Role of Melatonin on Post Infection Complications of Viral Induced Neuropathogenesis
5.1. Melatonin and Anosmia
5.2. Melatonin and Myelination
5.3. Melatonin and Myalgia
5.4. Melatonin and Hypoxic Ischemia/Stroke
5.5. Melatonin and Prion Diseases
5.6. Melatonin and Guillain–Barré Syndrome
5.7. Melatonin and Neurotransmitters
5.8. Melatonin and Autophagy
5.9. Covid-19 and Melatonin Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jellinger, K.A. Basic mechanisms of neurodegeneration: A critical update. J. Cell Mol. Med. 2010, 14, 457–487. [Google Scholar] [CrossRef]
- Tricoire, H.; Moller, M.; Chemineau, P.; Malpaux, B. Origin of cerebrospinal fluid melatonin and possible function in the integration of photoperiod. Reprod. Suppl. 2003, 61, 311–321. [Google Scholar] [CrossRef]
- Legros, C.; Chesneau, D.; Boutin, J.A.; Barc, C.; Malpaux, B. Melatonin from cerebrospinal fluid but not from blood reaches sheep cerebral tissues under physiological conditions. J. Neuroendocrinol. 2014, 26, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Kim, S.J.; Cruz, M.H. Delivery of pineal melatonin to the brain and SCN: Role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct. Funct. 2014, 219, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Shukla, M.; Govitrapong, P.; Boontem, P.; Reiter, R.J.; Satayavivad, J. Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr. Neuropharmacol. 2017, 15, 1010–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Zhang, T.; Lee, T.H. Cellular mechanisms of melatonin: Insight from neurodegenerative diseases. Biomolecules 2020, 10, 1158. [Google Scholar] [CrossRef] [PubMed]
- Shukla, M.; Chinchalongporn, V.; Govitrapong, P.; Reiter, R.J. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann. N. Y. Acad. Sci. 2019, 1443, 75–96. [Google Scholar] [CrossRef]
- Menniger, K.A. Psychoses associated with influenza: 2. Specific data. An expository analysis. Arch. Neurol. Psychiatry 1919, 2, 291–337. [Google Scholar] [CrossRef] [Green Version]
- Gamboa, E.T.; Wolf, A.; Yahr, M.D.; Harter, D.H.; Duffy, P.E.; Barden, H.; Hsu, K.C. Influenza virus antigen in postencephalitic parkinsonism brain. Detection by immunofluorescence. Arch. Neurol 1974, 31, 228–232. [Google Scholar] [CrossRef]
- Ogata, A.; Tashiro, K.; Nukuzuma, S.; Nagashima, K.; Hall, W.W. A rat model of Parkinson’s disease induced by Japanese encephalitis virus. J. Neurovirol. 1997, 3, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Owens, G.P.; Gilden, D.; Burgoon, M.P.; Yu, X.; Bennett, J.L. Viruses and multiple sclerosis. Neuroscientist 2011, 17, 659–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itzhaki, R.F.; Lin, W.R.; Shang, D.; Wilcock, G.K.; Faragher, B.; Jamieson, G.A. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 1997, 349, 241–244. [Google Scholar] [CrossRef]
- Itzhaki, R.F. Herpes simplex virus type 1 and Alzheimer’s disease: Increasing evidence for a major role of the virus. Front. Aging Neurosci. 2014, 6, 202. [Google Scholar] [CrossRef] [PubMed]
- Lurain, N.S.; Hanson, B.A.; Martinson, J.; Leurgans, S.E.; Landay, A.L.; Bennett, D.A.; Schneider, J.A. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J. Infect. Dis. 2013, 208, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Canet, G.; Dias, C.; Gabelle, A.; Simonin, Y.; Gosselet, F.; Marchi, N.; Makinson, A.; Tuaillon, E.; Van de Perre, P.; Givalois, L.; et al. HIV neuroinfection and Alzheimer’s disease: Similarities and potential links? Front. Cell Neurosci. 2018, 12, 307. [Google Scholar] [CrossRef]
- Dehner, L.F.; Spitz, M.; Pereira, J.S. Parkinsonism in HIV infected patients during antiretroviral therapy—data from a Brazilian tertiary hospital. Braz. J. Infect. Dis. 2016, 20, 499–501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, X.; Ni, L.; Di, X.; Ma, B.; Niu, S.; Liu, C.; Reiter, R.J. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020, 250, 117583. [Google Scholar] [CrossRef]
- Rodriguez-Rubio, M.; Figueira, J.C.; Acuna-Castroviejo, D.; Borobia, A.M.; Escames, G.; de la Oliva, P. A phase 2, single-center, double-blind, randomized placebo-controlled trial to explore the efficacy and safety of intravenous melatonin in patients with COVID-19 admitted to the intensive care unit (MelCOVID study): A structured summary of a study protocol for a randomized controlled trial. Trials 2020, 21, 699. [Google Scholar] [CrossRef]
- Ziaei, A.; Davoodian, P.; Dadvand, H.; Safa, O.; Hassanipour, S.; Omidi, M.; Masjedi, M.; Mahmoudikia, F.; Rafiee, B.; Fathalipour, M. Evaluation of the efficacy and safety of melatonin in moderately ill patients with COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020, 21, 882. [Google Scholar] [CrossRef]
- Garcia, I.G.; Rodriguez-Rubio, M.; Mariblanca, A.R.; de Soto, L.M.; Garcia, L.D.; Villatoro, J.M.; Parada, J.Q.; Meseguer, E.S.; Rosales, M.J.; Gonzalez, J.; et al. A randomized multicenter clinical trial to evaluate the efficacy of melatonin in the prophylaxis of SARS-CoV-2 infection in high-risk contacts (MeCOVID Trial): A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 466. [Google Scholar] [CrossRef]
- Ramlall, V.; Zucker, J.; Tatonetti, N. Melatonin is significantly associated with survival of intubated COVID-19 patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Acuna-Castroviejo, D.; Escames, G.; Figueira, J.C.; de la Oliva, P.; Borobia, A.M.; Acuna-Fernandez, C. Clinical trial to test the efficacy of melatonin in COVID-19. J. Pineal Res. 2020, 69, e12683. [Google Scholar] [CrossRef] [PubMed]
- Turtle, L.; Solomon, T. Encephalitis, Viral. Encycl. Neurol. Sci. 2014, 20–24. [Google Scholar] [CrossRef]
- Tattevin, P.; Tchamgoue, S.; Belem, A.; Benezit, F.; Pronier, C.; Revest, M. Aseptic meningitis. Rev. Neurol. 2019, 175, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Solomon, T.; Willison, H. Infectious causes of acute flaccid paralysis. Curr. Opin. Infect. Dis. 2003, 16, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Donofrio, P.D. Guillain-Barre syndrome. Continuum 2017, 23, 1295–1309. [Google Scholar] [CrossRef]
- Mackiewicz, M.M.; Overk, C.; Achim, C.L.; Masliah, E. Pathogenesis of age-related HIV neurodegeneration. J. Neurovirol. 2019, 25, 622–633. [Google Scholar] [CrossRef]
- Naghavi, M.H. “APP” reciating the complexity of HIV-induced neurodegenerative diseases. PLoS Pathog. 2018, 14, e1007309. [Google Scholar] [CrossRef]
- Barmak, K.; Harhaj, E.; Grant, C.; Alefantis, T.; Wigdahl, B. Human T cell leukemia virus type 1-induced disease: Pathways to cancer and neurodegeneration. Virology 2003, 308, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bellini, W.J.; Rota, J.S.; Lowe, L.E.; Katz, R.S.; Dyken, P.R.; Zaki, S.R.; Shieh, W.J.; Rota, P.A. Subacute sclerosing panencephalitis: More cases of this fatal disease are prevented by measles immunization than was previously recognized. J. Infect. Dis. 2005, 192, 1686–1693. [Google Scholar] [CrossRef]
- Redswiki. Progressive Multifocal Leukoencephalopathy. Available online: https://radiopaedia.org/articles/progressive-multifocal-leukoencephalopathy (accessed on 9 March 2019).
- Collins, S.J.; Lawson, V.A.; Masters, C.L. Transmissible spongiform encephalopathies. Lancet 2004, 363, 51–61. [Google Scholar] [CrossRef]
- Johnson, R.T.; Gibbs, C.J.J. Creutzfeldt-Jakob disease and related transmissible spongiform encephalopathies. N. Engl. J. Med. 1998, 339, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Hartung, H.P. ADEM. Neurology 2001, 56, 1257. [Google Scholar] [CrossRef] [PubMed]
- Spindler, K.R.; Hsu, T.H. Viral disruption of the blood-brain barrier. Trends Microbiol. 2012, 20, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Tung, W.H.; Tsai, H.W.; Lee, I.T.; Hsieh, H.L.; Chen, W.J.; Chen, Y.L.; Yang, C.M. Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signalling dependent on MAPKs and reactive oxygen species. Br. J. Pharmacol. 2010, 161, 1566–1583. [Google Scholar] [CrossRef] [Green Version]
- Pastuzyn, E.D.; Day, C.E.; Kearns, R.B.; Kyrke-Smith, M.; Taibi, A.V.; McCormick, J.; Yoder, N.; Belnap, D.M.; Erlendsson, S.; Morado, D.R.; et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 2018, 172, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Ashley, J.; Cordy, B.; Lucia, D.; Fradkin, L.G.; Budnik, V.; Thomson, T. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 2018, 172, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.A.; Harris, E.A. Molecular mechanisms for Herpes simplex virus type 1 pathogenesis in Alzheimer’s disease. Front. Aging Neurosci. 2018, 10, 48. [Google Scholar] [CrossRef]
- Readhead, B.; Haure-Mirande, J.V.; Funk, C.C.; Richards, M.A.; Shannon, P.; Haroutunian, V.; Sano, M.; Liang, W.S.; Beckmann, N.D.; Price, N.D.; et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 2018, 99, 64–82. [Google Scholar] [CrossRef] [Green Version]
- Ball, M.J. Limbic predilection in Alzheimer dementia: Is reactivated herpesvirus involved? Can. J. Neurol. Sci. 1982, 9, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, M.A.; Itzhaki, R.F.; Shipley, S.J.; Dobson, C.B. Herpes simplex virus infection causes cellular β-amyloid accumulation and secretase upregulation. Neurosci. Lett. 2007, 429, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Santana, S.; Recuero, M.; Bullido, M.J.; Valdivieso, F.; Aldudo, J. Herpes simplex virus type 1 induces the accumulation of intracellular β-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells. Neurobiol. Aging 2012, 33, e419–e433. [Google Scholar] [CrossRef] [PubMed]
- Cairns, D.M.; Rouleau, N.; Parker, R.N.; Walsh, K.G.; Gehrke, L.; Kaplan, D.L. A 3D human brain-like tissue model of herpes-induced Alzheimer’s disease. Sci. Adv. 2020, 6, eaay8828. [Google Scholar] [CrossRef] [PubMed]
- De Chiara, G.; Marcocci, M.E.; Civitelli, L.; Argnani, R.; Piacentini, R.; Ripoli, C.; Manservigi, R.; Grassi, C.; Garaci, E.; Palamara, A.T. APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS ONE 2010, 5, e13989. [Google Scholar] [CrossRef] [Green Version]
- Lerchundi, R.; Neira, R.; Valdivia, S.; Vio, K.; Concha, M.I.; Zambrano, A.; Otth, C. Tau cleavage at D421 by caspase-3 is induced in neurons and astrocytes infected with herpes simplex virus type 1. J. Alzheimers Dis. 2011, 23, 513–520. [Google Scholar] [CrossRef]
- De Chiara, G.; Piacentini, R.; Fabiani, M.; Mastrodonato, A.; Marcocci, M.E.; Limongi, D.; Napoletani, G.; Protto, V.; Coluccio, P.; Celestino, I.; et al. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog. 2019, 15, e1007617. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.; Aguila, B.; Araya, P.; Vio, K.; Valdivia, S.; Zambrano, A.; Concha, M.I.; Otth, C. Inflammatory and neurodegeneration markers during asymptomatic HSV-1 reactivation. J. Alzheimers Dis. 2014, 39, 849–859. [Google Scholar] [CrossRef]
- Kristen, H.; Santana, S.; Sastre, I.; Recuero, M.; Bullido, M.J.; Aldudo, J. Herpes simplex virus type 2 infection induces AD-like neurodegeneration markers in human neuroblastoma cells. Neurobiol. Aging 2015, 36, 2737–2747. [Google Scholar] [CrossRef] [Green Version]
- Kaul, M.; Zheng, J.; Okamoto, S.; Gendelman, H.E.; Lipton, S.A. HIV-1 infection and AIDS: Consequences for the central nervous system. Cell Death Differ. 2005, 12, 878–892. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, P.S.; Shah, A.; Weemhoff, J.; Kumar, S.; Singh, D.P.; Kumar, A. HIV-1 gp120 and drugs of abuse: Interactions in the central nervous system. Curr. HIV Res. 2012, 10, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Woods, S.P.; Moore, D.J.; Weber, E.; Grant, I. Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol. Rev. 2009, 19, 152–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthony, I.C.; Ramage, S.N.; Carnie, F.W.; Simmonds, P.; Bell, J.E. Accelerated Tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol. 2006, 111, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Green, D.A.; Masliah, E.; Vinters, H.V.; Beizai, P.; Moore, D.J.; Achim, C.L. Brain deposition of β-amyloid is a common pathologic feature in HIV positive patients. AIDS 2005, 19, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Brew, B.J.; Pemberton, L.; Blennow, K.; Wallin, A.; Hagberg, L. CSF amyloid β42 and tau levels correlate with AIDS dementia complex. Neurology 2005, 65, 1490–1492. [Google Scholar] [CrossRef] [PubMed]
- Giunta, B.; Hou, H.; Zhu, Y.; Rrapo, E.; Tian, J.; Takashi, M.; Commins, D.; Singer, E.; He, J.; Fernandez, F.; et al. HIV-1 Tat contributes to Alzheimer’s disease-like pathology in PSAPP mice. Int. J. Clin. Exp. Pathol. 2009, 2, 433–443. [Google Scholar] [PubMed]
- Hategan, A.; Masliah, E.; Nath, A. HIV and Alzheimer’s disease: Complex interactions of HIV-Tat with amyloid β peptide and Tau protein. J. Neurovirol. 2019, 25, 648–660. [Google Scholar] [CrossRef]
- Mishra, M.K.; Ghosh, D.; Duseja, R.; Basu, A. Antioxidant potential of minocycline in Japanese encephalitis virus infection in murine neuroblastoma cells: Correlation with membrane fluidity and cell death. Neurochem. Int. 2009, 54, 464–470. [Google Scholar] [CrossRef]
- Wongchitrat, P.; Samutpong, A.; Lerdsamran, H.; Prasertsopon, J.; Yasawong, M.; Govitrapong, P.; Puthavathana, P.; Kitidee, K. Elevation of cleaved p18 Bax levels associated with the kinetics of neuronal cell death during Japanese encephalitis virus infection. Int. J. Mol. Sci. 2019, 20, 5016. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Misra, U.K.; Kalita, J.; Khanna, V.K.; Khan, M.Y. Imbalance in oxidant/antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus. Neurochem. Int. 2009, 55, 648–654. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Khanna, V.K.; Kalita, J.; Misra, U.K. Japanese encephalitis virus infection results in transient dysfunction of memory learning and cholinesterase inhibition. Mol. Neurobiol. 2017, 54, 4705–4715. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Misra, U.K.; Kalita, J.; Chandravanshi, L.P.; Khanna, V.K. Memory and learning seems to be related to cholinergic dysfunction in the JE rat model. Physiol. Behav. 2016, 156, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.S.; Misra, U.K.; Kalita, J. A study of glutamate levels, NR1, NR2A, NR2B receptors and oxidative stress in rat model of Japanese encephalitis. Physiol. Behav. 2017, 171, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Ou, Y.C.; Chang, C.Y.; Pan, H.C.; Liao, S.L.; Chen, S.Y.; Raung, S.L.; Lai, C.Y. Glutamate released by Japanese encephalitis virus-infected microglia involves TNF-α signaling and contributes to neuronal death. Glia 2012, 60, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Misra, U.K.; Kumar, S.; Kalita, J.; Ahmad, A.; Khanna, V.K.; Khan, M.Y.; Palit, G. A study of motor activity and catecholamine levels in different brain regions following Japanese encephalitis virus infection in rats. Brain Res. 2009, 1292, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Boltz, D.; Sturm-Ramirez, K.; Shepherd, K.R.; Jiao, Y.; Webster, R.; Smeyne, R.J. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc. Natl. Acad. Sci. USA 2009, 106, 14063–14068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadasivan, S.; Zanin, M.; O’Brien, K.; Schultz-Cherry, S.; Smeyne, R.J. Induction of microglia activation after infection with the non-neurotropic A/CA/04/2009 H1N1 influenza virus. PLoS ONE 2015, 10, e0124047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, S.; Wilk, E.; Michaelsen-Preusse, K.; Gerhauser, I.; Baumgartner, W.; Geffers, R.; Schughart, K.; Korte, M. Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function. J. Neurosci. 2018, 38, 3060–3080. [Google Scholar] [CrossRef] [Green Version]
- Glass, W.G.; McDermott, D.H.; Lim, J.K.; Lekhong, S.; Yu, S.F.; Frank, W.A.; Pape, J.; Cheshier, R.C.; Murphy, P.M. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 2006, 203, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Arkwright, P.D.; Abinun, M. Recently identified factors predisposing children to infectious diseases. Curr. Opin. Infect. Dis. 2008, 21, 217–222. [Google Scholar] [CrossRef]
- Sancho-Shimizu, V.; Zhang, S.Y.; Abel, L.; Tardieu, M.; Rozenberg, F.; Jouanguy, E.; Casanova, J.L. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr. Opin. Allergy Clin. Immunol. 2007, 7, 495–505. [Google Scholar] [CrossRef]
- Yin, J.; Gardner, C.L.; Burke, C.W.; Ryman, K.D.; Klimstra, W.B. Similarities and differences in antagonism of neuron α/β interferon responses by Venezuelan equine encephalitis and Sindbis α viruses. J. Virol. 2009, 83, 10036–10047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, N.M.; Saxe, G.N.; Marmar, C.R. Mental health disorders related to COVID-19-related deaths. JAMA 2020, 324, 1493–1494. [Google Scholar] [CrossRef] [PubMed]
- Ferini-Strambi, L.; Salsone, M. COVID-19 and neurological disorders: Are neurodegenerative or neuroimmunological diseases more vulnerable? J. Neurol. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Mukherjee, N.; Ghosh, S. Neurological insights of COVID-19 pandemic. ACS Chem. Neurosci. 2020, 11, 1206–1209. [Google Scholar] [CrossRef]
- Poyiadji, N.; Shahin, G.; Noujaim, D.; Stone, M.; Patel, S.; Griffith, B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: Imaging features. Radiology 2020, 296, E119–E120. [Google Scholar] [CrossRef] [Green Version]
- Chigr, F.; Merzouki, M.; Najimi, M. Comment on “The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients”. J. Med. Virol. 2020, 92, 703–704. [Google Scholar] [CrossRef]
- Ben-Nathan, D.; Maestroni, G.J.; Lustig, S.; Conti, A. Protective effects of melatonin in mice infected with encephalitis viruses. Arch. Virol. 1995, 140, 223–230. [Google Scholar] [CrossRef]
- Bonilla, E.; Valero-Fuenmayor, N.; Pons, H.; Chacin-Bonilla, L. Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus. Cell Mol. Life Sci. 1997, 53, 430–434. [Google Scholar] [CrossRef]
- Crespo, I.; San-Miguel, B.; Sanchez, D.I.; Gonzalez-Fernandez, B.; Alvarez, M.; Gonzalez-Gallego, J.; Tunon, M.J. Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin. J. Pineal Res. 2016, 61, 168–176. [Google Scholar] [CrossRef]
- Huang, S.-H.; Liao, C.-L.; Chen, S.-J.; Shi, L.-G.; Lin, L.; Chen, Y.-W.; Cheng, C.-P.; Sytwu, H.-K.; Shang, S.-T.; Lin, G.-J. Melatonin possesses an anti-influenza potential through its immune modulatory effect. J. Funct. Foods 2019, 58, 189–198. [Google Scholar] [CrossRef]
- San-Miguel, B.; Crespo, I.; Vallejo, D.; Alvarez, M.; Prieto, J.; Gonzalez-Gallego, J.; Tunon, M.J. Melatonin modulates the autophagic response in acute liver failure induced by the rabbit hemorrhagic disease virus. J. Pineal Res. 2014, 56, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Valero, N.; Mosquera, J.; Alcocer, S.; Bonilla, E.; Salazar, J.; Alvarez-Mon, M. Melatonin, minocycline and ascorbic acid reduce oxidative stress and viral titers and increase survival rate in experimental Venezuelan equine encephalitis. Brain Res. 2015, 1622, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Cao, X.J.; Liu, W.; Shi, X.Y.; Wei, W. Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J. Pineal Res. 2010, 48, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Montiel, M.; Bonilla, E.; Valero, N.; Mosquera, J.; Espina, L.M.; Quiroz, Y.; Alvarez-Mon, M. Melatonin decreases brain apoptosis, oxidative stress, and CD200 expression and increased survival rate in mice infected by Venezuelan equine encephalitis virus. Antivir. Chem. Chemother. 2015, 24, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Valero, N.; Espina, L.M.; Mosquera, J. Melatonin decreases nitric oxide production, inducible nitric oxide synthase expression and lipid peroxidation induced by Venezuelan encephalitis equine virus in neuroblastoma cell cultures. Neurochem. Res. 2006, 31, 925–932. [Google Scholar] [CrossRef]
- Valero, N.; MarinaEspina, L.; Bonilla, E.; Mosquera, J. Melatonin decreases nitric oxide production and lipid peroxidation and increases interleukin-1 β in the brain of mice infected by the Venezuelan equine encephalomyelitis virus. J. Pineal Res. 2007, 42, 107–112. [Google Scholar] [CrossRef]
- Valero, N.; Melean, E.; Bonilla, E.; Arias, J.; Espina, L.M.; Chacin-Bonilla, L.; Larreal, Y.; Maldonado, M.; Anez, F. In vitro, melatonin treatment decreases nitric oxide levels in murine splenocytes cultured with the Venezuelan equine encephalomyelitis virus. Neurochem. Res. 2005, 30, 1439–1442. [Google Scholar] [CrossRef]
- Sang, Y.; Gu, X.; Pan, L.; Zhang, C.; Rong, X.; Wu, T.; Xia, T.; Li, Y.; Ge, L.; Zhang, Y.; et al. Melatonin ameliorates coxsackievirus B3-induced myocarditis by regulating apoptosis and autophagy. Front. Pharmacol. 2018, 9, 1384. [Google Scholar] [CrossRef]
- Tunon, M.J.; San Miguel, B.; Crespo, I.; Jorquera, F.; Santamaria, E.; Alvarez, M.; Prieto, J.; Gonzalez-Gallego, J. Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus. J. Pineal Res. 2011, 50, 38–45. [Google Scholar] [CrossRef]
- Bonilla, E.; Valero, N.; Chacin-Bonilla, L.; Pons, H.; Larreal, Y.; Medina-Leendertz, S.; Espina, L.M. Melatonin increases interleukin-1β and decreases tumor necrosis factor α in the brain of mice infected with the Venezuelan equine encephalomyelitis virus. Neurochem. Res. 2003, 28, 681–686. [Google Scholar] [CrossRef]
- Valero, N.; Bonilla, E.; Pons, H.; Chacin-Bonilla, L.; Añez, F.; Espina, L.M.; Medina-Leendertz, S.; Tamayo, J.G. Melatonin induces changes to serum cytokines in mice infected with the Venezuelan equine encephalomyelitis virus. Transact. R. Soc. Trop. Med. Hyg. 2002, 96, 348–351. [Google Scholar] [CrossRef]
- Zhang, Z.; Araghi-Niknam, M.; Liang, B.; Inserra, P.; Ardestani, S.K.; Jiang, S.; Chow, S.; Watson, R.R. Prevention of immune dysfunction and vitamin E loss by dehydroepiandrosterone and melatonin supplementation during murine retrovirus infection. Immunology 1999, 96, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Cao, X.J.; Wei, W. Melatonin decreases TLR3-mediated inflammatory factor expression via inhibition of NF-κB activation in respiratory syncytial virus-infected RAW264.7 macrophages. J. Pineal Res. 2008, 45, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Laliena, A.; San Miguel, B.; Crespo, I.; Alvarez, M.; Gonzalez-Gallego, J.; Tunon, M.J. Melatonin attenuates inflammation and promotes regeneration in rabbits with fulminant hepatitis of viral origin. J. Pineal Res. 2012, 53, 270–278. [Google Scholar] [CrossRef]
- Bonilla, E.; Rodón, C.; Valero, N.; Pons, H.; Chacín-Bonilla, L.; Tamayo, J.G.; Rodríguez, Z.; Medina-Leendertz, S.; Añez, F. Melatonin prolongs survival of immunodepressed mice infected with the Venezuelan equine encephalomyelitis virus. Transact. R. Soc. Trop. Med. Hyg. 2001, 95, 207–210. [Google Scholar] [CrossRef]
- Ellis, L.C. Melatonin reduces mortality from Aleutian disease in mink (Mustela vison). J. Pineal Res. 1996, 21, 214–217. [Google Scholar] [CrossRef]
- Medina, S.; Valero-Fuenmayor, N.; Chacin-Bonilla, L.; Anez, F.; Giraldoth, D.; Arias, J.; Espina, G.; Achong, A.Y.; Bonilla, E. Exposure to 2500 lux increases serum melatonin in Venezuelan equine encephalomyelitis. Neurochem. Res. 1999, 24, 775–778. [Google Scholar] [CrossRef]
- Maestroni, G.J.; Conti, A.; Pierpaoli, W. Pineal melatonin, its fundamental immunoregulatory role in aging and cancer. Ann. N. Y. Acad. Sci. 1988, 521, 140–148. [Google Scholar] [CrossRef]
- Atkins, G.J.; Sheahan, B.J.; Dimmock, N.J. Semliki Forest virus infection of mice: A model for genetic and molecular analysis of viral pathogenicity. J. Gen. Virol. 1985, 66, 395–408. [Google Scholar] [CrossRef]
- Carocci, M.; Bakkali-Kassimi, L. The encephalomyocarditis virus. Virulence 2012, 3, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L.R.; Brault, A.C.; Nasci, R.S. West Nile virus: Review of the literature. JAMA 2013, 310, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Paemanee, A.; Hitakarun, A.; Roytrakul, S.; Smith, D.R. Screening of melatonin, α-tocopherol, folic acid, acetyl-L-carnitine and resveratrol for anti-dengue 2 virus activity. BMC Res. Notes 2018, 11, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabbani, M.A.G.; Barik, S. 5-Hydroxytryptophan, a major product of tryptophan degradation, is essential for optimal replication of human parainfluenza virus. Virology 2017, 503, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.C.R.; Porchia, B.; Pagni, R.L.; Souza, P.D.C.; Pegoraro, R.; Rodrigues, K.B.; Barros, T.B.; Aps, L.; de Araujo, E.F.; Calich, V.L.G.; et al. The combined use of melatonin and an indoleamine 2,3-dioxygenase-1 inhibitor enhances vaccine-induced protective cellular immunity to HPV16-associated tumors. Front. Immunol. 2018, 9, 1914. [Google Scholar] [CrossRef]
- Junaid, A.; Tang, H.; van Reeuwijk, A.; Abouleila, Y.; Wuelfroth, P.; van Duinen, V.; Stam, W.; van Zonneveld, A.J.; Hankemeier, T.; Mashaghi, A. Ebola hemorrhagic shock syndrome-on-a-chip. iScience 2020, 23, 100765. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Knollmann-Ritschel, B. Current understanding of the molecular basis of Venezuelan equine encephalitis virus pathogenesis and vaccine development. Viruses 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.C.; Ferro, C.; Barrera, R.; Boshell, J.; Navarro, J.C. Venezuelan equine encephalitis. Annu. Rev. Entomol. 2004, 49, 141–174. [Google Scholar] [CrossRef]
- Cain, M.D.; Salimi, H.; Gong, Y.; Yang, L.; Hamilton, S.L.; Heffernan, J.R.; Hou, J.; Miller, M.J.; Klein, R.S. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal αvirus infection. J. Neuroimmunol. 2017, 308, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Keck, F.; Kortchak, S.; Bakovic, A.; Roberts, B.; Agrawal, N.; Narayanan, A. Direct and indirect pro-inflammatory cytokine response resulting from TC-83 infection of glial cells. Virulence 2018, 9, 1403–1421. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.-X.; Korkmaz, A.; Reiter, R.J.; Manchester, L.C. Ebola virus disease: Potential use of melatonin as a treatment. J. Pineal Res. 2014, 57, 381–384. [Google Scholar] [CrossRef]
- Carrillo-Vico, A.; Calvo, J.R.; Abreu, P.; Lardone, P.J.; Garcia-Maurino, S.; Reiter, R.J.; Guerrero, J.M. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: Possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 2004, 18, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Venegas, C.; Garcia, J.A.; Escames, G.; Ortiz, F.; Lopez, A.; Doerrier, C.; Garcia-Corzo, L.; Lopez, L.C.; Reiter, R.J.; Acuna-Castroviejo, D. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 2012, 52, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Acuna-Castroviejo, D.; Escames, G.; Venegas, C.; Diaz-Casado, M.E.; Lima-Cabello, E.; Lopez, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Extrapineal melatonin: Sources, regulation, and potential functions. Cell Mol. Life Sci. 2014, 71, 2997–3025. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Ma, Q.; Sharma, R. Melatonin in mitochondria: Mitigating clear and present dangers. Physiology 2020, 35, 86–95. [Google Scholar] [CrossRef]
- Jumnongprakhon, P.; Govitrapong, P.; Tocharus, C.; Tocharus, J. Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells. Brain Res. 2016, 1646, 182–192. [Google Scholar] [CrossRef]
- Alluri, H.; Wilson, R.L.; Anasooya Shaji, C.; Wiggins-Dohlvik, K.; Patel, S.; Liu, Y.; Peng, X.; Beeram, M.R.; Davis, M.L.; Huang, J.H.; et al. Melatonin preserves blood-brain barrier integrity and permeability via matrix metalloproteinase-9 inhibition. PLoS ONE 2016, 11, e0154427. [Google Scholar] [CrossRef]
- Namyen, J.; Permpoonputtana, K.; Nopparat, C.; Tocharus, J.; Tocharus, C.; Govitrapong, P. Protective effects of melatonin on methamphetamine-induced blood-brain barrier dysfunction in rat model. Neurotox. Res. 2020, 37, 640–660. [Google Scholar] [CrossRef]
- Jumnongprakhon, P.; Govitrapong, P.; Tocharus, C.; Pinkaew, D.; Tocharus, J. Melatonin protects methamphetamine-induced neuroinflammation through NF-κB and Nrf2 pathways in glioma cell line. Neurochem. Res. 2015, 40, 1448–1456. [Google Scholar] [CrossRef]
- Wongprayoon, P.; Govitrapong, P. Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line. Neurotoxicology 2015, 50, 122–130. [Google Scholar] [CrossRef]
- McGavern, D.B.; Kang, S.S. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 2011, 11, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Pinilla, P.J.; Camello, P.J.; Pozo, M.J. Effects of melatonin on gallbladder neuromuscular function in acute cholecystitis. J. Pharmacol. Exp. Ther. 2007, 323, 138–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Pinilla, P.J.; Camello-Almaraz, C.; Moreno, R.; Camello, P.J.; Pozo, M.J. Melatonin treatment reverts age-related changes in guinea pig gallbladder neuromuscular transmission and contractility. J. Pharmacol. Exp. Ther. 2006, 319, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.R.; Gonzalez-Yanes, C.; Maldonado, M.D. The role of melatonin in the cells of the innate immunity: A review. J. Pineal Res. 2013, 55, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Favero, G.; Franceschetti, L.; Bonomini, F.; Rodella, L.F.; Rezzani, R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int. J. Endocrinol. 2017, 2017, 1835195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinon, F. Detection of immune danger signals by NALP3. J. Leukoc. Biol. 2008, 83, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Boga, J.A.; Coto-Montes, A.; Rosales-Corral, S.A.; Tan, D.X.; Reiter, R.J. Beneficial actions of melatonin in the management of viral infections: A new use for this “molecular handyman”? Rev. Med. Virol. 2012, 22, 323–338. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res. 2018, 65, e12525. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.Y.; Ichinohe, T. Response of host inflammasomes to viral infection. Trends Microbiol. 2015, 23, 55–63. [Google Scholar] [CrossRef]
- Reiter, R.; Ma, Q.; Sharma, R. Treatment of Ebola and other infectious diseases: Melatonin “goes viral”. Melatonin Res. 2020, 3, 43–57. [Google Scholar] [CrossRef]
- Alexander, M.; Murthy, J.M. Acute disseminated encephalomyelitis: Treatment guidelines. Ann. Indian Acad. Neurol. 2011, 14, S60–S64. [Google Scholar] [CrossRef]
- Scanzano, A.; Cosentino, M. Adrenergic regulation of innate immunity: A review. Front. Pharmacol. 2015, 6, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanovic, B.; Spasojevic, N.; Jovanovic, P.; Ferizovic, H.; Dronjak, S. Melatonin modulate the expression of α1- and β2-adrenoceptors in the hippocampus of rats subjected to unpredictable chronic mild stress. Bratisl. Lek. Listy 2018, 119, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Vico, A.; Lardone, P.J.; Alvarez-Sanchez, N.; Rodriguez-Rodriguez, A.; Guerrero, J.M. Melatonin: Buffering the immune system. Int. J. Mol. Sci. 2013, 14, 8638–8683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Permpoonputtana, K.; Govitrapong, P. The anti-inflammatory effect of melatonin on methamphetamine-induced proinflammatory mediators in human neuroblastoma dopamine SH-SY5Y cell lines. Neurotox. Res. 2013, 23, 189–199. [Google Scholar] [CrossRef]
- Liu, C.H.; Chang, H.M.; Yang, Y.S.; Lin, Y.T.; Ho, Y.J.; Tseng, T.J.; Lan, C.T.; Li, S.T.; Liao, W.C. Melatonin promotes nerve regeneration following end-to-side neurorrhaphy by accelerating cytoskeletal remodeling via the melatonin receptor-dependent pathway. Neuroscience 2020, 429, 282–292. [Google Scholar] [CrossRef]
- Chen, W.C.; Simanjuntak, Y.; Chu, L.W.; Ping, Y.H.; Lee, Y.L.; Lin, Y.L.; Li, W.S. Benzenesulfonamide derivatives as calcium/calmodulin-dependent protein kinase inhibitors and antiviral agents against dengue and zika virus infections. J. Med. Chem. 2020, 63, 1313–1327. [Google Scholar] [CrossRef]
- Tarocco, A.; Caroccia, N.; Morciano, G.; Wieckowski, M.R.; Ancora, G.; Garani, G.; Pinton, P. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Kelley, W.J.; Goldstein, D.R. Role of aging and the immune response to respiratory viral infections: Potential implications for COVID-19. J. Immunol. 2020, 205, 313–320. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and the theories of aging: A critical appraisal of melatonin’s role in antiaging mechanisms. J. Pineal Res. 2013, 55, 325–356. [Google Scholar] [CrossRef]
- Permpoonputtana, K.; Tangweerasing, P.; Mukda, S.; Boontem, P.; Nopparat, C.; Govitrapong, P. Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI J. 2018, 17, 634–646. [Google Scholar] [CrossRef]
- Esposito, E.; Cuzzocrea, S. Antiinflammatory activity of melatonin in central nervous system. Curr. Neuropharmacol. 2010, 8, 228–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, Y.M.; Jang, S.K.; Kim, G.H.; Park, J.Y.; Joo, S.S. Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes. J. Biomed. Res. 2016, 30, 314–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maestroni, G.J. The immunotherapeutic potential of melatonin. Expert Opin. Investig Drugs 2001, 10, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.C.; Chen, W.J.; Tsai, M.S.; Ching, C.H.; Chuang, J.I. Melatonin attenuates brain contusion-induced oxidative insult, inactivation of signal transducers and activators of transcription 1, and upregulation of suppressor of cytokine signaling-3 in rats. J. Pineal Res. 2011, 51, 233–245. [Google Scholar] [CrossRef]
- Bonilla, E.; Valero, N.; Chacin-Bonilla, L.; Medina-Leendertz, S. Melatonin and viral infections. J. Pineal Res. 2004, 36, 73–79. [Google Scholar] [CrossRef]
- Marvar, P.J.; Harrison, D.G. Inflammation, immunity, and the autonomic nervous system. In Primer on the Autonomic Nervous System, 3rd ed.; Low, P.A., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 325–329. [Google Scholar] [CrossRef]
- Sadasivan, S.; Sharp, B.; Schultz-Cherry, S.; Smeyne, R.J. Synergistic effects of influenza and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can be eliminated by the use of influenza therapeutics: Experimental evidence for the multi-hit hypothesis. NPJ Parkinsons Dis. 2017, 3, 18. [Google Scholar] [CrossRef]
- Mutoh, T.; Shibata, S.; Korf, H.W.; Okamura, H. Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice. J. Physiol. 2003, 547, 317–332. [Google Scholar] [CrossRef]
- Korkmaz, A.; Ates, M.A.; Algul, A.; Başoǧlu, C. Physiological approach to neuropsychiatric diseases; role of autonomic nervous system and melatonin. Klin. Psikofarmakol. Bulteni 2009, 19, 173–182. [Google Scholar]
- Corthell, J.T.; Olcese, J.; Trombley, P.Q. Melatonin in the mammalian olfactory bulb. Neuroscience 2014, 261, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Koc, S.; Cayli, S.; Aksakal, C.; Ocakli, S.; Soyalic, H.; Somuk, B.T.; Yuce, S. Protective effects of melatonin and selenium against apoptosis of olfactory sensory neurons: A rat model study. Am. J. Rhinol. Allergy 2016, 30, 62–66. [Google Scholar] [CrossRef]
- Murueta-Goyena, A.; Andikoetxea, A.; Gomez-Esteban, J.C.; Gabilondo, I. Contribution of the GABAergic system to non-motor manifestations in premotor and early stages of parkinson’s disease. Front. Pharmacol. 2019, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, R.E.; Cardinali, D.P. Central gabaergic mechanisms as targets for melatonin activity in brain. Neurochem. Int. 1990, 17, 373–379. [Google Scholar] [CrossRef]
- Cheng, X.P.; Sun, H.; Ye, Z.Y.; Zhou, J.N. Melatonin modulates the GABAergic response in cultured rat hippocampal neurons. J. Pharmacol. Sci. 2012, 119, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saravanan, B.; Kundra, P.; Mishra, S.K.; Surianarayanan, G.; Parida, P.K. Effect of anaesthetic agents on olfactory threshold and identification—A single blinded randomised controlled study. Indian J. Anaesth. 2018, 62, 592–598. [Google Scholar] [CrossRef]
- Skinner, D.; Marro, B.S.; Lane, T.E. Chemokine CXCL10 and coronavirus-induced neurologic disease. Viral Immunol. 2019, 32, 25–37. [Google Scholar] [CrossRef]
- Hosokawa, I.; Hosokawa, Y.; Shindo, S.; Ozaki, K.; Matsuo, T. Melatonin inhibits CXCL10 and MMP-1 production in IL-1β-stimulated human periodontal ligament Cells. Inflammation 2016, 39, 1520–1526. [Google Scholar] [CrossRef]
- Anderson, G.; Rodriguez, M. Multiple sclerosis: The role of melatonin and N-acetylserotonin. Mult. Scler. Relat. Disord. 2015, 4, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Ghareghani, M.; Scavo, L.; Jand, Y.; Farhadi, N.; Sadeghi, H.; Ghanbari, A.; Mondello, S.; Arnoult, D.; Gharaghani, S.; Zibara, K. Melatonin therapy modulates cerebral metabolism and enhances remyelination by increasing PDK4 in a mouse model of multiple sclerosis. Front. Pharmacol. 2019, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Abo Taleb, H.A.; Alghamdi, B.S. Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J. Mol. Neurosci. 2020, 70, 386–402. [Google Scholar] [CrossRef]
- Kucuk, A.; Cumhur Cure, M.; Cure, E. Can COVID-19 cause myalgia with a completely different mechanism? A hypothesis. Clin. Rheumatol. 2020, 39, 2103–2104. [Google Scholar] [CrossRef]
- Lippi, G.; Wong, J.; Henry, B.M. Myalgia may not be associated with severity of coronavirus disease 2019 (COVID-19). World J. Emerg. Med. 2020, 11, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Obayashi, K.; Saeki, K.; Maegawa, T.; Iwamoto, J.; Sakai, T.; Otaki, N.; Kataoka, H.; Kurumatani, N. Melatonin secretion and muscle strength in elderly individuals: A cross-sectional study of the HEIJO-KYO Cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Danilov, A.; Kurganova, J. Melatonin in chronic pain syndromes. Pain Ther. 2016, 5, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valderrama, E.V.; Humbert, K.; Lord, A.; Frontera, J.; Yaghi, S. Severe acute respiratory syndrome coronavirus 2 infection and ischemic stroke. Stroke 2020, 51, e124–e127. [Google Scholar] [CrossRef]
- Bathla, G.; Hegde, A.N. MRI and CT appearances in metabolic encephalopathies due to systemic diseases in adults. Clin. Radiol. 2013, 68, 545–554. [Google Scholar] [CrossRef]
- Tutunculer, F.; Eskiocak, S.; Basaran, U.N.; Ekuklu, G.; Ayvaz, S.; Vatansever, U. The protective role of melatonin in experimental hypoxic brain damage. Pediatr. Int. 2005, 47, 434–439. [Google Scholar] [CrossRef]
- Lin, H.W.; Lee, E.J. Effects of melatonin in experimental stroke models in acute, sub-acute, and chronic stages. Neuropsychiatr. Dis. Treat. 2009, 5, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Villapol, S.; Fau, S.; Renolleau, S.; Biran, V.; Charriaut-Marlangue, C.; Baud, O. Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke. Pediatr. Res. 2011, 69, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Andrabi, S.S.; Parvez, S.; Tabassum, H. Melatonin and ischemic stroke: Mechanistic roles and action. Adv. Pharmacol. Sci. 2015, 2015, 384750. [Google Scholar] [CrossRef]
- Ramos, E.; Farre-Alins, V.; Egea, J.; Lopez-Munoz, F.; Reiter, R.J.; Romero, A. Melatonin’s efficacy in stroke patients; a matter of dose? A systematic review. Toxicol. Appl. Pharmacol. 2020, 392, 114933. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, D.; Wu, W.; Ali Shah, S.Z.; Lai, M.; Yang, D.; Li, J.; Guan, Z.; Li, W.; Gao, H.; et al. Melatonin regulates mitochondrial dynamics and alleviates neuron damage in prion diseases. Aging 2020, 12, 11139–11151. [Google Scholar] [CrossRef] [PubMed]
- Llorens, F.; Zarranz, J.J.; Fischer, A.; Zerr, I.; Ferrer, I. Fatal familial insomnia: Clinical aspects and molecular alterations. Curr. Neurol. Neurosci. Rep. 2017, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Portaluppi, F.; Cortelli, P.; Avoni, P.; Vergnani, L.; Maltoni, P.; Pavani, A.; Sforza, E.; Degli Uberti, E.C.; Gambetti, P.; Lugaresi, E. Progressive disruption of the circadian rhythm of melatonin in fatal familial insomnia. J. Clin. Endocrinol. Metab. 1994, 78, 1075–1078. [Google Scholar] [CrossRef] [PubMed]
- Coen, M.; Jeanson, G.; Culebras Almeida, L.A.; Hubers, A.; Stierlin, F.; Najjar, I.; Ongaro, M.; Moulin, K.; Makrygianni, M.; Leemann, B.; et al. Guillain-Barre syndrome as a complication of SARS-CoV-2 infection. Brain Behav. Immun. 2020, 87, 111–112. [Google Scholar] [CrossRef] [PubMed]
- Karkare, K.; Sinha, S.; Taly, A.B.; Rao, S. Prevalence and profile of sleep disturbances in Guillain-Barre Syndrome: A prospective questionnaire-based study during 10 days of hospitalization. Acta Neurol. Scand. 2013, 127, 116–123. [Google Scholar] [CrossRef]
- Bechter, K. Virus infection as a cause of inflammation in psychiatric disorders. Mod. Trends Pharmacopsychiatry 2013, 28, 49–60. [Google Scholar] [CrossRef]
- Bahnasy, W.S.; El-Heneedy, Y.A.E.; El-Shamy, A.M.; Badr, M.Y.; Amer, R.A.; Ibrahim, I.S.E. Sleep and psychiatric abnormalities in Gullian Barre Syndrome. Egypt J. Neurol. Psychiatr. Neurosurg. 2018, 54, 5. [Google Scholar] [CrossRef] [Green Version]
- Kuthati, Y.; Lin, S.H.; Chen, I.J.; Wong, C.S. Melatonin and their analogs as a potential use in the management of Neuropathic pain. J. Formos. Med. Assoc. 2019, 118, 1177–1186. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Iapichino, S.; Bossini, L.; Pieraccini, F.; Castrogiovanni, P. Melatonin in psychiatric disorders: A review on the melatonin involvement in psychiatry. Front. Neuroendocrinol. 2001, 22, 18–32. [Google Scholar] [CrossRef]
- Geoffroy, P.A.; Micoulaud Franchi, J.A.; Lopez, R.; Schroder, C.M.; membres du consensus Mélatonine SFRMS. The use of melatonin in adult psychiatric disorders: Expert recommendations by the French institute of medical research on sleep (SFRMS). Encephale 2019, 45, 413–423. [Google Scholar] [CrossRef]
- Van den Pol, A.N. Viral infection leading to brain dysfunction: More prevalent than appreciated? Neuron 2009, 64, 17–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, F.; Martin, V.; García-Santos, G.; Rodriguez-Blanco, J.; Antolín, I.; Rodriguez, C. Melatonin prevents glutamate-induced oxytosis in the HT22 mouse hippocampal cell line through an antioxidant effect specifically targeting mitochondria. J. Neurochem. 2007, 100, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Dhangar, R.R.; Kale, P.P.; Kadu, P.K.; Prabhavalkar, K. Possible benefits of considering glutamate with melatonin or orexin or oxytocin as a combination approach in the treatment of anxiety. Curr. Pharmacol. Rep. 2020, 6, 1–7. [Google Scholar] [CrossRef]
- Mohammed, A.K.H.; Maehlen, J.; Magnusson, O.; Fonnum, F.; Kristensson, K. Persistent changes in behaviour and brain serotonin during ageing in rats subjected to infant nasal virus infection. Neurobiol. Aging 1992, 13, 83–87. [Google Scholar] [CrossRef]
- Haduch, A.; Bromek, E.; Wojcikowski, J.; Golembiowska, K.; Daniel, W.A. Melatonin supports CYP2D-mediated serotonin synthesis in the brain. Drug Metab. Dispos. 2016, 44, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulus, G.L.; Xavier, R.J. Autophagy and checkpoints for intracellular pathogen defense. Curr. Opin. Gastroenterol. 2015, 31, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boga, J.A.; Caballero, B.; Potes, Y.; Perez-Martinez, Z.; Reiter, R.J.; Vega-Naredo, I.; Coto-Montes, A. Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J. Pineal Res. 2019, 66, e12534. [Google Scholar] [CrossRef] [Green Version]
- Kosmider, B.; Messier, E.M.; Janssen, W.J.; Nahreini, P.; Wang, J.; Hartshorn, K.L.; Mason, R.J. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus. Respir. Res. 2012, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Manchester, L.C.; Coto-Montes, A.; Boga, J.A.; Andersen, L.P.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D.X.; Reiter, R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015, 59, 403–419. [Google Scholar] [CrossRef]
- Nopparat, C.; Sinjanakhom, P.; Govitrapong, P. Melatonin reverses H2O2 -induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-kappaB. J. Pineal Res. 2017, 63. [Google Scholar] [CrossRef]
- Moriguchi, T.; Harii, N.; Goto, J.; Harada, D.; Sugawara, H.; Takamino, J.; Ueno, M.; Sakata, H.; Kondo, K.; Myose, N.; et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020, 94, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Morfopoulou, S.; Brown, J.R.; Davies, E.G.; Anderson, G.; Virasami, A.; Qasim, W.; Chong, W.K.; Hubank, M.; Plagnol, V.; Desforges, M.; et al. Human coronavirus OC43 associated with fatal encephalitis. N. Engl. J. Med. 2016, 375, 497–498. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Reiter, R.J. Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev. Med. Virol. 2020, 30, e2109. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, E.; Budayeva, H.G.; Miteva, Y.V.; Ricci, D.P.; Silhavy, T.J.; Shenk, T.; Cristea, I.M. Sirtuins are evolutionarily conserved viral restriction factors. mBio 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Galano, A.; Jou, M.J.; Acuna-Castroviejo, D. Melatonin mitigates mitochondrial meltdown: Interactions with SIRT3. Int. J. Mol. Sci. 2018, 19, 2439. [Google Scholar] [CrossRef] [Green Version]
- Bahrampour Juybari, K.; Pourhanifeh, M.H.; Hosseinzadeh, A.; Hemati, K.; Mehrzadi, S. Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res. 2020, 287, 198108. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Ma, Q.; Liu, C.; Manucha, W.; Abreu-Gonzalez, P.; Dominguez-Rodriguez, A. Plasticity of glucose metabolism in activated immune cells: Advantages for melatonin inhibition of COVID-19 disease. Melatonin Res. 2020, 3, 362–379. [Google Scholar] [CrossRef]
- El-Missiry, M.A.; El-Missiry, Z.M.A.; Othman, A.I. Melatonin is a potential adjuvant to improve clinical outcomes in individuals with obesity and diabetes with coexistence of Covid-19. Eur. J. Pharmacol. 2020, 882, 173329. [Google Scholar] [CrossRef]
- Jose, R.J.; Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med. 2020, 8, e46–e47. [Google Scholar] [CrossRef]
- Bekyarova, G.; Tancheva, S.; Hristova, M. The effects of melatonin on burn-induced inflammatory responses and coagulation disorders in rats. Methods Find. Exp. Clin. Pharmacol. 2010, 32, 299–303. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasso, G.; Mayer, S.V.; Winkelmann, E.R.; Chu, T.; Elliot, O.; Patino-Galindo, J.A.; Park, K.; Rabadan, R.; Honig, B.; Shapira, S.D. A structure-informed atlas of human-virus interactions. Cell 2019, 178, 1526–1541. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhi, N.; Khaksari, M.; AsadiKaram, G.; Soltani, Z.; Shahrokhi, N. Role of melatonin receptors in the effect of estrogen on brain edema, intracranial pressure and expression of aquaporin 4 after traumatic brain injury. Iran. J. Basic Med. Sci. 2018, 21, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Nakao, T.; Morita, H.; Maemura, K.; Amiya, E.; Inajima, T.; Saito, Y.; Watanabe, M.; Manabe, I.; Kurabayashi, M.; Nagai, R.; et al. Melatonin ameliorates angiotensin 2-induced vascular endothelial damage via its antioxidative properties. J. Pineal Res. 2013, 55, 287–293. [Google Scholar] [CrossRef]
- Romero, A.; Ramos, E.; Lopez-Munoz, F.; Gil-Martin, E.; Escames, G.; Reiter, R.J. Coronavirus disease 2019 (COVID-19) and its neuroinvasive capacity: Is it time for melatonin? Cell Mol. Neurobiol. 2020, 1–12. [Google Scholar] [CrossRef]
- Srinivasan, V.; Spence, D.W.; Trakht, I.; Pandi-Perumal, S.R.; Cardinali, D.P.; Maestroni, G.J. Immunomodulation by melatonin: Its significance for seasonally occurring diseases. Neuroimmunomodulation 2008, 15, 93–101. [Google Scholar] [CrossRef]
- Favero, G.; Moretti, E.; Bonomini, F.; Reiter, R.J.; Rodella, L.F.; Rezzani, R. Promising antineoplastic actions of melatonin. Front. Pharmacol. 2018, 9, 1086. [Google Scholar] [CrossRef] [Green Version]
- Vriend, J.; Reiter, R.J. Melatonin as a proteasome inhibitor. Is there any clinical evidence? Life Sci. 2014, 115, 8–14. [Google Scholar] [CrossRef]
- Priprem, A.; Johns, J.R.; Limsitthichaikoon, S.; Limphirat, W.; Mahakunakorn, P.; Johns, N.P. Intranasal melatonin nanoniosomes: Pharmacokinetic, pharmacodynamics and toxicity studies. Ther. Deliv. 2017, 8, 373–390. [Google Scholar] [CrossRef]
- Reiter, R.J.; Abreu-Gonzalez, P.; Marik, P.E.; Dominguez-Rodriguez, A. Therapeutic algorithm for use of melatonin in patients with COVID-19. Front. Med. 2020, 7, 226. [Google Scholar] [CrossRef]
- Cardinali, D.P. High doses of melatonin as a potential therapeutic tool for the neurologic sequels of covid-19 infection. Melatonin Res. 2020, 3, 311–317. [Google Scholar] [CrossRef]
- Martín Giménez, V.; Prado, N.; Diez, E.; Manucha, W.; Reiter, R. New proposal involving nanoformulated melatonin targeted to the mitochondria as a potential COVID-19 treatment. Nanomedicine 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hou, Y.; Shen, J.; Mehra, R.; Kallianpur, A.; Culver, D.A.; Gack, M.U.; Farha, S.; Zein, J.; Comhair, S.; et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 2020, 18, e3000970. [Google Scholar] [CrossRef] [PubMed]
- Parlakpinar, H.; Polat, S.; Acet, H.A. Pharmacological agents under investigation in the treatment of coronavirus disease 2019 and the importance of melatonin. Fundam. Clin. Pharmacol. 2020. [Google Scholar] [CrossRef]
Family | Virus | Properties of Melatonin | Action of Melatonin | Dose of Melatonin | Dose of Virus | Model | Ref. |
---|---|---|---|---|---|---|---|
Togaviridae | Venezuelan equine encephalomyelitis virus (VEEV) | Antiviral effect | ↓ Virus titer in supernatant | 0.5, 1 and 5 mM | MOI 1 (Guajira strain) | Murine Na2 neuroblastoma cell line | [83] |
↓ Virus titer in brain | 500 µg/kg (pre- and post-treatments) | 10 PFU (Goajira strain) | NMRI mice | [83] | |||
↓ Virus titer in blood and brain | 250, 500 and 1000 µg/kg (pre- and post-treatments) | 100 PFU (Guajira strain) | NMRI-IVIC mice | [79] | |||
Antioxidant activity | ↓ NO | 0.025, 0.1, 0.25, 0.50, 1 and 1.8 mM | MOI 1 (Enzootic strain E-100) | Murine Na2 neuroblastoma cells | [86] | ||
100 and 150 µg/mL | (Guajira Strain) | Murine splenocyte | [88] | ||||
↓ NO in blood and brain | 500 µg/kg (pre- and post-treatments) | 10 LD50 (Guajira strain) | NMRI mice | [85,87] | |||
Reduction of lipid peroxidation | ↓ MDA | 0.1, 0.5 and 1 mM | MOI 1 (Guajira strain) | Murine Na2 neuroblastoma cell line | [83,85] | ||
↓ MDA in brain | 500 µg/kg (pre- and post-treatments) | 10 PFU (Guajira strain) | NMRI mice | [83,85] | |||
↓ Nitrite ↓ iNOS | 0.025, 0.1, 0.25, 0.50, 1 and 1.8 mM | MOI 1 (Enzootic strain E-100) | Murine Na2 neuroblastoma cells | [86] | |||
Anti-apoptotic effects | ↓ Apoptotic cell death | 0.1, 0.5 and 1 mM | MOI 1 (Guajira strain) | Murine Na2 neuroblastoma cell line | [85] | ||
↓ Apoptotic cell death in brain | 500 µg/kg (pre- and post-treatments) | 10 PFU (Guajira strain) | NMRI mice | [85] | |||
Immunomodulatory effects | ↑ IL-1β in blood and brain, ↑ TNF-α and IFN-γ in blood | 500 µg/kg (pre- and post-treatments) | 10 LD50 (Guajira strain) | NMRI-IVIC mice | [87,91,92] | ||
Anti-inflammatory effects | ↓ TNF-α in brain | 500 µg/kg (pre- and post-treatments | 10 LD50 (Guajira strain) | NMRI-IVIC mice | [91] | ||
↓ CD200 in brain | 500 µg/kg (pre- and post-treatments) | 10 PFU (Guajira strain) | NMRI mice | [85] | |||
Prolongs survival rate | ↑ Survival rate of infected animals | Light-induced melatonin production (400 and 2500 lux) | 100 PFU (Guajira strain) | NMRI-IVIC mice | [98] | ||
↑ Survival rate of infected animals ↓ Onset of the disease | 250, 500 and 1000 µg/kg (pre- and post-treatments) | 100 PFU (Guajira strain) | NMRI-IVIC mice | [79] | |||
↑ Survival rate of infected animals | 500 µg/kg (pre- and post-treatments) | 10 PFU (Goajira strain) | NMRI mice | [83,85] | |||
↑ Survival rate of immunodepressed infected animals | 500 µg/kg (pre- and post-treatments) | 100 PFU (Guajira strain) | NMRI-IVIC mice | [96] | |||
Semliki Forest virus (SFV) | Antiviral effect | ↓ Virus titer in blood | 500 µg/kg (pre- and post-treatments) | 10, 100 PFU | CD1 mice | [78] | |
Prolongs survival rate | ↓ Onset of disease ↑ Survival rate of infected animals | 500 µg/kg (pre- and post-treatments) | 10, 100 PFU | CD1 mice | [78] | ||
Picornaviridae | Encephalomyocarditis virus (EMCV) | Prolongs survival rate | ↑ Survival rate of infected animals ↓ Paralysis | 1 µg/day | 2 × 108 dilutions of virus | BALB/c mice | [99] |
Coxsackievirus B3 (CVB3) | Anti-apoptotic effects | ↓ BAX, cleaved caspase-9 and cleaved caspase-3 in heart ↑ BCL-2 and BCL-2/BAX ratio in heart ↓ Apoptotic cells in heart | 14.4 mg/kg/day | 105.5 TCID50 | BALB/c mice | [89] | |
Regulation of autophagic effects | on day 7 (heart) ↑ Autophagosomes ↑ LC3-II/LC3-I ratio and beclin-1 ↓ p62 on day 14 (heart) ↓ Autophagosomes ↓ LC3-II/LC3-I ratio and beclin-1 ↑ p62 | 14.4 mg/kg/day | 105.5 TCID50 | BALB/c mice | [89] | ||
Anti-inflammatory effects | ↓ TNF-α and IL-1 in heart ↓ Inflammatory cell infiltration, necrosis, and interstitial edema in myocardial tissue | 14.4 mg/kg/day | 105.5 TCID50 | BALB/c mice | [89] | ||
Prolongs survival rate | ↑ Survival rate of infected animals ↓ Severity of the myocarditis ↑ Cardiac Function | 14.4 mg/kg/day | 105.5 TCID50 | BALB/c mice | [89] | ||
Flaviviridae | West Nile virus (WNV) | Prolongs survival rate | ↑ Survival rate of stress-exposed animals | 5 µg/mouse (pre- and post-treatments) | 2 × 105 PFU (WN-25 attenuated variant) | CD1 mice | [78] |
Dengue virus type 2 (DENV2) | Antiviral effect | No effects | 50 and 500 μM | MOI 2 and 5 (strain 16681) | Human hepatocellular carcinoma HepG2 cell line | [103] | |
Orthomyxoviridae | Influenza A virus (IAV) | Antiviral effect | ↓ Virus titer in supernatant (co-treatment with ribavirin) | 0.1, 0.25 and 0.5 mM | MOI 0.5 (H5N1) | Human lung adenocarcinoma A549 cell line | [81] |
Immunomodulatory effects | ↑ IL-27, IL-10 and TGF-β in bronchoalveolar lavage fluid | 20, 200 mg/kg (pre- and post-treatments) | 1000 PFU (H5N1) | BALB/c mice | [81] | ||
Anti-inflammatory effects | ↓ TNF-α, IL-6, IFN-γ and p-NF-κB in bronchoalveolar lavage fluid ↓ Th1 CD4 cells and Inflammatory CD8 T cells in spleen | 20, 200 mg/kg (pre- and post-treatments) | 1000 PFU (H5N1) | BALB/c mice | [81] | ||
Prolongs survival rate | ↑ Survival rate of infected animals | 20, 200 mg/kg (pre-and post-treatments) | 1000 PFU (H5N1) | BALB/c mice | [81] | ||
↑ Survival rate of infected animals (co-treatment with ribavirin) | 200 mg/kg/day | 1000 PFU (H5N1) | BALB/c mice | [81] | |||
Paramyxoviridae | Respiratory syncytial virus (RSV) | Antioxidant activity | ↓ NO, MDA and ·OH in lung ↑ GSH and SOD in lung | 5 mg/kg (orally administered twice daily for 3 days) | 1 × 107 PFU/mL (Long strain) | BALB/c mice | [84] |
Anti-inflammatory effects | ↓ TLR3, NF-κB/p65 and TNF-α ↓ iNOS | 10−7, 10−6 and 10−5 M | MOI 1 (Long strain) | Mouse macrophage RAW264.7 cell line | [94] | ||
↓ TNF-α in blood | 5 mg/kg (orally administered twice daily for 3 days) | 1 × 107 PFU/mL (Long strain) | BALB/c mice | [84] | |||
Human parainfluenza virus type 3 (HPIV3) | Antiviral effect | ↓ Virus titer in supernatant (co-treatment with IFN-γ) | 0.05, 0.25 and 0.49 mM | MOI 1 | Human lung adenocarcinoma A549 cell line | [104] | |
Caliciviridae | Rabbit hemorrhagic disease virus (RHDV) | Antiviral effect | ↓ RHDV VP60 in liver | 20 mg/kg at 0, 12, and 24 hpi. | 2 × 104 HA units | New Zealand white rabbits | [80,82] |
Antioxidant activity | ↓ GSSG/GSH ratio in liver | 20 mg/kg at 0, 12, and 24 hpi. | 2 × 104 HA units | New Zealand white rabbits | [82,90] | ||
Suppression of ER stress in liver ↓ CHOP ↓ BiP/GRP78 | 20 mg/kg at 0, 12, and 24 hpi. | 2 × 104 HA units | New Zealand white rabbits | [82] | |||
Anti-apoptotic effects | Extrinsic apoptosis pathway (liver) ↓ TNF-R1 ↓ p-JNK and caspase-8 ↑ c-FLIP Intrinsic apoptosis pathway (liver) ↓ BAX, cytosolic Cyt c and caspase-9 ↑ BCL-2 and BCL-xL ↓ caspase-3 and PARP-1 | 10 and 20 mg/kg at 0, 12, and 24 hpi. | 2 × 104 HA units | New Zealand white rabbits | [82,90] | ||
Regulation of autophagic effects | ↓ LC3-II/LC3-I ratio, p62/SQSTM1, beclin-1, Atg5, Atg12 and Atg16L1 in liver | 20 mg/kg at 0, 12, and 24 hpi. | 2 × 104 HA units | New Zealand white rabbits | [82] | ||
Anti-inflammatory effects | ↓ TLR4, HMGB1, TNF-α, IL-1β, IL-6, CRP, MMP-9, SphK1/S1P, NF-κB p50 and p65 subunits and p-IκB-α in liver ↑ DAF/CD55 in liver | 10 and 20 mg/kg at 0, 12, and 24 hpi. | 2 × 104 HA units | New Zealand white rabbits | [82,95] | ||
Stimulation of regenerative mechanisms | ↑ HGF/c-Met, EGF/EGFR, PDGF-B/PDGFRβ, VEGF/VEGFR in liver ↓ p-JAK in liver ↑ ERK and STAT3 in liver | 10 and 20 mg/kg at 0, 12, and 24 hpi. | 2 × 104 HA units | New Zealand white rabbits | [95] | ||
Parvoviridae | Aleutian mink disease virus (AMDV) | Prolongs survival rate | ↑ Survival rate of infected animals | 2.7 mg melatonin crystals homogeneously suspended in medical grade silastic polymer | Natural infection | Mink | [97] |
Retroviridae | Murine leukemia virus (MLV) | Immunomodulatory effects | Splenocyte ↑ B cell and T cell proliferation ↑ IL-2 and IFN-γ ↓ IL-4, IL-6 and IL-10 and TNF-α | 49.8 µg/mouse/day | 4.5 log10 PFU/mL (LP-BM5 retrovirus) | C57BL/6 mice | [93] |
↓ The loss of hepatic Vitamin E | 49.8 µg/mouse/day | 4.5 log10 PFU/mL (LP-BM5 retrovirus) | C57BL/6 mice | [93] | |||
Reduction of lipid peroxidation | ↓ Hepatic conjugated dienes | 49.8 µg/mouse/day | 4.5 log10 PFU/mL (LP-BM5 retrovirus) | C57BL/6 mice | [93] | ||
Papillomaviridae | Human papillomavirus (HPV) | Anti-tumor | ↓ Proliferation, migration, adhesion and viability of tumor cells ↓ HPV-16 E6 and E7 oncoproteins | 1 mM | HPV-16 genome encodes oncoproteins | TC-1 murine tumor cell line | [105] |
Improved vaccine efficacy | Co-treatment with DL-1MT ↑ Anti-tumor protective effects of gDE7 vaccine ↑ IFN-γ producing CD8+ T cells ↓ Tumor growth | 0.2 mg/200 μL/mouse for 4 weeks every 48 h | Transplanted with TC-1 cells encoding HPV-16 oncoproteins | C57BL/6 mice | [105] | ||
Filoviridae | Ebola virus (EBOV) | Protection of the integrity of blood vessels | ↓ Rho/ROCK signaling ↓ Vascular permeability | 0, 0.1, 1, 10 and 100 µM for 2 h | 1 mg/mL of Ebola virus-like particles | Micro vessel (chip-based assay) | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongchitrat, P.; Shukla, M.; Sharma, R.; Govitrapong, P.; Reiter, R.J. Role of Melatonin on Virus-Induced Neuropathogenesis—A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants 2021, 10, 47. https://doi.org/10.3390/antiox10010047
Wongchitrat P, Shukla M, Sharma R, Govitrapong P, Reiter RJ. Role of Melatonin on Virus-Induced Neuropathogenesis—A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants. 2021; 10(1):47. https://doi.org/10.3390/antiox10010047
Chicago/Turabian StyleWongchitrat, Prapimpun, Mayuri Shukla, Ramaswamy Sharma, Piyarat Govitrapong, and Russel J. Reiter. 2021. "Role of Melatonin on Virus-Induced Neuropathogenesis—A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection" Antioxidants 10, no. 1: 47. https://doi.org/10.3390/antiox10010047
APA StyleWongchitrat, P., Shukla, M., Sharma, R., Govitrapong, P., & Reiter, R. J. (2021). Role of Melatonin on Virus-Induced Neuropathogenesis—A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants, 10(1), 47. https://doi.org/10.3390/antiox10010047