Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery
Abstract
:1. Diabetes Mellitus
2. Conventional Treatments for Diabetes Mellitus
3. Pathogenesis of Type 2 Diabetes
3.1. Glucose Transport and Metabolism
3.2. Inflammation and Oxidative Stress
3.3. Lipid Metabolism
4. Type 2 Diabetes and Plant Extracts
4.1. In Vitro Studies
4.2. In Vivo Studies
4.2.1. Sprague Dawley (SD) Rats
4.2.2. Wistar Rats
4.2.3. C57BL Mice
4.2.4. KK-Ay Mice
4.2.5. Other Preclinical Models
ICR Mice
Kunming Mice
Obese (ob/ob) Mice
SHRSP.Z-Leprfa/IzmDmcr Rats
TSOD Mice
4.3. Human Studies
4.4. Clinical Trials
5. Limitation of the Studies
6. Conclusions
7. Methods
Author Contributions
Funding
Conflicts of Interest
References
- Petersmann, A.; Müller-Wieland, D.; Müller, U.A.; Landgraf, R.; Nauck, M.; Freckmann, G.; Heinemann, L.; Schleicher, E. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2019, 127, S1–S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diagnosis and classification of diabetes mellitus. Diabetes Care 2013, 36 (Suppl. 1), S67–S74. [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papatheodorou, K.; Banach, M.; Edmonds, M.; Papanas, N.; Papazoglou, D. Complications of diabetes. J. Diabetes Res. 2015, 2015, 189525. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef]
- Kurniawan, A.H.; Suwandi, B.H.; Kholili, U. Diabetic gastroenteropathy: A complication of diabetes mellitus. Acta Med. Indones. 2019, 51, 263–271. [Google Scholar]
- McCreight, L.J.; Bailey, C.J.; Pearson, E.R. Metformin and the gastrointestinal tract. Diabetologia 2016, 59, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Lebovitz, H.E. Thiazolidinediones: The forgotten diabetes medications. Curr. Diabetes Rep. 2019, 19, 151. [Google Scholar] [CrossRef] [Green Version]
- Landgraf, R.; Aberle, J.; Birkenfeld, A.L.; Gallwitz, B.; Kellerer, M.; Klein, H.; Müller-Wieland, D.; Nauck, M.A.; Reuter, H.M.; Siegel, E. Therapy of type 2 diabetes. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2019, 127, S73–S92. [Google Scholar] [CrossRef] [Green Version]
- Mannino, G.C.; Andreozzi, F.; Sesti, G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes/Metab. Res. Rev. 2019, 35, e3109. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.Y.; Liu, X.K.; Sang, Y.Q.; Wang, B.; Liang, J. Effects of sglt2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes: A meta-analysis. Medicine 2019, 98, e18245. [Google Scholar] [CrossRef] [PubMed]
- Schultze, S.M.; Hemmings, B.A.; Niessen, M.; Tschopp, O. Pi3k/akt, mapk and ampk signalling: Protein kinases in glucose homeostasis. Expert Rev. Mol. Med. 2012, 14, e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The pi3k/akt pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.B.; Zhou, G.; Li, C. Ampk: An emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009, 9, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Gao, J.; Wei, F.; Zhao, J.; Wang, D.; Wei, J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front. Pharmacol. 2018, 9, 423. [Google Scholar] [CrossRef] [Green Version]
- Cool, B.; Zinker, B.; Chiou, W.; Kifle, L.; Cao, N.; Perham, M.; Dickinson, R.; Adler, A.; Gagne, G.; Iyengar, R.; et al. Identification and characterization of a small molecule ampk activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006, 3, 403–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Liu, Y.F.; Herschkovitz, A.; Boura-Halfon, S.; Ronen, D.; Paz, K.; Leroith, D.; Zick, Y. Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Mol. Cell. Biol. 2004, 24, 9668–9681. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.; et al. Ampk phosphorylates and inhibits srebp activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.; Shaw, R.J. Ampk: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell. 2017, 66, 789–800. [Google Scholar] [CrossRef] [Green Version]
- Amraee, S.; Bahramikia, S. Inhibitory effect of effective fraction of salvia officinalis on aldose reductase activity: Strategy to reduce complications of type 2 diabetes. Orient. Pharm. Exp. Med. 2019, 19, 211–216. [Google Scholar] [CrossRef]
- Student, A.K.; Hsu, R.Y.; Lane, M.D. Induction of fatty acid synthetase synthesis in differentiating 3t3-l1 preadipocytes. J. Biol. Chem. 1980, 255, 4745–4750. [Google Scholar] [CrossRef]
- Xu, X.; Nagarajan, H.; Lewis, N.E.; Pan, S.; Cai, Z.; Liu, X.; Chen, W.; Xie, M.; Wang, W.; Hammond, S. The genomic sequence of the chinese hamster ovary (cho)-k1 cell line. Nat. Biotechnol. 2011, 29, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsumoto, Y.; Burdett, E.; Grant, A.; Klip, A. Differential expression of the glut1 and glut4 glucose transporters during differentiation of l6 muscle cells. Biochem. Biophys. Res. Commun. 1991, 175, 652–659. [Google Scholar] [CrossRef]
- Welsh, M.; Nielsen, D.A.; MacKrell, A.J.; Steiner, D.F. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, rin-5f cells. Ii. Regulation of insulin mrna stability. J. Biol. Chem. 1985, 260, 13590–13594. [Google Scholar] [CrossRef]
- Javitt, N.B. Hep g2 cells as a resource for metabolic studies: Lipoprotein, cholesterol, and bile acids. Faseb J. 1990, 4, 161–168. [Google Scholar] [CrossRef]
- Han, J.; Yang, N.; Zhang, F.; Zhang, C.; Liang, F.; Xie, W.; Chen, W. Rhizoma anemarrhenae extract ameliorates hyperglycemia and insulin resistance via activation of amp-activated protein kinase in diabetic rodents. J. Ethnopharmacol. 2015, 172, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Haselgrübler, R.; Stadlbauer, V.; Stübl, F.; Schwarzinger, B.; Rudzionyte, I.; Himmelsbach, M.; Iken, M.; Weghuber, J. Insulin mimetic properties of extracts prepared from bellis perennis. Molecules 2018, 23, 2605. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Ming, Q.; Qiu, J.; Tian, D.; Liu, J.; Shen, J.; Liu, Q.H.; Yang, X. Ethanolic extract of folium sennae mediates the glucose uptake of l6 cells by glut4 and ca(2). Molecules 2018, 23, 2934. [Google Scholar] [CrossRef] [Green Version]
- Bowser, S.M.; Moore, W.T.; McMillan, R.P.; Dorenkott, M.R.; Goodrich, K.M.; Ye, L.; O’Keefe, S.F.; Keefe, S.F.; Hulver, M.W.; Neilson, A.P. High-molecular-weight cocoa procyanidins possess enhanced insulin-enhancing and insulin mimetic activities in human primary skeletal muscle cells compared to smaller procyanidins. J. Nutr. Biochem. 2017, 39, 48–58. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Cui, H.M.; Wang, J.L.; Liu, H.; Dang, M.M.; Zhang, Q.Y.; Yang, F.; Kou, J.T.; Tong, X.L. Protective role of berberine and coptischinensis extract on t2md rats and associated islet rin-5f cells. Mol. Med. Rep. 2017, 16, 6981–6991. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-H.; Kang, H.-B.; Kim, J.H.; Kwak, S.; Sung, G.-J.; Park, S.-H.; Jeong, J.-H.; Kim, H.; Lee, J.; Jun, W. Antiobesity and cholesterol-lowering effects of dendropanax morbifera water extracts in mouse 3t3-l1 cells. J. Med. Food. 2018, 21, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Hetta, M.H.; Owis, A.I.; Haddad, P.S.; Eid, H.M. The fatty acid-rich fraction of eruca sativa (rocket salad) leaf extract exerts antidiabetic effects in cultured skeletal muscle, adipocytes and liver cells. Pharm Biol. 2017, 55, 810–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.C.; Chiang, H.; Lai, Y.H.; Huang, Y.L.; Huang, H.C.; Liang, Y.C.; Liu, H.K.; Huang, C. Helminthostachys zeylanica alleviates hepatic steatosis and insulin resistance in diet-induced obese mice. BMC Complement. Altern. Med. 2019, 19, 368. [Google Scholar] [CrossRef]
- Gao, S.; Guo, Q.; Qin, C.; Shang, R.; Zhang, Z. Sea buckthorn fruit oil extract alleviates insulin resistance through the pi3k/akt signaling pathway in type 2 diabetes mellitus cells and rats. J. Agric. Food Chem. 2017, 65, 1328–1336. [Google Scholar] [CrossRef]
- Park, S.-Y.; Jin, B.; Shin, J.-H.; Adisakwattana, S.; Kwon, O. Standardized mori ramulus extract improves insulin secretion and insulin sensitivity in c57blks/j db/db mice and ins-1 cells. Biomed. Pharmacother. 2017, 92, 308–315. [Google Scholar] [CrossRef]
- Yan, F.; Dai, G.; Zheng, X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating pi3k/akt pathway in hepg2 cells and db/db mice. J. Nutr. Biochem. 2016, 36, 68–80. [Google Scholar] [CrossRef]
- Vlavcheski, F.; Tsiani, E. Attenuation of free fatty acid-induced muscle insulin resistance by rosemary extract. Nutriments 2018, 10, 1623. [Google Scholar] [CrossRef] [Green Version]
- Darlington, G.J.; Ross, S.E.; MacDougald, O.A. The role of c/ebp genes in adipocyte differentiation. J. Biol. Chem. 1998, 273, 30057–30060. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.R.; Jamshidi, S.; Farhangi, A.; Verdi, A.A.; Mofidian, S.M.A.; Rad, B.L. Induction of diabetes by streptozotocin in rats. Indian J. Clin. Biochem. 2007, 22, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in b cells of the rat pancreas. Physiol Res. 2001, 50, 537–546. [Google Scholar] [PubMed]
- Wang-Fischer, Y.; Garyantes, T. Improving the reliability and utility of streptozotocin-induced rat diabetic model. J. Diabetes Res. 2018, 2018, 8054073. [Google Scholar] [CrossRef] [PubMed]
- Nagy, C.; Einwallner, E. Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (ogtt) and insulin tolerance test (itt). J. Vis. Exp. 2018, 131, e56672. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Iyer, A.; Brown, L. Evaluation of the chronic complications of diabetes in a high fructose diet in rats. Indian J. Biochem. Biophys. 2009, 46, 66–72. [Google Scholar] [PubMed]
- Brower, M.; Grace, M.; Kotz, C.M.; Koya, V. Comparative analysis of growth characteristics of sprague dawley rats obtained from different sources. Lab. Anim. Res. 2015, 31, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Benson, V.L.; McMahon, A.C.; Lowe, H.C.; Khachigian, L.M. The streptozotocin-treated sprague-dawley rat: A useful model for the assessment of acute and chronic effects of myocardial ischaemia reperfusion injury in experimental diabetes. Diabetes Vasc. Dis. Res. 2007, 4, 153–154. [Google Scholar] [CrossRef]
- Zhang, F.; Ye, C.; Li, G.; Ding, W.; Zhou, W.; Zhu, H.; Chen, G.; Luo, T.; Guang, M.; Liu, Y.; et al. The rat model of type 2 diabetic mellitus and its glycometabolism characters. Exp. Anim. 2003, 52, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Thun-Battersby, S.; Mevissen, M.; Löscher, W. Exposure of sprague-dawley rats to a 50-hertz, 100-μtesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7, 12-dimethylbenz [a]-anthracene model of breast cancer. Cancer Res. 1999, 59, 3627–3633. [Google Scholar]
- Cacioppo, L.D.; Shen, Z.; Parry, N.M.; Fox, J.G. Resistance of sprague-dawley rats to infection with helicobacter pullorum. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 803–807. [Google Scholar]
- Mohammed, A.; Koorbanally, N.A.; Islam, M.S. Ethyl acetate fraction of aframomum melegueta fruit ameliorates pancreatic β-cell dysfunction and major diabetes-related parameters in a type 2 diabetes model of rats. J. Ethnopharmacol. 2015, 175, 518–527. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Kang, S.; Kim, D.S.; Park, S. Codonopsis lanceolata water extract increases hepatic insulin sensitivity in rats with experimentally-induced type 2 diabetes. Nutrients 2017, 9, 1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.J.; Kim, M.J.; Kwon, D.Y.; Kim, D.S.; Lee, Y.H.; Kim, J.E.; Park, S. Anti-diabetic activities of gastrodia elata blume water extracts are mediated mainly by potentiating glucose-stimulated insulin secretion and increasing β-cell mass in non-obese type 2 diabetic animals. Nutrients 2016, 8, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, S.; Ma, J.; Yao, J.; Cui, J.; Wang, C.; Li, Y.; Ma, L.; Lu, F. Systemic perturbations of key metabolites in type 2 diabetic rats treated by polyphenol extracts from litchi chinensis seeds. J. Agric. Food Chem. 2017, 65, 7698–7704. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yu, C.; Wu, J.; Chen, H.; Zeng, Y.; Wang, X.; Yang, L.; Mei, Q.; Cao, S.; Qin, D. Lychee seed extract protects against neuronal injury and improves cognitive function in rats with type ii diabetes mellitus with cognitive impairment. Int. J. Mol. Med. 2018, 41, 251–263. [Google Scholar] [CrossRef]
- Al-Zuaidy, M.H.; Mumtaz, M.W.; Hamid, A.A.; Ismail, A.; Mohamed, S.; Razis, A.F.A. Biochemical characterization and 1 h nmr based metabolomics revealed melicope lunu-ankenda leaf extract a potent anti-diabetic agent in rats. BMC Complement. Altern. Med. 2017, 17, 359. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Yu, H.; Xiao, Y.; Wang, H. Momordica charantia extracts ameliorate insulin resistance by regulating the expression of socs-3 and jnk in type 2 diabetes mellitus rats. Pharm. Biol. 2017, 55, 2170–2177. [Google Scholar] [CrossRef] [Green Version]
- Li-Li, M.; Yan-Yan, Y.; Ming, Z.; Xin-Rong, Z.; Jehangir, T.; Fu-Yan, W.; Yang, X.; Shi-Zhong, B. Mori cortex extract ameliorates nonalcoholic fatty liver disease (nafld) and insulin resistance in high-fat-diet/streptozotocin-induced type 2 diabetes in rats. Chin. J. Nat. Med. 2018, 16, 411–417. [Google Scholar]
- Cai, S.; Sun, W.; Fan, Y.; Guo, X.; Xu, G.; Xu, T.; Hou, Y.; Zhao, B.; Feng, X.; Liu, T. Effect of mulberry leaf (folium mori) on insulin resistance via irs-1/pi3k/glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm. Biol. 2016, 54, 2685–2691. [Google Scholar] [CrossRef] [Green Version]
- Mousum, S.A.; Ahmed, S.; Gawali, B.; Kwatra, M.; Ahmed, A.; Lahkar, M. Nyctanthes arbor-tristis leaf extract ameliorates hyperlipidemia-and hyperglycemia-associated nephrotoxicity by improving anti-oxidant and anti-inflammatory status in high-fat diet–streptozotocin-induced diabetic rats. Inflammopharmacology 2018, 26, 1415–1428. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Habila, J.D.; Koorbanally, N.A.; Islam, M.S. Butanol fraction of parkia biglobosa (jacq.) g. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J. Ethnopharmacol. 2016, 183, 103–111. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Li, J.; Mei, Y.; Liang, Y. Hypoglycemic and hypolipidemic effects of phellinus linteus mycelial extract from solid-state culture in a rat model of type 2 diabetes. Nutrients 2019, 11, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cam, M.E.; Hazar-Yavuz, A.N.; Yildiz, S.; Ertas, B.; Ayaz Adakul, B.; Taskin, T.; Alan, S.; Kabasakal, L. The methanolic extract of thymus praecox subsp. Skorpilii var. Skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats. J. Ethnopharmacol. 2019, 231, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Koorbanally, N.A.; Islam, M.S. Anti-diabetic effect of xylopia aethiopica (dunal) a. Rich. (annonaceae) fruit acetone fraction in a type 2 diabetes model of rats. J. Ethnopharmacol. 2016, 180, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, N.; Patil, M.; Kumar, P.; Suryanarayana, P.; Reddy, G. Dietary ginger improves glucose dysregulation in a long-term high-fat high-fructose fed prediabetic rat model. Indian J. Exp. Biol. 2017, 55, 142–150. [Google Scholar]
- Ibrahim, M.A.; Islam, M.S. Effects of butanol fraction of ziziphus mucronata root ethanol extract on glucose homeostasis, serum insulin and other diabetes-related parameters in a murine model for type 2 diabetes. Pharm. Biol. 2017, 55, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Clause, B.T. The wistar rat as a right choice: Establishing mammalian standards and the ideal of a standardized mammal. J. Hist. Biol. 1993, 26, 329–349. [Google Scholar] [CrossRef]
- Ghezzi, A.C.; Cambri, L.T.; Botezelli, J.D.; Ribeiro, C.; Dalia, R.A.; de Mello, M.A.R. Metabolic syndrome markers in wistar rats of different ages. Diabetol. Metab. Syndr. 2012, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, J.; Zeng, Q.; Cai, D.; Zeng, X.; Chen, Y.; Gan, H.; Huang, X.; Yao, N.; Huang, D.; Zhang, C. Evaluation of type 2 diabetic mellitus animal models via interactions between insulin and mitogen-activated protein kinase signaling pathways induced by a high fat and sugar diet and streptozotocin. Mol. Med. Rep. 2018, 17, 5132–5142. [Google Scholar] [CrossRef] [Green Version]
- Alina, S.; Marcel, P.; Alina, M.; Ciprian, F.; Adriana, V.; Doina, G.; Philippe, C.; Razvan Constantin, S. Wistar rats with long-term streptozotocin-induced type 1 diabetes mellitus replicate the most relevant clinical, biochemical, and hematologic features of human diabetes / sobolanii wistar cu diabet zaharat tip 1 indus cu streptozotocina reproduc cele mai relevante caracteristici clinice, biochimice si hematologice ale diabetului uman. Rev. Romana Med. Lab. 2015, 23, 263–274. [Google Scholar]
- Hocayen Pde, A.; Grassiolli, S.; Leite, N.C.; Pochapski, M.T.; Pereira, R.A.; da Silva, L.A.; Snack, A.L.; Michel, R.G.; Kagimura, F.Y.; da Cunha, M.A.; et al. Baccharis dracunculifolia methanol extract enhances glucose-stimulated insulin secretion in pancreatic islets of monosodium glutamate induced-obesity model rats. Pharm. Biol. 2016, 54, 1263–1271. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, A.A.; Makboul, R.M.; Al-Mokhtar, M.A.; Nicola, M.A. Polyphenol-rich boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of gsk3β activity, oxidative stress and pro-inflammatory cytokines. Biomed Pharm. 2019, 109, 281–292. [Google Scholar] [CrossRef] [PubMed]
- de Bem, G.F.; Costa, C.A.; Santos, I.B.; Cristino Cordeiro, V.d.S.; de Carvalho, L.C.R.M.; de Souza, M.A.V.; Soares, R.d.A.; Sousa, P.J.d.C.; Ognibene, D.T.; Resende, A.C. Antidiabetic effect of euterpe oleracea mart.(açai) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction. PLoS ONE 2018, 13, e0199207. [Google Scholar] [CrossRef] [PubMed]
- Stephen Irudayaraj, S.; Christudas, S.; Antony, S.; Duraipandiyan, V.; Naif Abdullah, A.-D.; Ignacimuthu, S. Protective effects of ficus carica leaves on glucose and lipids levels, carbohydrate metabolism enzymes and β-cells in type 2 diabetic rats. Pharm. Biol. 2017, 55, 1074–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, M.F.; El Ashry, F.E.Z.Z.; El Maraghy, N.N.; Fahmy, A. Studies on the antidiabetic activities of momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm Biol. 2017, 55, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Salemi, Z.; Barzin Tond, S.; Fallah, S.; Shojaii, A.; Seifi, M. The effect of morus alba leaves extract and powder on resistin levels and liver transaminase enzymes activities in diabetes. Cell. Mol. Biol. 2016, 62, 112–118. [Google Scholar]
- Putakala, M.; Gujjala, S.; Nukala, S.; Desireddy, S. Beneficial effects of phyllanthus amarus against high fructose diet induced insulin resistance and hepatic oxidative stress in male wistar rats. Appl. Biochem. Biotechnol. 2017, 183, 744–764. [Google Scholar] [CrossRef]
- Lin, C.F.; Kuo, Y.T.; Chen, T.Y.; Chien, C.T. Quercetin-rich guava (psidium guajava) juice in combination with trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type ii diabetic rats. Molecules 2016, 21, 334. [Google Scholar] [CrossRef] [Green Version]
- Azmi, M.B.; Qureshi, S.A. Rauwolfia serpentina improves altered glucose and lipid homeostasis in fructose-induced type 2 diabetic mice. Pak. J. Pharm. Sci. 2016, 29, 1619–1624. [Google Scholar]
- Ngueguim, F.; Esse, E.; Dzeufiet, P.; Gounoue, R.; Bilanda, D.; Kamtchouing, P.; Théophile, D. Oxidised palm oil and sucrose induced hyperglycemia in normal rats: Effects of sclerocarya birrea stem barks aqueous extract. BMC Complement. Altern. Med. 2015, 16, 47. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Pathak, S.; Gupta, G.; Sharma, S.K.; Singh, L.; Sharma, R.K.; Mishra, A.; Dua, K. Pharmacological evaluation of aqueous extract of syzigium cumini for its antihyperglycemic and antidyslipidemic properties in diabetic rats fed a high cholesterol diet—Role of pparγ and pparα. Biomed. Pharmacother. 2017, 89, 447–453. [Google Scholar] [CrossRef]
- Ballesteros, S.; López-Farré, A.; Martín-Fernández, B.; Valero-Muñoz, M.; Ruiz-Roso, B.; de las Heras, N.; Lahera, V. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger (zingiber officinale roscoe) extract in rats fed a high-fat diet. Appl. Physiol. Nutr. Metab. 2017, 42, 209–215. [Google Scholar]
- Zarate, C.A.; Quiroz, J.; Payne, J.; Manji, H.K. Modulators of the glutamatergic system: Implications for the development of improved therapeutics in mood disorders. Psychopharmacol Bull. 2002, 36, 35–83. [Google Scholar] [PubMed]
- Fontaine, D.A.; Davis, D.B. Attention to background strain is essential for metabolic research: C57bl/6 and the international knockout mouse consortium. Diabetes 2016, 65, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, E.K.; Hatanaka, M.; Morris, D.L.; Tersey, S.A.; Kono, T.; Chaudry, Z.Z.; Day, K.H.; Moss, D.R.; Stull, N.D.; Mirmira, R.G.; et al. Divergent compensatory responses to high-fat diet between c57bl6/j and c57blks/j inbred mouse strains. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1495–E1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, T.; Nishida, M.; Saito, M.; Tanabe, A.; Eitsuka, T.; Yuan, S.-H.; Ikekawa, N.; Nishida, H. The fruit of acanthopanax senticosus (rupr. Et maxim.) harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate–activated protein kinase activity and lipogenic gene expression in high-fat diet–fed obese mice. Nutr. Res. 2016, 36, 1090–1097. [Google Scholar]
- Bae, U.-J.; Choi, E.-K.; Oh, M.-R.; Jung, S.-J.; Park, J.; Jung, T.-S.; Park, T.-S.; Chae, S.-W.; Park, B.-H. Angelica gigas ameliorates hyperglycemia and hepatic steatosis in c57bl/ksj-db/db mice via activation of amp-activated protein kinase signaling pathway. Am. J. Chinese Med. 2016, 44, 1627–1638. [Google Scholar] [CrossRef] [Green Version]
- Kandouli, C.; Cassien, M.; Mercier, A.; Delehedde, C.; Ricquebourg, E.; Stocker, P.; Mekaouche, M.; Leulmi, Z.; Mechakra, A.; Thétiot-Laurent, S. Antidiabetic, antioxidant and anti inflammatory properties of water and n-butanol soluble extracts from saharian anvillea radiata in high-fat-diet fed mice. J. Ethnopharmacol. 2017, 207, 251–267. [Google Scholar] [CrossRef]
- Teng, Y.; Li, D.; Guruvaiah, P.; Xu, N.; Xie, Z. Dietary supplement of large yellow tea ameliorates metabolic syndrome and attenuates hepatic steatosis in db/db mice. Nutrients 2018, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Cichorium intybus linn. Extract prevents type 2 diabetes through inhibition of nlrp3 inflammasome activation. J. Med. Food. 2016, 19, 310–317. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Li, J.; Tan, X.; Fan, L.; Zhang, Z.; Leng, J. Effect of cyclocarya paliurus on hypoglycemic effect in type 2 diabetic mice. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 2976–2983. [Google Scholar] [CrossRef]
- Choi, K.H.; Lee, H.A.; Park, M.H.; Han, J.S. Mulberry (Morus alba L.) fruit extract containing anthocyanins improves glycemic control and insulin sensitivity via activation of amp-activated protein kinase in diabetic c57bl/ksj-db/db mice. J. Med. Food. 2016, 19, 737–745. [Google Scholar]
- You, H.-N.; Park, M.H.; Hwang, S.Y.; Han, J.-S. Nardostachys jatamansi dc extract alleviates insulin resistance and regulates glucose metabolism in c57bl/ksj-db/db mice through the amp-activated protein kinase signaling pathway. J. Med. Food. 2018, 21, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, J.; Shik Shin, S.; Yoon, M. Effects of korean red ginseng (panax ginseng) on obesity and adipose inflammation in ovariectomized mice. J. Ethnopharmacol. 2016, 178, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, K.; Rosenzweig, T. Sarcopoterium spinosum extract improved insulin sensitivity in mice models of glucose intolerance and diabetes. PLoS ONE 2018, 13, e0196736. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Qi, X.; Yu, K.; Lu, A.; Lin, K.; Zhu, J.; Zhang, M.; Sun, Z. Ampk activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from siraitia grosvenorii (swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food Funct. 2019, 10, 151–162. [Google Scholar] [CrossRef]
- Xu, J.; Wang, S.; Feng, T.; Chen, Y.; Yang, G. Hypoglycemic and hypolipidemic effects of total saponins from stauntonia chinensis in diabetic db/db mice. J. Cell Mol. Med. 2018, 22, 6026–6038. [Google Scholar] [CrossRef] [Green Version]
- Brito-Casillas, Y.; López-Ríos, L.; Wiebe, J.C.; Muñoz-Mediavilla, C.; Nóvoa-Mogollón, F.J.; Ojeda, A.; Wägner, A.M. Uromastyx acanthinura as a natural treatment in a mouse model of type 2 diabetes. Endocrinol. Nutr. Organo Soc. Esp. Endocrinol. Nutr. 2016, 63, 13–18. [Google Scholar]
- Ikeda, H. Kk mouse. Diabetes Res. Clin. Pract. 1994, S313–S316. [Google Scholar] [CrossRef]
- Taketomi, S.; Ikeda, H.; Ishikawa, E.; Iwatsuka, H. Determination of overall insulin sensitivity in diabetic mice, kk. Horm. Metab. Res. 1982, 14, 14–18. [Google Scholar] [CrossRef]
- Tomino, Y. Lessons from the kk-ay mouse, a spontaneous animal model for the treatment of human type 2 diabetic nephropathy. Nephro-Urol. Mon. 2012, 4, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lv, Q.; Jia, S.; Chen, Y.; Sun, C.; Li, X.; Chen, K. Effects of flavonoid-rich chinese bayberry (morella rubra sieb. Et zucc.) fruit extract on regulating glucose and lipid metabolism in diabetic kk-ay mice. Food Funct. 2016, 7, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, Y.; Yu, D.; Jin, L.; Gong, X.; Zhang, B. Perilla oil regulates intestinal microbiota and alleviates insulin resistance through the pi3k/akt signaling pathway in type-2 diabetic kkay mice. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2020, 135, 110965. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.; Sakazaki, F.; Okuno, T.; Nakamuro, K.; Ueno, H. Difference in glucose intolerance between c57bl/6j and icr strain mice with streptozotocin/nicotinamide-induced diabetes. Biomed. Res. 2012, 33, 63–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuhua, Z.; Zhiquan, W.; Zhen, Y.; Yixin, N.; Weiwei, Z.; Xiaoyong, L.; Yueming, L.; Hongmei, Z.; Li, Q.; Qing, S. A novel mice model of metabolic syndrome: The high-fat-high-fructose diet-fed icr mice. Exp. Anim. 2015, 64, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Wang, M.; Liu, C.; Zhao, H.; Zhao, B. Mulberry leaf reduces inflammation and insulin resistance in type 2 diabetic mice by tlrs and insulin signalling pathway. BMC Complement. Altern. Med. 2019, 19, 326. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.; Wei, H.; Yue, B.; Xu, P.; Huang, H. Microsatellite analysis in two populations of kunming mice. Lab. Anim. 2009, 43, 34–40. [Google Scholar] [CrossRef]
- Peng, S.; Wei, P.; Lu, Q.; Liu, R.; Ding, Y.; Zhang, J. Beneficial effects of poplar buds on hyperglycemia, dyslipidemia, oxidative stress, and inflammation in streptozotocin-induced type-2 diabetes. J. Immunol. Res. 2018, 2018, 7245956. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-m.; Ren, T.; Liu, J.-F.; Liu, Y.-J.; Yang, L.-C.; Jin, X. Vernonia amygdalina delile extract inhibits the hepatic gluconeogenesis through the activation of adenosine-5’monophosph kinase. Biomed. Pharmacother. 2018, 103, 1384–1391. [Google Scholar] [CrossRef]
- Lindström, P. The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci. World J. 2007, 7, 666–685. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.J.; Ellacott, K.L.; King, V.L.; Hasty, A.H. Mouse models of the metabolic syndrome. Dis. Models Mech. 2010, 3, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Drel, V.R.; Mashtalir, N.; Ilnytska, O.; Shin, J.; Li, F.; Lyzogubov, V.V.; Obrosova, I.G. The leptin-deficient (ob/ob) mouse: A new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 2006, 55, 3335–3343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collin, M.; Håkansson-Ovesjö, M.-L.; Misane, I.; Ögren, S.O.; Meister, B. Decreased 5-ht transporter mrna in neurons of the dorsal raphe nucleus and behavioral depression in the obese leptin-deficient ob/ob mouse. Mol. Brain Res. 2000, 81, 51–61. [Google Scholar] [CrossRef]
- Koffi, C.; Soleti, R.; Nitiema, M.; Mallegol, P.; Hilairet, G.; Chaigneau, J.; Boursier, J.; Kamagate, M.; Le Lay, S.; Die-Kakou, H.M.; et al. Ethanol extract of leaves of cassia siamea lam protects against diabetes-induced insulin resistance, hepatic, and endothelial dysfunctions in ob/ob mice. Oxidative Med. Cell. Longev. 2019, 2019, 6560498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naowaboot, J.; Wannasiri, S.; Pannangpetch, P. Vernonia cinerea water extract improves insulin resistance in high-fat diet–induced obese mice. Nutr. Res. 2018, 56, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; McGuire, J.J.; Kagota, S. Progression of time-dependent changes to the mechanisms of vasodilation by protease-activated receptor 2 in metabolic syndrome. Biol. Pharm. Bull. 2017, 40, 2039–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oowatari, Y.; Ogawa, T.; Katsube, T.; Iinuma, K.; Yoshitomi, H.; Gao, M. Wasabi leaf extracts attenuate adipocyte hypertrophy through pparγ and ampk. Biosci. Biotechnol. Biochem. 2016, 80, 1594–1601. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T.; Akase, T.; Kosugi, M.; Aburada, M. Preventive effect of boiogito on metabolic disorders in the tsod mouse, a model of spontaneous obese type ii diabetes mellitus. Evid. Based Complement. Altern. Med. 2011, 2011, 931073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murotomi, K.; Umeno, A.; Yasunaga, M.; Shichiri, M.; Ishida, N.; Abe, H.; Yoshida, Y.; Nakajima, Y. Type 2 diabetes model tsod mouse is exposed to oxidative stress at young age. J. Clin. Biochem. Nutr. 2014, 55, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Miki, S.; Inokuma, K.i.; Takashima, M.; Nishida, M.; Sasaki, Y.; Ushijima, M.; Suzuki, J.i.; Morihara, N. Aged garlic extract suppresses the increase of plasma glycated albumin level and enhances the amp-activated protein kinase in adipose tissue in tsod mice. Mol. Nutr. Food Res. 2017, 61, 1600797. [Google Scholar] [CrossRef]
- Zakerkish, M.; Jenabi, M.; Zaeemzadeh, N.; Hemmati, A.A.; Neisi, N. The effect of iranian propolis on glucose metabolism, lipid profile, insulin resistance, renal function and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind clinical trial. Sci. Rep. 2019, 9, 7289. [Google Scholar] [CrossRef]
- Liu, Y.; Cotillard, A.; Vatier, C.; Bastard, J.P.; Fellahi, S.; Stévant, M.; Allatif, O.; Langlois, C.; Bieuvelet, S.; Brochot, A.; et al. A dietary supplement containing cinnamon, chromium and carnosine decreases fasting plasma glucose and increases lean mass in overweight or obese pre-diabetic subjects: A randomized, placebo-controlled trial. PLoS ONE 2015, 10, e0138646. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, K.; Ebrahimzadeh, M.A.; Saeedi, M.; Bahar, A.; Akha, O.; Kashi, Z. Effects of a hydroalcoholic extract of juglans regia (walnut) leaves on blood glucose and major cardiovascular risk factors in type 2 diabetic patients: A double-blind, placebo-controlled clinical trial. BMC Complement. Altern. Med. 2018, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.F.; Oliveira, A.G.; de Moraes Guimarães, A.; Ferreira, M.S.; Mota, J.; Siqueira, A.G.C.; Borges, P.B. Green tea extract outperforms metformin in lipid profile and glycaemic control in overweight women: A double-blind, placebo-controlled, randomized trial. Clin. Nutr. Espen. 2017, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dembinska-Kiec, A.; Mykkänen, O.; Kiec-Wilk, B.; Mykkänen, H. Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. 2008, 99, ES109–ES117. [Google Scholar] [CrossRef] [Green Version]
- Leiherer, A.; Mündlein, A.; Drexel, H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc. Pharmacol. 2013, 58, 3–20. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Rao, J.M. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Curr. Sci. 2002, 30–38. [Google Scholar]
- Cao, Y.; Yao, G.; Sheng, Y.; Yang, L.; Wang, Z.; Yang, Z.; Zhuang, P.; Zhang, Y. Jinqi jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice. J. Diabetes Res. 2019, 2019, 1872134. [Google Scholar] [CrossRef] [Green Version]
- Widjajakusuma, E.C.; Jonosewojo, A.; Hendriati, L.; Wijaya, S.; Ferawati; Surjadhana, A.; Sastrowardoyo, W.; Monita, N.; Muna, N.M.; Fajarwati, R.P.; et al. Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of andrographis paniculata (burm. F.) wall. Ex nees and syzygium polyanthum (wight.) walp leaves in metformin treated patients with type 2 diabetes. Phytomedicine 2019, 55, 137–147. [Google Scholar] [CrossRef] [Green Version]
Source/Extract | Experimental Model | Concentration; Duration | Lab Test | Mechanisms | Reference | |||
---|---|---|---|---|---|---|---|---|
Glucose Transport and Metabolism | Anti-Inflammation and Antioxidant Activity | Lipid Metabolism | Etc. | |||||
Anemarrhena asphadeloides Bge. extract | 3T3-L1, LKB1-deficient HeLa | 30 μg/mL; 2 h | ↑p-AMPK, p-ACC | [27] | ||||
Bellis perennis extract | CHO-K1 | 1 mg/L; 10 min | ↑GLUT4 | [28] | ||||
Cassia angustifolia Vahl ethanolic extract | L6 | 30, 60, and 120 μg/mL; 1 h | ↑GLUT4, IRAP, p-AMPK, p-Akt, p-PKC | ↑G protein, PLC, PKC, IP3R | [29] | |||
Cocoa extract | Human primary skeletal muscle cells | 10, 25 μM; 2 h | ↑Basal glucose uptake | [30] | ||||
Coptischinensis Franch acid extract | Rin-5f | 2, 10, 50, 100, 250, 500 µM; 24 h | ↑GSIS ↓Insulin secretion | ↑PARP-1 | [31] | |||
Dendropanax morbifera water extract | Mice 3T3-L1 | 50, 100, 300, 500 μg/mL; 7 days | ↑Glucose uptake ↓Intracellular TG | ↓FAS | ↓PPARγ, C/EBPα, C/EBPβ, SREBP-1c, | [32] | ||
Eruca sativa Mill. leaf n-haxane-soluble fraction of 95% ethanol extract | C2C12 skeletal muscle myoblast | 12.5 μg/mL; 18 h | ↑Glucose uptake | [33] | ||||
H4IIE hepatoma cells | 12.5 μg/mL; 16 h | ↓G6Pase | ||||||
3T3-L1 adipocyte | 6.25, 12.5 μg/mL; 8 days | ↑Intracellular TG | ||||||
Helminthostachys zeylanica extract | HuS-E/2 | 100 μg/mL; 18 h | ↑p-AMPK, p-ACC, CPT1, PPARα, PPARδ ↓SREBP-1c, PPARγ | [34] | ||||
Hippophae rhamnoides L. fruit oil extract | IR HepG2 | 400 μM; 24 h | ↑Glucose uptake | ↑GS, PI3K, p-Akt ↓GSK-3β | [35] | |||
Mori ramulus ethanol extract | INS-1 | 62.5, 125, 250, 500, 1000 μg/mL; 1 h | ↑Insulin secretion | ↑PDX-1 | [36] | |||
Morus alba L. anthocyanin extract | IR HepG2 | 50, 100, 250 μg/mL; 24 h | ↑Glycogen | ↑p-FOXO1, Akt2, GYS2, p-Akt, p-GSK3β ↓PGC-1α, FOXO1, G6Pase, PEPCK | [37] | |||
Rosmarinus officinalis L. extract | L6 | 5 μg/mL; 16 h | ↑GLUT4, p-Akt, p-AMPK ↓p-IRS-1, p-JNK, p-mTOR, p-p70S6K | [38] |
Source/Extract | Experimental Model | Dose; Duration | Lab Test | Mechanisms | Reference | |||
---|---|---|---|---|---|---|---|---|
Glucose Transport and Metabolism | Anti-Inflammation and Antioxidant Activity | Lipid Metabolism | Etc. | |||||
Aframomum melegueta K. Schum. fruit ethanolic extract ethyl acetate fraction | 10% fructose solution, STZ-induced type 2 diabetes SD rats | 150, 300 mg/kg; 4 weeks | ↑Insulin, HOMA-β, HDL-C ↓NFBG, fructosamine, HOMA-IR, TC, TG, LDL-C, AI, CRI, ALT, AST, ALP, urea, uric acid, creatinine, LDH, CK-MB | ↓α -amylase, α -glucosidase | [50] | |||
Anemarrhena asphadeloides Bge. extract | BCG vaccine-induced insulin resistance SD rats | 20, 60, 180 mg/kg; 14 days | ↑GIR | [27] | ||||
Codonopsis lanceolate water extract | High-fat diet-induced diabetes SD rats | 0.3, 1% w/w; 8 weeks | ↓Serum insulin | ↑p-Akt | ↓PEPCK | ↑CPT-1, p- AMPK | ↑SIRT-1 | [51] |
Coptischinensis Franch acid extract | High-fat diet-, STZ-induced diabetes SD rats | 100 mg/kg; 8 weeks | ↓Fasting blood glucose, basal insulin | [31] | ||||
Gastrodia elata Blume water extract | High-fat diet-induced diabetic SD rats | 0.5%, 2% Gastrodia elata Blume water extract; 8 weeks | ↑Glucose uptake ↓Serum glucose, hepatic glucose output, insulin sensitivity | ↑p-Akt, pGSK-1β | [52] | |||
Hippophae rhamnoides L. fruit oil extract | High-fat diet-induced type 2-diabetic SD rats | 100, 200, 300 mg/kg/day; 4 weeks | ↑Hepatic glycogen ↓Insulin, blood glucose, ALT, AST | [35] | ||||
Litchi chinensis Sonn. seeds ethanol extract | High-fat diet-, STZ-induced diabetes SD rats | 30 mg/kg; 6 weeks | ↓Insulin resistance, Urinary sugar, Serum ALT, Serum AST | ↑PI3K, Akt, mTOR | ↑FATP4 | [53] | ||
Litchi chinensis Sonn. seed 70% ethanol extract | High-fat diet-, STZ-induced diabetes SD rats | 0.7, 1.4, 2.8 g/kg; 4 weeks | ↓Blood glucose, Insulin, HOMA | ↓Aβ | [54] | |||
Melicope lunu-ankenda leaf extract | High-fat diet-, STZ-induced diabetes SD rats | 200, 400 mg/kg; 8 weeks | ↓Serum insulin, TC, TG, Serum ALT, AST | [55] | ||||
Momordica charantia L. 70% ethanol extract | High-fat diet-, STZ-induced diabetes SD rats | 100, 200, 400 mg/kg; 8 weeks | ↓Fasting serum glucose, Fasting serum insulin, HOMA-IR | ↑GLUT-4, p-Akt | ↓TNF-α, IL-6, JNK | ↓SOCS-3 | ↑Akt-2, PTP-1B | [56] |
Mori Cortex 70% alcohol extract | High-fat diet-, STZ-induced diabetes SD rats | 10 g/kg; 12 weeks | ↓HOMA-IR, OGTT | ↓SREBP-1c, ChREBP | [57] | |||
Morus alba L. leaf extract | Fructose-induced diabetic SD rats | 2 g/kg/day; 4 weeks | ↓Fasting blood glucose, TG, TC, LDL, HOMA-IR | ↑IRS-1, PI3K, p85a, GLUT4 | [58] | |||
Nyctanthes arbor-tristis L. leaf ethanol extract | High-fat diet-, STZ-induced diabetes SD rats | 200, 400 mg/kg; 4 weeks | ↓Fasting blood glucose, Plasma insulin, VLDL, LDL, TC, TG | ↓ TNF-α, IL-1β, IL-6, NF-kBp65 | [59] | |||
Parkia biglobosa (Jacq.) G. Don (Leguminosae) butanol extract | STZ-induced T2DM SD rats | 150 mg/kg; 5 days a week, 4 weeks | ↑HOMA-β, serum insulin, HDL-C, liver glycogen ↓Blood glucose level, HOMA-IR, fructosamine, ALP, urea | [60] | ||||
Phellinus Linteus mycelial extract | High-fat diet-, STZ-induced T2DM SD rats | 300, 600 mg/kg; 8 weeks | ↑Liver glycogen ↓FBG, GSP, insulin, HOMA-IR, TG, T-CHO, FFA, LDL-C, AST | ↑GLUT2, GCK, ↓FBPase, G6Pase | ↑ACOX1, CPT1A, LDLR ↓HMGCR | [61] | ||
Thymus praecox subsp. skorpilii var. skorpilii methanolic extract | STZ/NA-induced T2DM rats | 100 mg/kg; 3 weeks | ↓Glucose, ALT, CR | ↑AMPK, HK ↓α-glucosidase, PEPCK, SGLT-1, SGLT-2 | ↓TNF- α, IL-1β, IL-6 | ↑ACC, PPARγ | ↑GLP-1 | [62] |
Xylopiaaethiopica (Dunal) A.Rich. fruit acetone extract | Fructose diet-induced T2DM rats | 150, 300 mg/kg/day; 4 weeks | ↑HOMA-β, serum insulin, ↓HOMA-IR, fructosamine, TG, TC, AI, CRI, LDL-C, ALT, liver glycogen | ↓CK-MB | [63] | |||
Zingiber officinale Roscoe powder | High-fat, high-fructose diet-induced prediabetic SD rats | 3% ginger powder/day; 8 months | ↓Insulin level, HOMA-IR, QUICK1, TG | [64] | ||||
Ziziphus mucronata Willd ethanol extract | STZ-induced diabetic SD rats | 300 mg/kg, 5 days/week; 4 weeks | ↑Serum insulin, liver glycogen ↓Blood glucose | [65] |
Source/Extract | Experimental Model | Dose; Duration | Lab Test | Mechanisms | Reference | |||
---|---|---|---|---|---|---|---|---|
Glucose Transport and Metabolism | Anti-Inflammation and Antioxidant Activity | Lipid Metabolism | Etc. | |||||
Baccharis dracunculifolia DC. Asteraceae extract | MSG induced-obesity Wistar rats | 400 mg/kg; 30 days | ↑Insulin | ↓DPPH, ABTS+ | [70] | |||
Boswellia serrata extract | High-fat/fructose diet-, STZ-induced type 2 diabetes Wistar rats | 200, 300, 400 mg/kg; 8 weeks | ↓Glucose, insulin, cholesterol, HOMA-IR | ↑GSH, SOD ↓TNF- α, IL-1β, IL-6, MDA | ↑AMPA, NMDA, GluR1, NR1, NR2A ↓Aβ 1-42, p-tau, caspase-3, ChE, GSK-3β | [71] | ||
Euterpe oleracea Mart. hydroalcoholic extract | High-fat diet-, STZ-induced diabetes Wistar rats | 200 mg/kg; 4 weeks | ↑HOMA-B ↓HOMA-IR, serum leptin, serum HbA1c | ↑GLUT-4, p-Akt | ↓ TNF-α, IL-6 | ↑p-AMPK | [72] | |
Ficus carica Linn. ethyl acetate extract | STZ-induced diabetic Wistar albino rats | 250, 500 mg/kg/day; 28 days | ↑Glycogen ↓Plasma insulin, blood glucose, TG, TC | ↑Hexokinase ↓G6Pase, fructose-1,6-bisphosphatase | [73] | |||
Momordica charantia Linn. fruit juice | STZ-induced diabetic Wister rats | 10 mL/kg/day; 21 days (post-treatment) or 14 days (pretreatment) and 21 days (post-treatment) | ↑Insulin, LDL-C ↓Serum glucose, TG, TC, serum TAOC, fructosamine | ↑GSH ↓MDA | [74] | |||
Diaphragms isolated from STZ-induced diabetic albino rats | 0.02 mL; 30 min | ↑Glucose uptake | ||||||
Morus alba L. leaf extract | STZ-induced T2DM Wistar rats | 400 μL; 6 weeks | ↓Fasting blood glucose, AST, ALT, HOMA-IR, resistin | [75] | ||||
Morus alba L. leaf powder | STZ-induced T2DM Wistar rats | 25% of daily diet; 6 weeks | ||||||
Phyllanthus amarus water extract | High-fructose diet-induced Wistar rats | 200 mg/kg; 60 days | ↑Plasma adiponectin ↓Fasting plasma glucose, fasting plasma insulin, HOMA, TG, TC, plasma leptin | ↑CAT, GPx | [76] | |||
Psidium guajava juice | High-fructose diet-, NA- and STZ-induced diabetic Wistar rats | 4 mL/kg; 4 weeks | ↓HOMA-IR | ↓H2O2, HOCl, 4-HNE, IL-1β | ↓Caspase-3, LC3-B | [77] | ||
Rauwolfia serpentina root methanol extract | Fructose-induced T2DM Wister albino mice | 10, 30, 60 mg/kg; 14 days | ↑HDL-C, Hb, HbA1c ↓Serum insulin, TG, LDL-C, VDL-c | ↑HMG Co-A/Mevalonate | [78] | |||
Sclerocarya birrea stem barks aqueous extract | Oxidized palm oil and sucrose-induced diabetic Wistar rats | 150, 300 mg/kg/day; 2 weeks | ↑Insulin sensitivity, HDL-C ↓Blood glucose, LDL-C, TG, AI, ALT, AST | ↑GSH ↓MDA, SOD | [79] | |||
Syzygium cumini (L.) Skeels. water extract | STZ-induced T2DM Wistar albino rats | 200, 400 mg/kg/day; 21 days | ↑HOMA-B , HDL-C ↓Insulin, HOMA-IR, serum glucose, serum TC, TG, LDL-C | ↑SOD, CAT, GSH-Px ↓TNF-α, TBRAS | ↑PPARα, PPARγ | [80] | ||
Zingiber officinale Roscoe hydroethanolic extract | High-fat diet-induced Wistar rats | 250 mg/kg/day; 5 weeks | ↑Adiponectin ↓Insulin, plasma glucose, TC, TG, HDL, VLDL | ↑GLUT2 ↓GPAT | ↑PPARα, PPARγ ↓SREBP1 | ↓CTGF, collagen 1 | [81] |
Source/Extract | Experimental Model | Dose; Duration | Lab Test | Mechanisms | Reference | |||
---|---|---|---|---|---|---|---|---|
Glucose Transport and Metabolism | Anti-Inflammation and Antioxidant Activity | Lipid Metabolism | Etc. | |||||
Acanthopanax senticosus (Rupr. et Maxim.) Harms fruit | High-fat diet-induced obese C57BL/6J mice | 1000 mg/kg/day; 12 weeks | ↓Plasma glucose, liver TG, liver TC | ↑pAMPK, CYP7a1 | [85] | |||
Angelica gigas Nakai extract | C57BL/KsJ-db/db mice | 20, 40 mg/kg; 8 weeks | ↓Fasting glucose, TC, TG, HOMA-IR | ↑p-AKt, pAMPK, p-ACC, p-GSK3β | [86] | |||
Anvillea radiata Coss. & Dur. water extract | High-fat diet-induced C57BL/6 J mice | 150 mg/kg; 12 weeks | ↑DPPH, ORAC, TRAP ↓Blood glucose, blood GSH/GSSG | ↓HbA1C | ↓TNF-α | [87] | ||
Camellia sinensis water extract | High-fat diet-induced C57BL/KsJ-db/db mice | 1.5% w/w; 10 weeks | ↓Serum lipid, fasting blood glucose | ↓FAS | ↓SREBP-1 | [88] | ||
Cichorium intybus Linn. extract | High-fat diet-induced diabetic C57BL/6 mice | 50 mg/kg, two times a week; 6 weeks | ↑Insulin sensitivity ↓Blood glucose | ↑Arg1, IL-10 ↓IL-1β, iNOS, TNF-α, NLRP3 | [89] | |||
Cyclocarya paliurus extract | STZ-induced type 2 diabetes C57BL/6J mice | 0.5, 1.0 g/kg; 4 weeks | ↑ISI ↓FBG, FINS, IRI | ↑SOD, GSH-Px ↓MDA, ROS | [90] | |||
Helminthostachys zeylanica extract | High-fat diet-induced NAFLD C57BL/6J mice | 578 mg/kg/day; 12 weeks | ↑HDL-C ↓TG, TC, LDL-C, GOT, GPT, FBG, insulin, HOMA-IR | [34] | ||||
Mori ramulus ethanol extract | 60% fat diet-induced C57BLKS/J-db/db mice | 800, 1600 mg/kg; 14 weeks | ↑Insulin, C-peptide ↓Fasting blood glucose | ↓ ROS | ↑PDX-1 | [36] | ||
Morus alba L. anthocyanin extract | C57BL6/J db/db mice | 50, 125 mg/kg/day; 7 weeks | ↑Adiponectin, glycogen ↓Blood glucose, liver TG, TC, LDL, leptin, insulin, HOMA-IR | ↑p-FOXO1, p-Akt, p-GSK3β, Akt2, GYS2 ↓G6pase, GSP, GSK3β | [37] | |||
Morus alba L. fruit extract | C57BL/Ksj-db/db mice | 0.5% Mulberry fruit extract; 6 weeks | ↑QUICKI ↓HOMA-IR, blood glucose, IPITT, IPGTT, HbA1c | ↑PM-GLUT4, total GLUT4, pAMPK, AS160 ↓PEPCK, G6Pase | [91] | |||
Nardostachys jatamansi DC. 30% ethanol extract | High-fat diet-induced C57BL/KsJ-db/db mice | 0.2% w/w; 6 weeks | ↓Fasting blood glucose, HbA1c, plasma insulin, HOMA-IR, OGTT, plasma lipid | ↑GLUT4, p-AS160 ↓G6Pase, PEPCK | ↑p-AMPK | [92] | ||
Panax ginseng C.A.Meyer water extract | Ovariectomized C57BL/6J mice | 5% (w/w) ginseng; 15 weeks | ↓TG, free fatty acids, circulating insulin, glucose | ↑CD68, TNFα, MCP-1 | ↓MMP, VEGF-A, FGF-2, MMP-2, MMP-9 | [93] | ||
Sarcopoterium spinosum Spach. root water extract | (1) High-fat diet-induced KK-Ay mice (2) High-fat diet-induced C57bl/6 mice | 70 mg/kg; 6 weeks | ↑Glycogen | ↑p-GSK3β | ↓MCP-1, IKK | ↓CD36 | [94] | |
Siraitia grosvenorii (Swingle) extract | High-fat diet, STZ-induced diabetic C57BL/6 mice | 150, 300 mg/kg; 14 weeks | ↑ISI, HDL-C ↓FBG, GSP, insulin, HOMA-IR, TG | ↑p-AMPK ↓G6Pase, PEPCK | ↑p-AMPK, p-ACC, PPARα, CPT1a ↓ACC, FAS, SREBP1, SCD-1, DGAT2 | [95] | ||
Total saponins from Stauntonia chinensis DC. | T2DM C57 db/db mice | 30, 60, 120 mg/kg; 21 days | ↑Liver glycogen, HDL-C ↓FBG, glucose, insulin, TG, LDL-C | ↑IRS-1, p-PI3K, p-Akt, GLUT4 | ↑p-AMPK, p-ACC | [96] | ||
Uromastyx acanthinura extract | 60% fat diet-induced type 2 diabetes C57BL/6J mice | 0.13 g/kg; 90 days | ↓Glucose | [97] |
Source/Extract | Experimental Model | Dose; Duration | Lab test | Mechanisms | Reference | |||
---|---|---|---|---|---|---|---|---|
Glucose Transport and Metabolism | Anti-Inflammation and Antioxidant Activity | Lipid Metabolism | Etc. | |||||
Anemarrhena asphadeloides Bge. extract | Diabetic KK-Ay mice | 30, 90, 270 mg/kg; 8 weeks | ↓6-h FBG, insulin, HOMA-IR | [27] | ||||
Morella rubra Sieb. et Zucc. fruit extract | 1K65 diet-induced diabetic KK-Ay mice | 200 mg/kg/day; 5 weeks | ↓Serum insulin, fasting blood glucose, OGTT, ITT, ALT, TC, TG, LDL-C, leptin, glucagon | ↑pAMPK ↓PEPCK, G6Pase, PGC-1α, | ↓IL-1β, TNF-α, IL-6, MCP-1, PAI-1, LCN-2 | ↓ME, PAP, ACAT, ACC1, SREBF2, CIDEA | [101] | |
Perilla frutescens oil | High-fat/sugar diet-, STZ-induced type 2 diabetes KKAy mice | 1.84 g/kg; 4 weeks | ↑Insulin ↓FBG, AST, ALT, GLU, G6PD, TG, TC | ↑PI3K, p-IRS-1, p-Akt, p-AS160, GLUT4 | ↑Alloprevotella, Akkermansia ↓Aerococcus, Streptococcus | [102] | ||
Sarcopoterium spinosum Spach. root water extract | (1) High-fat diet-induced KK-Ay mice (2) High-fat diet-induced C57bl/6 mice | 70 mg/kg; 6 weeks | ↑Glycogen | ↑p-GSK3β | ↓MCP-1, IKK | ↓CD36 | [94] |
Source/Extract | Experimental Model | Dose; Duration | Lab Test | Mechanisms | Reference | |||
---|---|---|---|---|---|---|---|---|
Glucose Transport and Metabolism | Anti-Inflammation and Antioxidant Activity | Lipid Metabolism | Etc. | |||||
Anemarrhena asphadeloides Bge. extract | STZ induced-diabetic ICR mice | 30, 90, 270 mg/kg; 7 days | ↓FBG | [27] | ||||
Morus alba L. water extract | High-fat/sugar diet-, STZ-induced diabetic ICR mice | 2, 4, 8 g/kg; 10 weeks | ↓FBG, HOMA-IR | ↑IRS1, InsR | ↓TNF-α, TLR2, MyD88, TRAF6, NF-κB p65 | [105] | ||
Poplar buds 50% ethanol eluent | High-fat diet-, STZ-induced type 2 diabetes Kunming mice | 50, 100 mg/kg; 4 weeks | ↑HDL-C ↓Glucose, insulin, GSP, GHb, TC, LDL-C | ↑SOD ↓MDA, IL-6, TNF-α, MCP-1, COX-2 | [107] | |||
Vernonia amygdalina Delile. 30% ethanol extract | High-fat diet-, STZ-induced diabetes Kunming mice | 50, 100, 150 mg/kg; 6 weeks | ↓Fasting blood glucose, HOMA-IR, OGTT | ↓PEPCK, G6Pase | ↑p-AMPK, p-ACC | [108] | ||
Cassia siamea Lam (Fabaceae) ethanolic extract | Leptin-deficient ob/ob mice | 200 mg/kg; 28 days | ↓Glucose, insulin, AST, ALT | ↑p-Akt, p-AMPK, | ↓ROS | [113] | ||
Vernonia cinerea water extract | High-fat diet-induced diabetes OB mice | 250, 500mg/kg; 6 weeks | ↑Adiponectin ↓Fasting blood glucose, insulin, leptin | ↑p-PI3K, p-Akt | ↓TNF–α, MCP–1 | ↑ p-AMPK, p-ACC | [114] | |
Wasabia japonica Matsum leaf extract | SHRSP ZF rats | 4 g/kg/day; 6 weeks | ↑Adiponectin ↓TG | ↑pAMPK, pACC ↓PPARγ, LPL, SCD1, ACC1, aP2, PEPCK | [116] | |||
Allium sativum L. extract | TSOD mice | 2% aged garlic extract; 19 weeks | ↓Plasma glycated albumin | ↑pAMPK | ↓MCP1, FAS | [119] |
Source/Extract | Experimental Model | Dose; Duration | Lab Test | Mechanisms | Reference | |||
---|---|---|---|---|---|---|---|---|
Glucose Transport and Metabolism | Anti-Inflammation and Antioxidant Activity | Lipid Metabolism | Etc. | |||||
Apis mellifera L. extract | Type 2 diabetes patients | 1000 mg; 90 days | ↑HDL-C, eGFR ↓HbA1C, 2hpp BS, insulin, HOMA-IR, HOMA-β, BUN, AST, ALT | ↓hs-CRP, TNF-α | [120] | |||
Cinnamomum cassia extract, chromium, carnosine | Pre-diabetic patients | 1.2 g/day; 4 months | ↑Fat-free mass ↓FPG | [121] |
Classification | Compound/Extract | Source | Phase | Patients | Status | Registration Number | Reference |
---|---|---|---|---|---|---|---|
plant | Juglans regia L. leaf hydroalcoholic extract | Juglans regia L. | Phase 2 | 50 | Completed | IRCT138901203180 N2 | [122] |
plant | Camellia sinensis leaf 80% ethanol extract | Camellia sinensis | N/A | 120 | Completed | RBR-4bdwxs | [123] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Noh, S.; Lim, S.; Kim, B. Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants 2021, 10, 81. https://doi.org/10.3390/antiox10010081
Lee J, Noh S, Lim S, Kim B. Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants. 2021; 10(1):81. https://doi.org/10.3390/antiox10010081
Chicago/Turabian StyleLee, Jinjoo, Seungjin Noh, Suhyun Lim, and Bonglee Kim. 2021. "Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery" Antioxidants 10, no. 1: 81. https://doi.org/10.3390/antiox10010081
APA StyleLee, J., Noh, S., Lim, S., & Kim, B. (2021). Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants, 10(1), 81. https://doi.org/10.3390/antiox10010081