Involvement of RAGE and Oxidative Stress in Inflammatory and Infectious Skin Diseases
Abstract
:1. Introduction
2. Methods
3. Results
3.1. RAGE as an Inflammation Receptor
3.2. RAGE in Infectious Diseases
3.3. RAGE in Diabetic Skin and Repairing Processes
3.4. RAGE and Systemic Sclerosis and Ulcers
3.5. RAGE and Melanocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGE | advanced glycosylation end-products |
AOPP | advanced oxidation protein products |
cAMP | cyclic adenosine monophosphate |
CRE | cAMP response elements |
CREB | cAMP response element-binding protein |
CRP | C reactive protein |
CXCL | chemokine (C-X-C motif) ligand |
DAMPs | damage-associated molecular patterns |
ELISA | enzyme-linked immuno sorbent assay |
EN-RAGE | endogenous secretory receptor for advanced glycosylation end-products |
ERK | extracellular signal-regulated kinases |
ESR | erythrocyte sedimentation rate |
FACS | fluorescence-activated cell sorting |
HMGB1 | high mobility group box 1 |
ICAM | intercellular adhesion molecule |
IF | immunofluorescence |
IHC | immunohistochemistry |
IL | interleukin |
IL-1Ra | interleukin 1 receptor antagonist |
LPS | lypopolysaccharide |
MAPK | mitogen-activated protein kinase |
MEK1/2 | meiotic chromosome-axis-associated kinase |
MeSH | medical subject headings |
MIP-2 | macrophage-inflammatory protein 2 |
MITF | microphthalmia-associated transcription factor |
mS100A7A15 | murine S100 calcium-binding protein A7 (psoriasin) and A15 (koebnerisin) |
NADH | reduced form of nicotinamide adenine dinucleotide |
NFAT | nuclear factor of activated T-cells |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
PCR | polymerase chain reaction |
PRRs | pattern recognition receptors |
RAGE | receptor for advanced glycosylation end-products |
Rb | retinoblastoma tumor suppressor protein |
ROS | reactive oxygen species |
S100A12 | S100 calcium-binding protein A12 (calgranulin C) |
S100B | S100 calcium-binding protein B |
sRAGE | soluble receptor for advanced glycosylation end-products |
STAT3 | signal transducer and activator of transcription 3 |
TLR | toll-like receptor |
TNF | tumor necrosis factor |
TPA | tetradecanoylphorbol acetate |
UV | ultraviolet |
UVA | ultraviolet A |
UVB | ultraviolet B |
VCAM | vascular cell adhesion molecule |
References
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Hormesis defined. Ageing Res. Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ron-Doitch, S.; Kohen, R. The cutaneous physiological redox: Essential to maintain but difficult to define. Antioxidants 2020, 9, 942. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDaniel, D.; Farris, P.; Valacchi, G. Atmospheric skin aging-contributors and inhibitors. J. Cosmet. Dermatol. 2018, 17, 124–137. [Google Scholar] [CrossRef]
- Fussell, J.C.; Kelly, F.J. Oxidative contribution of air pollution to extrinsic skin ageing. Free Radic. Biol. Med. 2020, 151, 111–122. [Google Scholar] [CrossRef]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef]
- Danby, F.W. Nutrition and aging skin: Sugar and glycation. Clin. Dermatol. 2010, 28, 409–411. [Google Scholar] [CrossRef]
- Farrar, M.D. Advanced glycation end products in skin ageing and photoageing: What are the implications for epidermal function? Exp. Dermatol. 2016, 25, 947–948. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.P.; Katta, R. Sugar sag: Glycation and the role of diet in aging skin. Skin Therapy Lett. 2015, 20, 1–5. [Google Scholar] [PubMed]
- Neeper, M.; Schmidt, A.M.; Brett, J.; Yan, S.D.; Wang, F.; Pan, Y.C.; Elliston, K.; Stern, D.; Shaw, A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 1992, 267, 14998–15004. [Google Scholar] [CrossRef]
- De Martinis, M.; Ginaldi, L.; Sirufo, M.M.; Pioggia, G.; Calapai, G.; Gangemi, S.; Mannucci, C. Alarmins in osteoporosis, RAGE, IL-1, and IL-33 Pathways: A literature review. Medicina (Kaunas) 2020, 56, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prantner, D.; Nallar, S.; Vogel, S.N. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J. 2020, 34, 15659–15674. [Google Scholar] [CrossRef] [PubMed]
- Selmeci, L. Advanced oxidation protein products (AOPP): Novel uremic toxins, or components of the non-enzymatic antioxidant system of the plasma proteome? Free Radic. Res. 2011, 45, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Capeillère-Blandin, C.; Gausson, V.; Descamps-Latscha, B.; Witko-Sarsat, V. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim. Biophys. Acta. 2004, 1689, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Cristani, M.; Speciale, A.; Saija, A.; Gangemi, S.; Minciullo, P.L.; Cimino, F. Circulating advanced oxidation protein products as oxidative stress biomarkers and progression mediators in pathological conditions related to inflammation and immune dysregulation. Curr. Med. Chem. 2016, 23, 3862–3882. [Google Scholar] [CrossRef]
- Brett, J.; Schmidt, A.M.; Yan, S.D.; Zou, Y.S.; Weidman, E.; Pinsky, D.; Nowygrod, R.; Neeper, M.; Przysiecki, C.; Shaw, A.; et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 1993, 143, 1699–1712. [Google Scholar]
- Lohwasser, C.; Neureiter, D.; Weigle, B.; Kirchner, T.; Schuppan, D. The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha. J. Investig. Dermatol. 2006, 126, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Li, X.K. Oxidative stress in atopic dermatitis. Oxid. Med. Cell Longev. 2016, 2016, 2721469. [Google Scholar] [CrossRef]
- Bertino, L.; Guarneri, F.; Cannavò, S.P.; Casciaro, M.; Pioggia, G.; Gangemi, S. Oxidative stress and atopic dermatitis. Antioxidants 2020, 9, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarneri, F.; Costa, C.; Foti, C.; Hansel, K.; Guarneri, C.; Guarneri, B.; Lisi, P.; Stingeni, L. Frequency of autoallergy to manganese superoxide dismutase in patients with atopic dermatitis: Experience of three Italian dermatology centres. Br. J. Dermatol. 2015, 173, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Huang, T. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radic. Res. 2016, 50, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, F.; Sapienza, D.; Papaianni, V.; Marafioti, I.; Guarneri, C.; Mondello, C.; Roccuzzo, S.; Asmundo, A.; Cannavò, S.P. Association between genetic polymorphisms of glutathione S-transferase M1/T1 and psoriasis in a population from the area of the strict of messina (Southern Italy). Free Radic. Res. 2020, 54, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.B.; Carnelio, S.; Shenoy, R.P.; Gyawali, P.; Mukherjee, M. Oxidative stress and antioxidant defense in oral lichen planus and oral lichenoid reaction. Scand. J. Clin. Lab. Investig. 2010, 70, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, F.; Guarneri, C.; Marini, H. Oral lichen planus and neurogenic inflammation: New observations and therapeutic implications from four clinical cases. Dermatol. Ther. 2014, 27, 206–210. [Google Scholar] [CrossRef]
- Boniface, K.; Seneschal, J.; Picardo, M.; Taïeb, A. Vitiligo: Focus on clinical aspects, immunopathogenesis, and therapy. Clin. Rev. Allergy Immunol. 2018, 54, 52–67. [Google Scholar] [CrossRef]
- Vaccaro, M.; Bagnato, G.; Cristani, M.; Borgia, F.; Spatari, G.; Tigano, V.; Saja, A.; Guarneri, F.; Cannavò, S.P.; Gangemi, S. Oxidation products are increased in patients affected by non-segmental generalized vitiligo. Arch. Dermatol. Res. 2017, 309, 485–490. [Google Scholar] [CrossRef]
- Jafari, S.M.; Salimi, S.; Nakhaee, A.; Kalani, H.; Tavallaie, S.; Farajian-Mashhadi, F.; Zakeri, Z.; Sandoughi, M. Prooxidant-antioxidant balance in patients with systemic lupus erythematosus and its relationship with clinical and laboratory findings. Autoimmune Dis. 2016, 2016, 4343514. [Google Scholar] [CrossRef] [Green Version]
- Riehl, A.; Bauer, T.; Brors, B.; Busch, H.; Mark, R.; Németh, J.; Gebhardt, C.; Bierhaus, A.; Nawroth, P.; Eils, R.; et al. Identification of the RAGE-dependent gene regulatory network in a mouse model of skin inflammation. BMC Genom. 2010, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Leibold, J.S.; Riehl, A.; Hettinger, J.; Durben, M.; Hess, J.; Angel, P. Keratinocyte-specific deletion of the receptor RAGE modulates the kinetics of skin inflammation in vivo. J. Investig. Dermatol. 2013, 133, 2400–2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nienhuis, H.L.; de Leeuw, K.; Bijzet, J.; Smit, A.; Schalkwijk, C.G.; Graaff, R.; Kallenberg, C.G.; Bijl, M. Skin autofluorescence is increased in systemic lupus erythematosus but is not reflected by elevated plasma levels of advanced glycation endproducts. Rheumatology (Oxford) 2008, 47, 1554–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, R.; Mascia, F.; Dharamsi, A.; Howard, O.M.; Cataisson, C.; Bliskovski, V.; Winston, J.; Feigenbaum, L.; Lichti, U.; Ruzicka, T.; et al. Gene from a psoriasis susceptibility locus primes the skin for inflammation. Sci. Transl. Med. 2010, 2, 61ra90. [Google Scholar] [CrossRef] [PubMed]
- Szczepanski, M.J.; Luczak, M.; Olszewska, E.; Molinska-Glura, M.; Zagor, M.; Krzeski, A.; Skarzynski, H.; Misiak, J.; Dzaman, K.; Bilusiak, M.; et al. Molecular signaling of the HMGB1/RAGE axis contributes to cholesteatoma pathogenesis. J. Mol. Med. (Berl.) 2015, 93, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Y.; Peng, G.; Han, X. Glycyrrhizin ameliorates atopic dermatitis-like symptoms through inhibition of HMGB1. Int. Immunopharmacol. 2018, 60, 9–17. [Google Scholar] [CrossRef]
- de Carvalho, G.C.; Hirata, F.Y.A.; Domingues, R.; Figueiredo, C.A.; Zaniboni, M.C.; Pereira, N.V.; Sotto, M.N.; Aoki, V.; da Silva Duarte, A.J.; Sato, M.N. Up-regulation of HMGB1 and TLR4 in skin lesions of lichen planus. Arch. Dermatol. Res. 2018, 310, 523–528. [Google Scholar] [CrossRef]
- Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Pitchaimani, V.; Sreedhar, R.; Afrin, R.; Harima, M.; Suzuki, H.; Nomoto, M.; Miyashita, S.; et al. Modulation of HMGB1 translocation and RAGE/NFkappaB cascade by quercetin treatment mitigates atopic dermatitis in NC/Nga transgenic mice. Exp. Dermatol. 2015, 24, 418–423. [Google Scholar] [CrossRef]
- Iwamura, M.; Yamamoto, Y.; Kitayama, Y.; Higuchi, K.; Fujimura, T.; Hase, T.; Yamamoto, H. Epidermal expression of receptor for advanced glycation end products (RAGE) is related to inflammation and apoptosis in human skin. Exp. Dermatol. 2016, 25, 235–237. [Google Scholar] [CrossRef] [Green Version]
- Mulder, D.J.; van Haelst, P.L.; Gross, S.; de Leeuw, K.; Bijzet, J.; Graaff, R.; Gans, R.O.; Zijlstra, F.; Smit, A.J. Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products. Atherosclerosis 2008, 197, 217–223. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, Y.W.; Choi, H.Y.; Myung, K.B.; Cho, S.N. The expression of RAGE and EN-RAGE in leprosy. Br. J. Dermatol. 2006, 154, 594–601. [Google Scholar] [CrossRef]
- Na, M.; Mohammad, M.; Fei, Y.; Wang, W.; Holdfeldt, A.; Forsman, H.; Ali, A.; Pullerits, R.; Jin, T. Lack of receptor for advanced glycation end products leads to less severe staphylococcal skin infection but more skin abscesses and prolonged wound healing. J. Infect. Dis. 2018, 218, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Xie, T.; Ge, K.; Lin, Y.; Lu, S. Effects of extracellular matrix glycosylation on proliferation and apoptosis of human dermal fibroblasts via the receptor for advanced glycosylated end products. Am. J. Dermatopathol. 2008, 30, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Kim, J.H.; Jung, M.; Chung, C.H.; Hasham, R.; Park, C.S.; Choi, E.H. A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Exp. Dermatol. 2011, 20, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.; Fujimori, H.; Yonekura, H.; Yamamoto, Y.; Yamamoto, H. Advanced glycation endproducts inhibit prostacyclin production and induce plasminogen activator inhibitor-1 in human microvascular endothelial cells. Diabetologia 1998, 41, 1435–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekircan-Kurt, C.E.; Uçeyler, N.; Sommer, C. Cutaneous activation of RAGE in nonsystemic vasculitic and diabetic neuropathy. Muscle Nerve 2014, 50, 377–383. [Google Scholar] [CrossRef]
- Bakker, S.F.; Tushuizen, M.E.; Gözütok, E.; Çiftci, A.; Gelderman, K.A.; Mulder, C.J.; Simsek, S. Advanced glycation end products (AGEs) and the soluble receptor for AGE (sRAGE) in patients with type 1 diabetes and coeliac disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 230–235. [Google Scholar] [CrossRef]
- Kanková, K.; Márová, I.; Záhejský, J.; Muzík, J.; Stejskalová, A.; Znojil, V.; Vácha, J. Polymorphisms 1704G/T and 2184A/G in the RAGE gene are associated with antioxidant status. Metabolism 2001, 50, 1152–1160. [Google Scholar]
- Kanková, K.; Záhejský, J.; Márová, I.; Muzík, J.; Kuhrová, V.; Blazková, M.; Znojil, V.; Beránek, M.; Vácha, J. Polymorphisms in the RAGE gene influence susceptibility to diabetes-associated microvascular dermatoses in NIDDM. J. Diabetes Complicat. 2001, 15, 185–192. [Google Scholar] [CrossRef]
- Wear-Maggitti, K.; Lee, J.; Conejero, A.; Schmidt, A.M.; Grant, R.; Breitbart, A. Use of topical sRAGE in diabetic wounds increases neovascularization and granulation tissue formation. Ann. Plast. Surg. 2004, 52, 519–521. [Google Scholar] [CrossRef]
- Ji, X.Y.; Chen, Y.; Ye, G.H.; Dong, M.W.; Lin, K.Z.; Han, J.G.; Feng, X.P.; Li, X.B.; Yu, L.S.; Fan, Y.Y. Detection of RAGE expression and its application to diabetic wound age estimation. Int. J. Legal Med. 2017, 131, 691–698. [Google Scholar] [CrossRef]
- Yoshizaki, A.; Komura, K.; Iwata, Y.; Ogawa, F.; Hara, T.; Muroi, E.; Takenaka, M.; Shimizu, K.; Hasegawa, M.; Fujimoto, M.; et al. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: Association with disease severity. J. Clin. Immunol. 2009, 29, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, C.A.; Herrick, A.L.; Cordingley, L.; Freemont, A.J.; Jeziorska, M. Expression of advanced glycation end products and their receptor in skin from patients with systemic sclerosis with and without calcinosis. Rheumatology (Oxford) 2009, 48, 876–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhong, A.; Friedrich, E.E.; Jia, S.; Xie, P.; Galiano, R.D.; Mustoe, T.A.; Hong, S.J. S100A12 induced in the epidermis by reduced hydration activates dermal fibroblasts and causes dermal fibrosis. J. Investig. Dermatol. 2017, 137, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.J.; Kim, J.Y.; Oh, S.H. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci. Rep. 2016, 6, 27848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, T.; Zhang, W.; Li, S.; Chen, X.; Chang, Y.; Yi, X.; Kang, P.; Yang, Y.; Chen, J.; Liu, L.; et al. Oxidative stress-induced HMGB1 release from melanocytes: A paracrine mechanism underlying the cutaneous inflammation in vitiligo. J. Investig. Dermatol. 2019, 139, 2174–2184.e4. [Google Scholar] [CrossRef]
- Cheong, K.A.; Noh, M.; Kim, C.H.; Lee, A.Y. S100B as a potential biomarker for the detection of cytotoxicity of melanocytes. Exp. Dermatol. 2014, 23, 165–171. [Google Scholar] [CrossRef]
- Gangemi, S.; Minciullo, P.L.; Magliacane, D.; Saitta, S.; Loffredo, S.; Saija, A.; Cristani, M.; Marone, G.; Triggiani, M. Oxidative stress markers are increased in patients with mastocytosis. Allergy 2015, 70, 436–442. [Google Scholar] [CrossRef]
- Milutinovic, P.S.; Alcorn, J.F.; Englert, J.M.; Crum, L.T.; Oury, T.D. The receptor for advanced glycation end products is a central mediator of asthma pathogenesis. Am. J. Pathol. 2012, 181, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Mortera, R.; Luevano-Contreras, C.; Solorio-Meza, S.; Gómez-Ojeda, A.; Caccavello, R.; Bains, Y.; Gugliucci, A.; Garay-Sevilla, M.E. Soluble receptor for advanced glycation end products and its correlation with vascular damage in adolescents with obesity. Horm. Res. Paediatr. 2019, 92, 28–35. [Google Scholar] [CrossRef]
- Prasad, K.; Tiwari, S. Therapeutic interventions for advanced glycation-end products and its receptor-mediated cardiovascular disease. Curr. Pharm. Des. 2017, 23, 937–943. [Google Scholar] [CrossRef]
- Shalom, G.; Dreiher, J.; Kridin, K.; Horev, A.; Khoury, R.; Battat, E.; Freud, T.; Comaneshter, D.; Cohen, A.D. Atopic dermatitis and the metabolic syndrome: A cross-sectional study of 116 816 patients. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1762–1767. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, A.; Straface, E.; Rosato, E.; Casciaro, M.; Pioggia, G.; Gangemi, S. Role of alarmins in the pathogenesis of systemic sclerosis. Int. J. Mol. Sci. 2020, 21, 4985. [Google Scholar] [CrossRef] [PubMed]
Reference | Methods | Material | Source | Condition |
---|---|---|---|---|
Riehl et al. [31] | PCR | skin | mice | Inflammation |
Leibold et al. [32] | IHC | skin biopsies | mice | Inflammation, keratinocytes |
Nienhuis et al. [33] | ELISA | skin | humans | Systemic lupus |
Wolf et al. [34] | IHC | skin | mice | Psoriasis |
Szczepanski et al. [35] | IHC | keratinocytes | humans, human cell lines | Cholesteatoma |
Wang et al. [36] | IHC | serum | mice | Atopic dermatitis |
de Carvalho et al. [37] | IHC | serum | humans | Lichen planus |
Karouppagunder et al. [38] | Western blot | skin | mice | Atopic dermatitis |
Iwamura et al. [39] | IHC, PCR | skin | humans | Inflammation, apoptosis |
Mulder et al. [40] | ELISA | skin, serum | humans | Endothelial diseases |
Kim et al. [41] | ELISA, IHC, confocal microscopy | skin | humans | Leprosy |
Na et al. [42] | ELISA, FACS, histopathology | serum | mice | Staphylococcal infections |
Lohwasser et al. [20] | IHC | skin | humans | Stimulation with TNF and AGE |
Niu et al. [43] | Western blot | serum | humans, human cell lines | Fibroblast proliferation |
Park et al. [44] | ELISA | skin, serum | mice | Repairing and aging |
Yamagishi et al. [45] | PCR & nucleotides | endothelial cells | cell lines | Diabetes & vessels |
Bekircan-Kurt et al. [46] | IHC | skin biopsies | humans | Diabetes & vasculitides |
Bakker et al. [47] | ELISA | serum | humans | Diabetes, celiac disease |
Kankova et al. [48] | PCR | skin, blood | humans | Wounds & Diabetes |
Kankova et al. [49] | PCR | skin, blood | humans | Vascular dermatoses |
Wear-Maggitti et al. [50] | CD31 staining | skin | mice | Wounds & Diabetes |
Ji et al. [51] | IHC, Western blot | skin | mice | Diabetic wounds |
Yoshizaki et al. [52] | IHC | serum | humans, mice | Systemic sclerosis |
Davies et al. [53] | IHC | skin | humans | Systemic sclerosis |
Zhao et al. [54] | IHC | skin | mice, human cell lines | Dermal fibrosis |
Lee et al. [55] | Western blot, IF | skin, melanocytes | human cell lines | Melanogenesis |
Cui et al. [56] | IHC | skin | cell lines | Vitiligo |
Cheong et al. [57] | Western blot | keratinocytes, melanocytes | human cell lines | Melanocyte toxicity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarneri, F.; Custurone, P.; Papaianni, V.; Gangemi, S. Involvement of RAGE and Oxidative Stress in Inflammatory and Infectious Skin Diseases. Antioxidants 2021, 10, 82. https://doi.org/10.3390/antiox10010082
Guarneri F, Custurone P, Papaianni V, Gangemi S. Involvement of RAGE and Oxidative Stress in Inflammatory and Infectious Skin Diseases. Antioxidants. 2021; 10(1):82. https://doi.org/10.3390/antiox10010082
Chicago/Turabian StyleGuarneri, Fabrizio, Paolo Custurone, Valeria Papaianni, and Sebastiano Gangemi. 2021. "Involvement of RAGE and Oxidative Stress in Inflammatory and Infectious Skin Diseases" Antioxidants 10, no. 1: 82. https://doi.org/10.3390/antiox10010082
APA StyleGuarneri, F., Custurone, P., Papaianni, V., & Gangemi, S. (2021). Involvement of RAGE and Oxidative Stress in Inflammatory and Infectious Skin Diseases. Antioxidants, 10(1), 82. https://doi.org/10.3390/antiox10010082