Assessment of Screening Approach in Early and Differential Alzheimer’s Disease Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Collection and Treatment
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Diagnosis Model Validation
3.3. Screening Approach Development for Clinical Practice Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durmugier, J.; Sabia, S. Epidemiology of Alzheimer’s disease: Latest trends. Rev. Prat. 2020, 70, 149–151. [Google Scholar]
- Nichols, E.; Szoeke, C.E.I.; Vollset, S.E.; Abbasi, N.; Abd-Allah, F.; Abdela, J.; Aichour, M.T.E.; Akinyemi, R.O.; Alahdab, F.; Asgedom, S.W.; et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [Google Scholar] [CrossRef] [Green Version]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.-C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015: The Global Impact of Dementia. Alzheimer’s Dis. Int. 2015, 1, 1–22. [Google Scholar]
- Hane, F.T.; Robinson, M.; Lee, B.Y.; Bai, O.; Leonenko, Z.; Albert, M.S. Recent Progress in Alzheimer’s Disease Research, Part 3: Diagnosis and Treatment. J. Alzheimer’s Dis. 2017, 57, 645–665. [Google Scholar] [CrossRef] [Green Version]
- Riedel, B.C.; Thompson, P.M.; Brinton, R.D. Age, APOE and sex: Triad of risk of Alzheimer’s disease. J. Steroid Biochem. Mol. Biol. 2016, 160, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
- Sengoku, R. Aging and Alzheimer’s disease pathology. Neuropathology 2020, 40, 22–29. [Google Scholar] [CrossRef]
- Scheyer, O.; Rahman, A.; Hristov, H.; Berkowitz, C.; Isaacson, R.S.; Diaz Brinton, R.; Mosconi, L. Female Sex and Alzheimer’s Risk: The Menopause Connection. J. Prev. Alzheimer’s Dis. 2018, 5, 225–230. [Google Scholar] [CrossRef]
- Armstrong, R.A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef]
- Varma, V.R.; Oommen, A.M.; Varma, S.; Casanova, R.; An, Y.; Andrews, R.M.; O’Brien, R.; Pletnikova, O.; Troncoso, J.C.; Toledo, J.; et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med. 2018, 15, e1002482. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.C.; Watts, K.D.; Parker, M.W.; Wu, J.; Kollhoff, A.; Wingo, T.S.; Dorbin, C.D.; Qiu, D.; Hu, W.T. Race modifies the relationship between cognition and Alzheimer’s disease cerebrospinal fluid biomarkers. Alzheimers. Res. Ther. 2017, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Lashley, T.; Schott, J.M.; Weston, P.; Murray, C.E.; Wellington, H.; Keshavan, A.; Foti, S.C.; Foiani, M.; Toombs, J.; Rohrer, J.D.; et al. Molecular biomarkers of Alzheimer’s disease: Progress and prospects. Dis. Models Mech. 2018, 11, dmm031781. [Google Scholar] [CrossRef] [Green Version]
- Peña-Bautista, C.; Álvarez-Sánchez, L.; Ferrer, I.; López-Nogueroles, M.; Cañada-Martínez, A.J.; Oger, C.; Galano, J.-M.; Durand, T.; Baquero, M.; Cháfer-Pericás, C. Lipid Peroxidation Assessment in Preclinical Alzheimer Disease Diagnosis. Antioxidants 2021, 10, 1043. [Google Scholar] [CrossRef]
- Ritchie, C.; Smailagic, N.; Ladds, E.C.; Noel-Storr, A.H.; Ukoumunne, O.; Martin, S. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). In Cochrane Database of Systematic Reviews; Ritchie, C., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2013. [Google Scholar]
- Meyer, P.; Savard, M.; Poirier, J.; Morgan, D.; Breitner, J. Hypothesis: Cerebrospinal fluid protein markers suggest a pathway toward symptomatic resilience to AD pathology. Alzheimer’s Dement. 2019, 15, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Vemuri, P.; Gunter, J.L.; Senjem, M.L.; Whitwell, J.L.; Kantarci, K.; Knopman, D.S.; Boeve, B.F.; Petersen, R.C.; Jack, C.R. Alzheimer’s disease diagnosis in individual subjects using structural MR images: Validation studies. Neuroimage 2008, 39, 1186–1197. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, N.; Rana, B.; Agrawal, R.; Kumaran, S. A combination of dual-tree discrete wavelet transform and minimum redundancy maximum relevance method for diagnosis of Alzheimer’s disease. Int. J. Bioinform. Res. Appl. 2015, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Joshi, P.S.; Miller, M.I.; Xue, C.; Zhou, X.; Karjadi, C.; Chang, G.H.; Joshi, A.S.; Dwyer, B.; Zhu, S.; et al. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 2020, 143, 1920–1933. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.P.; Berg, L.; Danziger, W.; Coben, L.A.; Martin, R.L. A New Clinical Scale for the Staging of Dementia. Br. J. Psychiatry 1982, 140, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary Clinical Validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [Google Scholar] [CrossRef]
- Peña-Bautista, C.; Vigor, C.; Galano, J.M.; Oger, C.; Durand, T.; Ferrer, I.; Cuevas, A.; López-Cuevas, R.; Baquero, M.; López-Nogueroles, M.; et al. Plasma lipid peroxidation biomarkers for early and non-invasive Alzheimer Disease detection. Free Radic. Biol. Med. 2018, 124, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Zhao, Z.; Zlokovic, B.V. Alzheimer’s disease: A matter of blood–brain barrier dysfunction? J. Exp. Med. 2017, 214, 3151–3169. [Google Scholar] [CrossRef]
- Bradley-Whitman, M.A.; Lovell, M.A. Biomarkers of lipid peroxidation in Alzheimer disease (AD): An update. Arch. Toxicol. 2015, 89, 1035–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Blanco, A.; Baquero, M.; Vento, M.; Gil, E.; Bataller, L.; Cháfer-Pericás, C. Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J. Neurol. Sci. 2017, 373, 295–302. [Google Scholar] [CrossRef]
- Pan, X.; Fei, G.; Lu, J.; Jin, L.; Pan, S.; Chen, Z.; Wang, C.; Sang, S.; Liu, H.; Hu, W.; et al. Measurement of Blood Thiamine Metabolites for Alzheimer’s Disease Diagnosis. EBioMedicine 2016, 3, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Chen, J.; Xiao, H.; Wu, L.; Jiang, H.; Zhou, Y. Application of artificial neural network model in diagnosis of Alzheimer’s disease. BMC Neurol. 2019, 19, 154. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021, 20, 68–80. [Google Scholar] [CrossRef]
- Poirier, J.; Miron, J.; Picard, C.; Gormley, P.; Théroux, L.; Breitner, J.; Dea, D. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol. Aging 2014, 35, S3–S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neu, S.C.; Pa, J.; Kukull, W.; Beekly, D.; Kuzma, A.; Gangadharan, P.; Wang, L.-S.; Romero, K.; Arneric, S.P.; Redolfi, A.; et al. Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease. JAMA Neurol. 2017, 74, 1178. [Google Scholar] [CrossRef]
- Berkowitz, C.L.; Mosconi, L.; Rahman, A.; Scheyer, O.; Hristov, H.; Isaacson, R.S. Clinical Application of ApoE in Alzheimer’s prevention: A precision medicine approach. J. Prev. Alzheimer’s Dis. 2018, 5, 245–252. [Google Scholar] [CrossRef]
- Duarte-Guterman, P.; Albert, A.Y.; Inkster, A.M.; Barha, C.K.; Galea, L.A.M. Inflammation in Alzheimer’s Disease: Do Sex and APOE Matter? J. Alzheimer’s Dis. 2020, 78, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Prendecki, M.; Florczak-Wyspianska, J.; Kowalska, M.; Ilkowski, J.; Grzelak, T.; Bialas, K.; Kozubski, W.; Dorszewska, J. APOE genetic variants and apoE, miR-107 and miR-650 levels in Alzheimer’s disease. Folia Neuropathol. 2019, 57, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Kolekar, M.H.; Jha, K. Iterative Filtering Decomposition Based Early Dementia Diagnosis Using EEG with Cognitive Tests. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1890–1898. [Google Scholar] [CrossRef] [PubMed]
- Miltiadous, A.; Tzimourta, K.D.; Giannakeas, N.; Tsipouras, M.G.; Afrantou, T.; Ioannidis, P.; Tzallas, A.T. Alzheimer’s Disease and Frontotemporal Dementia: A Robust Classification Method of EEG Signals and a Comparison of Validation Methods. Diagnostics 2021, 11, 1437. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Deng, W. Predication of different stages of Alzheimer’s disease using neighborhood component analysis and ensemble decision tree. J. Neurosci. Methods 2018, 302, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Ziso, B.; Larner, A.J. Codex (Cognitive Disorders Examination) Decision Tree Modified for the Detection of Dementia and MCI. Diagnostics 2019, 9, 58. [Google Scholar] [CrossRef] [Green Version]
Variable | Healthy (n = 44) | Non-AD (n = 17) | AD (n = 61) | |
---|---|---|---|---|
Demographic characteristics | ||||
Age (years, median (IQR)) | 62 (55–68) | 65 (61–69) | 70 (66–74) | |
Gender (female n (%)) | 26 (59.1%) | 7 (41.2%) | 35 (57.4%) | |
Level of education n (%) | Basic Secondary University | 14 (31.8%) 9 (20.5%) 21 (47.7%) | 10 (58.8%) 4 (23.5%) 3 (17.6%) | 31 (50.8%) 13 (21.3%) 17 (27.9%) |
Clinical characteristics | ||||
ApoE (ε4 carrier n (%)) | 7 (15.9%) | 5 (29.4%) | 40 (65.6%) | |
β-Amyloid42 (pg·mL−1, median (IQR)) | 1044 (875–1421) | 947 (804–1136) | 568 (469–665) | |
t-tau (pg·mL−1, median (IQR)) | 214 (174–283) | 244 (180–299) | 556 (424–751.50) | |
p-tau (pg·mL−1, median (IQR)) | 34 (24–42) | 40 (27–58.50) | 92 (68.50–110) | |
CDR (median (IQR)) | 0 (0–0.5) | 0.5 (0–0.5) | 0.5 (0.5–0.5) | |
MMSE (median (IQR)) | 29 (28–29) | 27 (22.50–28.50) | 25 (21–27) | |
RBANS.DM (median (IQR)) | 98 (94–102) | 78 (58–84) | 56 (40–71.50) |
Variable (nmol·L−1) | Healthy Group (n = 44) Median (1st, 3rd Quartile) | Non-AD Group (n = 17) Median (1st, 3rd Quartile) | AD Group (n = 61) Median (1st, 3rd Quartile) |
---|---|---|---|
15(R)-15-F2t-IsoP | 0.48 (0.23–0.68) | 0.43 (0.18–0.60) | 0.33 (0.23–0.61) |
PGE2 | 0.28 (0.16–0.35) | 0 (0–0.10) | 0 (0–0.25) |
15-keto-15-E2t-IsoP | 0.76 (0.01–1.17) | 0 (0–0.14) | 0 (0–0.21) |
15-keto-15-F2t-IsoP | 0.48 (0.18–0.82) | 0.23 (0.04–0.31) | 0.20 (0.03–0.34) |
15-E2t-IsoP | 0.91 (0.60–1.36) | 0.20 (0–0.28) | 0.28 (0–0.70) |
PGF2α | 0.36 (0.23–0.73) | 0 (0–0.78) | 0.60 (0–0.78) |
4(RS)-4-F4t-NeuroP | 3.16 (1.18–4.38) | 0.87 (0–1.06) | 1.10 (0–1.65) |
1a,1b-dihomo-PGF2α | 3.03 (0–4.25) | 0 (0–0.61) | 0 (0–0) |
10-epi-10-F4t-NeuroP | 0.15 (0.01–0.24) | 0 (0–0.20) | 0.08 (0–0.20) |
14(RS)-14-F4t-NeuroP | 1.25 (0.54–2.05) | 0 (0–0.68) | 0.25 (0–0.98) |
Parameter | (95% CI) |
---|---|
Sensitivity (%) | 88.7 (78.5–94.4) |
Specificity (%) | 61.4 (46.6–74.3) |
Accuracy (%) | 77.4 (68.5–84.3) |
PPV (%) | 76.4 (65.4–84.7) |
Odds ratio | 12.5 (4.6–33.7) |
Parameter | (95% CI) |
---|---|
Sensitivity (%) | 80.9 (67.5–89.6) |
Specificity (%) | 84.6 (66.5–93.9) |
Accuracy (%) | 82.2 (71.9–89.3) |
PPV (%) | 90.5 (77.9–96.2) |
Odds ratio | 23.2 (6.4–84.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferré-González, L.; Peña-Bautista, C.; Álvarez-Sánchez, L.; Ferrer-Cairols, I.; Baquero, M.; Cháfer-Pericás, C. Assessment of Screening Approach in Early and Differential Alzheimer’s Disease Diagnosis. Antioxidants 2021, 10, 1662. https://doi.org/10.3390/antiox10111662
Ferré-González L, Peña-Bautista C, Álvarez-Sánchez L, Ferrer-Cairols I, Baquero M, Cháfer-Pericás C. Assessment of Screening Approach in Early and Differential Alzheimer’s Disease Diagnosis. Antioxidants. 2021; 10(11):1662. https://doi.org/10.3390/antiox10111662
Chicago/Turabian StyleFerré-González, Laura, Carmen Peña-Bautista, Lourdes Álvarez-Sánchez, Inés Ferrer-Cairols, Miguel Baquero, and Consuelo Cháfer-Pericás. 2021. "Assessment of Screening Approach in Early and Differential Alzheimer’s Disease Diagnosis" Antioxidants 10, no. 11: 1662. https://doi.org/10.3390/antiox10111662
APA StyleFerré-González, L., Peña-Bautista, C., Álvarez-Sánchez, L., Ferrer-Cairols, I., Baquero, M., & Cháfer-Pericás, C. (2021). Assessment of Screening Approach in Early and Differential Alzheimer’s Disease Diagnosis. Antioxidants, 10(11), 1662. https://doi.org/10.3390/antiox10111662