The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Anthropometry
2.4. Blood Sampling and Laboratory Analysis
2.5. Jump Rope Exercise Protocol
2.6. Dark Chocolate Consumption
2.7. Nutrient Intake and Dietary Analysis
2.8. Statistical Analyses
3. Results
3.1. Antioxidants Markers
3.2. Body Mass and BMI
3.3. ANCOVA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cali, A.M.; Caprio, S. Obesity in children and adolescents. J. Clin. Endocrinol. Metab. 2008, 93, s31–s36. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Ashtary-Larky, D.; Elliott, B.T.; Willoughby, D.S.; Kargarfard, M.; Alipour, M.; Lamuchi-Deli, N.; Kooti, W.; Asbaghi, O.; Wong, A. The effects of gradual vs. rapid weight loss on serum concentrations of myokines and body composition in overweight and obese females. Arch. Physiol. Biochem. 2021, in press. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Kashkooli, S.; Bagheri, R.; Lamuchi-Deli, N.; Alipour, M.; Mombaini, D.; Baker, J.S.; Ramezani Ahmadi, A.; Wong, A. The effect of exercise training on serum concentrations of chemerin in patients with metabolic diseases: A systematic review and meta-analysis. Arch. Physiol. Biochem. 2021, in press. [Google Scholar]
- Rzheshevsky, A. Fatal “Triad”: Lipotoxicity, oxidative stress, and phenoptosis. Biochemistry (Moscow) 2013, 78, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, N.; Ashtary-Larky, D.; Bagheri, R.; Mahmoodi, M.; Rajaei, M.; Alipour, M.; Kooti, W.; Aghamohammdi, V.; Wong, A. The effect of 12 weeks of euenergetic high-protein diet in regulating appetite and body composition of women with normal-weight obesity: A randomised controlled trial. Br. J. Nutr. 2020, 124, 1044–1051. [Google Scholar] [CrossRef]
- Adhyaksa, A.F.; Ambarwati, E.; Supatmo, Y.; Marijo, M. The effect of jump rope training on oxidative stress and pulmonary function among medical students. Diponegoro Med. J. (J. Kedokt. Diponegoro) 2020, 9, 313–319. [Google Scholar]
- Duvnjak, M.; Lerotić, I.; Baršić, N.; Tomašić, V.; Jukić, L.V.; Velagić, V. Pathogenesis and management issues for non-alcoholic fatty liver disease. World J. Gastroenterol. WJG 2007, 13, 4539. [Google Scholar] [CrossRef]
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Alipour, M.; Motevalli, M.S.; Chebbi, A.; Laher, I.; Zouhal, H. Does green tea extract enhance the anti-inflammatory effects of exercise on fat loss? Br. J. Clin. Pharmacol. 2020, 86, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Grubbs, B.; Motevalli, M.S.; Baker, J.S.; Laher, I.; Zouhal, H. Effects of green tea extract supplementation and endurance training on irisin, pro-inflammatory cytokines, and adiponectin concentrations in overweight middle-aged men. Eur. J. Appl. Physiol. 2020, 120, 915–923. [Google Scholar] [CrossRef]
- Zouhal, H.; Bagheri, R.; Ashtary-Larky, D.; Wong, A.; Triki, R.; Hackney, A.C.; Laher, I.; Abderrahman, A.B. Effects of Ramadan intermittent fasting on inflammatory and biochemical biomarkers in males with obesity. Physiol. Behav. 2020, 225, 113090. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Alaniz, M.H.; Takada, J.; Alonso-Vale, M.I.C.; Lima, F.B. Adipose tissue as an endocrine organ: From theory to practice. J. Pediatr. 2007, 83, S192–S203. [Google Scholar] [CrossRef]
- Amirkhizi, F.; Siassi, F.; Minaie, S.; Djalali, M.; Rahimi, A.; Chamari, M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? Arya Atheroscler. 2007, 2, 189–192. [Google Scholar]
- Asbaghi, O.; Ghanavati, M.; Ashtary-Larky, D.; Bagheri, R.; Rezaei Kelishadi, M.; Nazarian, B.; Nordvall, M.; Wong, A.; Dutheil, F.; Suzuki, K. Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants 2021, 10, 871. [Google Scholar] [CrossRef]
- Ghorbanian, B.; Saberi, Y.; Shokrolahi, F.; Mohamadi, H. Effect of an Incremental Interval Endurance Rope-Training Program on Antioxidant Biomarkers and Oxidative Stress in Non-Active Women. Sci. J. Nurs. Midwifery Paramed. Fac. 2018, 4, 29–40. [Google Scholar]
- Roh, H.-T.; Cho, S.-Y.; So, W.-Y. Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 2505. [Google Scholar] [CrossRef] [Green Version]
- Accattato, F.; Greco, M.; Pullano, S.A.; Carè, I.; Fiorillo, A.S.; Pujia, A.; Montalcini, T.; Foti, D.P.; Brunetti, A.; Gulletta, E. Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PLoS ONE 2017, 12, e0178900. [Google Scholar] [CrossRef] [Green Version]
- Vincent, H.K.; Bourguignon, C.; Vincent, K.R. Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity 2006, 14, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, M.; Hooshmand Moghadam, B.; Bagheri, R.; Ashtary-Larky, D.; Eskandari, E.; Nordvall, M.; Dutheil, F.; Wong, A. Effects of interval jump rope exercise combined with dark chocolate supplementation on inflammatory adipokine, cytokine concentrations, and body composition in obese adolescent boys. Nutrients 2020, 12, 3011. [Google Scholar] [CrossRef]
- Sung, K.-D.; Pekas, E.J.; Scott, S.D.; Son, W.-M.; Park, S.-Y. The effects of a 12-week jump rope exercise program on abdominal adiposity, vasoactive substances, inflammation, and vascular function in adolescent girls with prehypertension. Eur. J. Appl. Physiol. 2019, 119, 577–585. [Google Scholar] [CrossRef]
- Leeuwenburgh, C.; Heinecke, J. Oxidative stress and antioxidants in exercise. Curr. Med. Chem. 2001, 8, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Sen, C.K. Antioxidants in exercise nutrition. Sports Med. 2001, 31, 891–908. [Google Scholar] [CrossRef] [PubMed]
- Loayza, D.; De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 2003, 423, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Khymenets, O.; Urpí-Sardà, M.; Tulipani, S.; Garcia-Aloy, M.; Monagas, M.; Mora-Cubillos, X.; Llorach, R.; Andres-Lacueva, C. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients 2014, 6, 844–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spadafranca, A.; Conesa, C.M.; Sirini, S.; Testolin, G. Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br. J. Nutr. 2010, 103, 1008–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Gu, Y.; Glisan, S.L.; Lambert, J.D. Dietary cocoa ameliorates non-alcoholic fatty liver disease and increases markers of antioxidant response and mitochondrial biogenesis in high fat-fed mice. J. Nutr. Biochem. 2021, 92, 108618. [Google Scholar] [CrossRef]
- Allgrove, J.; Farrell, E.; Gleeson, M.; Williamson, G.; Cooper, K. Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Davison, G.; Callister, R.; Williamson, G.; Cooper, K.A.; Gleeson, M. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise. Eur. J. Nutr. 2012, 51, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Feng, F.; Xiong, X.; Li, R.; Chen, N. Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity. J. Sports Sci. 2017, 35, 663–668. [Google Scholar] [CrossRef]
- Santos, G.C.d.; Faria, W.F.; Sasaki, J.E.; Elias, R.M.G.; Stabelini Neto, A. Acute effects of physical exercise at different intensities on inflammatory markers in obese adolescents. J. Phys. Educ. 2019, 30, e3014. [Google Scholar] [CrossRef]
- Rosner, B.; Prineas, R.; Loggie, J.; Daniels, S.R. Percentiles for body mass index in US children 5 to 17 years of age. J. Pediatrics 1998, 132, 211–222. [Google Scholar] [CrossRef]
- Bagheri, R.; Moghadam, B.H.; Ashtary-Larky, D.; Forbes, S.C.; Candow, D.G.; Galpin, A.J.; Eskandari, M.; Kreider, R.B.; Wong, A. Whole egg vs. egg white ingestion during 12 weeks of resistance training in trained young males: A randomized controlled trial. J. Strength Cond. Res. 2021, 35, 411–419. [Google Scholar] [CrossRef]
- Fakhari, M.; Fakhari, M.; BamBaeichi, E. The effects of pilates and flavanol-rich dark chocolate consumption on the total antioxidant capacity, glycemic control and BMI in diabetic females with neuropathy complications. J. Bodyw. Mov. Ther. 2021, 26, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Moghadam, B.H.; Jo, E.; Tinsley, G.M.; Stratton, M.T.; Ashtary-Larky, D.; Eskandari, M.; Wong, A. Comparison of whole egg v. egg white ingestion during 12 weeks of resistance training on skeletal muscle regulatory markers in resistance-trained men. Br. J. Nutr. 2020, 124, 1035–1043. [Google Scholar] [CrossRef]
- Kim, E.S.; Im, J.A.; Kim, K.C.; Park, J.H.; Suh, S.H.; Kang, E.S.; Kim, S.H.; Jekal, Y.; Lee, C.W.; Yoon, Y.J. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity 2007, 15, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Brouner, J.; Spendiff, O. Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. J. Int. Soc. Sports Nutr. 2015, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Martin, F.-P.J.; Rezzi, S.; Peré-Trepat, E.; Kamlage, B.; Collino, S.; Leibold, E.; Kastler, J.r.; Rein, D.; Fay, L.B.; Kochhar, S. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. J. Proteome Res. 2009, 8, 5568–5579. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh, A.; Mahmoodi, M.; Mard, S.A.; karimi Moghaddam, E. The effects of dark chocolate consumption on lipid profile, fasting blood sugar, liver enzymes, inflammation, and antioxidant status in patients with non-alcoholic fatty liver disease: A randomized, placebo-controlled, pilot study. J. Gastroenterol. Hepatol. Res. 2015, 4, 1858–1864. [Google Scholar]
- Bagheri, R.; Moghadam, B.H.; Candow, D.G.; Elliott, B.T.; Wong, A.; Ashtary-Larky, D.; Forbes, S.C.; Rashidlamir, A. Effects of Icelandic yogurt consumption and resistance training in healthy untrained older males. Br. J. Nutr. 2021, in press. [Google Scholar] [CrossRef]
- Tun, S.; Spainhower, C.J.; Cottrill, C.L.; Lakhani, H.V.; Pillai, S.S.; Dilip, A.; Chaudhry, H.; Shapiro, J.I.; Sodhi, K. Therapeutic efficacy of antioxidants in ameliorating obesity phenotype and associated comorbidities. Front. Pharmacol. 2020, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- Wensveen, F.M.; Valentić, S.; Šestan, M.; Turk Wensveen, T.; Polić, B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 2015, 45, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.G.; Cook, D.A.; Clark, M.M.; Bardia, A.; Levine, J.A. Treatment of obesity. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Achkasov, E.; Razina, A.; Runenko, S. Pathogenetically targeted method for conservative treatment of obesity and overweight correction. Klin. Meditsina 2016, 94, 509–517. [Google Scholar] [CrossRef]
- Bouzid, M.A.; Hammouda, O.; Matran, R.; Robin, S.; Fabre, C. Changes in oxidative stress markers and biological markers of muscle injury with aging at rest and in response to an exhaustive exercise. PLoS ONE 2014, 9, e90420. [Google Scholar] [CrossRef] [PubMed]
- Fatouros, I.G.; Jamurtas, A.Z.; Villiotou, V.; Pouliopoulou, S.; Fotinakis, P.; Taxildaris, K.; Deliconstantinos, G. Oxidative stress responses in older men during endurance training and detraining. Med. Sci. Sports Exerc. 2004, 36, 2065–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. Biomolecules 2019, 9, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammar, A.; Trabelsi, K.; Boukhris, O.; Glenn, J.M.; Bott, N.; Masmoudi, L.; Hakim, A.; Chtourou, H.; Driss, T.; Hoekelmann, A.; et al. Effects of Aerobic-, Anaerobic- and Combined-Based Exercises on Plasma Oxidative Stress Biomarkers in Healthy Untrained Young Adults. Int. J. Environ. Res. Public Health 2020, 17, 2601. [Google Scholar] [CrossRef] [Green Version]
- Hammouda, O.; Chtourou, H.; Chahed, H.; Ferchichi, S.; Chaouachi, A.; Kallel, C.; Miled, A.; Chamari, K.; Souissi, N. High intensity exercise affects diurnal variation of some biological markers in trained subjects. Int. J. Sports Med. 2012, 33, 886–891. [Google Scholar] [CrossRef] [PubMed]
- El Abed, K.; Rebai, H.; Bloomer, R.J.; Trabelsi, K.; Masmoudi, L.; Zbidi, A.; Sahnoun, Z.; Hakim, A.; Tabka, Z. Antioxidant status and oxidative stress at rest and in response to acute exercise in judokas and sedentary men. J. Strength Cond. Res. 2011, 25, 2400–2409. [Google Scholar] [CrossRef]
- Bogdanis, G.; Stavrinou, P.; Fatouros, I.; Philippou, A.; Chatzinikolaou, A.; Draganidis, D.; Ermidis, G.; Maridaki, M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2013, 61, 171–177. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Tchernova, J.; Whincup, P.; Lowe, G.D.; Kelly, A.; Rumley, A.; Wallace, A.M.; Sattar, N. Plasma leptin: Associations with metabolic, inflammatory and haemostatic risk factors for cardiovascular disease. Atherosclerosis 2007, 191, 418–426. [Google Scholar] [CrossRef]
- Huang, C.J.; McAllister, M.J.; Slusher, A.L.; Webb, H.E.; Mock, J.T.; Acevedo, E.O. Obesity-Related Oxidative Stress: The Impact of Physical Activity and Diet Manipulation. Sports Med.-Open 2015, 1, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Park, Y.; Wu, J.; Chen, X.; Lee, S.; Yang, J.; Dellsperger, K.C.; Zhang, C. Role of TNF-alpha in vascular dysfunction. Clin. Sci. (London, England 1979) 2009, 116, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gletsu-Miller, N.; Hansen, J.M.; Jones, D.P.; Go, Y.M.; Torres, W.E.; Ziegler, T.R.; Lin, E. Loss of total and visceral adipose tissue mass predicts decreases in oxidative stress after weight-loss surgery. Obesity (Silver Spring MD) 2009, 17, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Tumova, E.; Sun, W.; Jones, P.H.; Vrablik, M.; Ballantyne, C.M.; Hoogeveen, R.C. The impact of rapid weight loss on oxidative stress markers and the expression of the metabolic syndrome in obese individuals. J. Obes. 2013, 2013, 729515. [Google Scholar] [CrossRef] [PubMed]
- Rector, R.S.; Warner, S.O.; Liu, Y.; Hinton, P.S.; Sun, G.Y.; Cox, R.H.; Stump, C.S.; Laughlin, M.H.; Dellsperger, K.C.; Thomas, T.R. Exercise and diet induced weight loss improves measures of oxidative stress and insulin sensitivity in adults with characteristics of the metabolic syndrome. Am. J. Physiol. -Endocrinol. Metab. 2007, 293, E500–E506. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.S.; Steinberger, J.; Olson, T.P.; Dengel, D.R. In the absence of weight loss, exercise training does not improve adipokines or oxidative stress in overweight children. Metabolism 2007, 56, 1005–1009. [Google Scholar] [CrossRef]
- Bougoulia, M.; Triantos, A.; Koliakos, G. Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones (AthensGreece) 2006, 5, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.B.; Summer, W.; Cutler, R.G.; Martin, B.; Hyun, D.-H.; Dixit, V.D.; Pearson, M.; Nassar, M.; Telljohann, R.; Maudsley, S.; et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic. Biol. Med. 2007, 42, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Wycherley, T.P.; Brinkworth, G.D.; Noakes, M.; Buckley, J.D.; Clifton, P.M. Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes. Metab. 2008, 10, 1062–1073. [Google Scholar] [CrossRef]
- Samjoo, I.A.; Safdar, A.; Hamadeh, M.J.; Raha, S.; Tarnopolsky, M.A. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr. Diabetes 2013, 3, e88. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.A.; Lee, J.H.; Song, W.; Jun, T.W. Exercise training improves the antioxidant enzyme activity with no changes of telomere length. Mech. Ageing Dev. 2008, 129, 254–260. [Google Scholar] [CrossRef]
- Merry, T.L.; Ristow, M. Mitohormesis in exercise training. Free Radic. Biol. Med. 2016, 98, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirupathi, A.; Wang, M.; Lin, J.K.; Fekete, G.; István, B.; Baker, J.S.; Gu, Y. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. Biomed. Res. Int. 2021, 2021, 1947928. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Williams, A.S.; Shanely, R.A.; Jin, F.; McAnulty, S.R.; Triplett, N.T.; Austin, M.D.; Henson, D.A. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med. Sci. Sports Exerc. 2010, 42, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAnulty, L.S.; Nieman, D.C.; Dumke, C.L.; Shooter, L.A.; Henson, D.A.; Utter, A.C.; Milne, G.; McAnulty, S.R. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2011, 36, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Panza, V.S.; Wazlawik, E.; Ricardo Schütz, G.; Comin, L.; Hecht, K.C.; da Silva, E.L. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition (BurbankLos Angeles Cty. Calif.) 2008, 24, 433–442. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Domenech, E.; Romagnoli, M.; Arduini, A.; Borras, C.; Pallardo, F.V.; Sastre, J.; Viña, J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 2008, 87, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.; Hughes, J.; Della Gatta, P.A.; Mason, S.; Lamon, S.; Russell, A.P.; Wadley, G.D. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic. Biol. Med. 2015, 89, 852–862. [Google Scholar] [CrossRef]
- Cavarretta, E.; Peruzzi, M.; Del Vescovo, R.; Di Pilla, F.; Gobbi, G.; Serdoz, A.; Ferrara, R.; Schirone, L.; Sciarretta, S.; Nocella, C.; et al. Dark Chocolate Intake Positively Modulates Redox Status and Markers of Muscular Damage in Elite Football Athletes: A Randomized Controlled Study. Oxidative Med. Cell. Longev. 2018, 2018, 4061901. [Google Scholar] [CrossRef]
- Taub, P.R.; Ramirez-Sanchez, I.; Patel, M.; Higginbotham, E.; Moreno-Ulloa, A.; Román-Pintos, L.M.; Phillips, P.; Perkins, G.; Ceballos, G.; Villarreal, F. Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: Underlying mechanisms. A double blind, randomized, placebo controlled trial. Food Funct. 2016, 7, 3686–3693. [Google Scholar] [CrossRef] [Green Version]
- Bowtell, J.L.; Sumners, D.P.; Dyer, A.; Fox, P.; Mileva, K.N. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med. Sci. Sports Exerc. 2011, 43, 1544–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toscano, L.T.; Tavares, R.L.; Toscano, L.T.; Silva, C.S.; Almeida, A.E.; Biasoto, A.C.; Gonçalves Mda, C.; Silva, A.S. Potential ergogenic activity of grape juice in runners. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2015, 40, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; Kaltsatou, A.; Cicchella, A. Effect of Cocoa Products and Its Polyphenolic Constituents on Exercise Performance and Exercise-Induced Muscle Damage and Inflammation: A Review of Clinical Trials. Nutrients 2019, 11, 1471. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Centner, C.; Gollhofer, A.; König, D. Effects of Dietary Strategies on Exercise-Induced Oxidative Stress: A Narrative Review of Human Studies. Antioxidants 2021, 10, 542. [Google Scholar] [CrossRef] [PubMed]
- Yeşilbursa, D.; Serdar, Z.; Serdar, A.; Sarac, M.; Coskun, S.; Çoban, J. Lipid peroxides in obese patients and effects of weight loss with orlistat on lipid peroxides levels. Int. J. Obes. 2005, 29, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Knapik, K.; Sieroń, K.; Wojtyna, E.; Onik, G.; Romuk, E.; Birkner, E.; Stanek, A.; Kawczyk-Krupka, A.; Plinta, R.; Sieroń, A. Precompetitional Weight Reduction Modifies Prooxidative-Antioxidative Status in Judokas. Oxidative Med. Cell. Longev. 2019, 2019, 2164698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arslan, M.; Ipekci, S.H.; Kebapcilar, L.; Dogan Dede, N.; Kurban, S.; Erbay, E.; Gonen, M.S. Effect of Aerobic Exercise Training on MDA and TNF- α Levels in Patients with Type 2 Diabetes Mellitus. Int. Sch. Res. Not. 2014, 2014, 820387. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.D.; Arena, R.; Riebe, D.; Pescatello, L.S. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription. Curr. Sports Med. Rep. 2013, 12, 215–217. [Google Scholar] [CrossRef]
- Sharif, N.; Ghafoor, S.; Qamar, F. Chocolate Consumption in Children and Adults. Arch. Med. 2015, 7, 1–4. [Google Scholar]
- Cuenca-García, M.; Ruiz, J.R.; Ortega, F.B.; Castillo, M.J.; Group, H.S. Association between chocolate consumption and fatness in European adolescents. Nutrition (BurbankLos Angeles Cty. Calif.) 2014, 30, 236–239. [Google Scholar] [CrossRef]
Week | Exercise | |||
---|---|---|---|---|
Sets | Duration per Set (min) | Rest Period (seconds) | Intensity (Jumps/min) | |
1 | 20 | 1 min | 30 s | 60 |
2 | 15 | 1.5 | 30 s | 60 |
3 | 12 | 2 | 30 s | 60 |
4 | 10 | 2.5 | 30 s | 90 |
5 | 9 | 3 | 30 s | 90 |
6 | 7 | 4 | 30 s | 90 |
Content per Dose | Dark Chocolate | White Chocolate |
---|---|---|
Energy (kcal) | 184.5 | 168.8 |
Total fat (g) | 14.6 | 10.7 |
Carbohydrate (g) | 5.1 | 14.7 |
Protein (g) | 8.2 | 3.4 |
Cacao polyphenol (mg) | 2650 | 0 |
Epicatechin (mg) | 160 | 0 |
Caffeine (mg) | 130 | 0 |
Theobromine (mg) | 960 | 0 |
Flavonoids (mg) | 450 | 0 |
Cocoa (%) | 83 | 0 |
C | DC | JD | JW | |
---|---|---|---|---|
Height (cm) | 164.3 (1.5) | 167.8 (1.6) | 166.2 (1.2) | 165.5 (1.1) |
Body mass (kg) | 90.2 (1.6) | 88 (1.2) | 89.7 (1.6) | 87.7 (1.6) |
TAC (U/m) | 12.1 (0.4) | 10.7 (0.5) | 11.3 (0.5) | 10.9 (0.4) |
SOD (ng/mL) | 86.9 (2.5) | 85.5 (2.2) | 85.2 (2.3) | 84.8 (2) |
GPx (U/mL) | 162.2 (1.8) | 159.7 (2.7) | 153.8 (4.4) | 162.1 (1.9) |
TBARS (µM) | 15.4 (0.6) | 15.6 (0.2) | 15.4 (0.2) | 14.9 (0.4) |
Dependent Variable | Contrast | β (SE) | 95% CI | p-Value |
---|---|---|---|---|
Body mass-post | DC vs. C | −0.55 (0.18) | −0.04 to −1.05 | 0.026 |
JD vs. C | −2.82 (0.18) | −3.32 to −2.32 | <0.001 | |
JW vs. C | −1.25 (0.18) | −1.76 to −0.74 | <0.001 | |
DC vs. JD | 2.27 (0.18) | 1.76 to 2.77 | <0.001 | |
DC vs. JW | 0.70 (0.18) | 0.20 to 1.20 | 0.002 | |
JD vs. JW | −1.56 (0.18) | −2.0 to −1.0 | <0.001 | |
BMI-post | DC vs. C | −0.24 (0.07) | −0.44 to −0.40 | 0.010 |
JD vs. C | −1 (0.07) | −1.22 to −0.83 | <0.001 | |
JW vs. C | −0.5 (0.07) | −0.69 to −0.30 | <0.001 | |
DC vs. JD | 0.78 (0.07) | 0.59 to 0.98 | <0.001 | |
DC vs. JW | 0.25 (0.07) | 0.06 to 0.45 | 0.004 | |
JD vs. JW | −0.52 (0.07) | −0.72 to −0.33 | <0.001 | |
TAC-post | DC vs. C | 0.27 (0.13) | −0.08 to 0.63 | 0.237 |
JD vs. C | 0.69 (0.13) | 0.35 to 1.04 | <0.001 | |
JW vs. C | 0.14 (0.13) | −0.21 to 0.50 | 1.000 | |
DC vs. JD | −0.42 (0.12) | −0.76 to −0.08 | 0.010 | |
DC vs. JW | 0.13 (0.12) | −0.21 to 0.47 | 1.000 | |
JD vs. JW | 0.55 (0.12) | 0.21 to 0.89 | <0.001 | |
SOD-post | DC vs. C | 1.87 (0.95) | −0.76 to 4.50 | 0.334 |
JD vs. C | 3.85 (0.95) | 1.22 to 6.48 | 0.001 | |
JW vs. C | 2.52 (0.95) | −0.12 to 5.15 | 0.069 | |
DC vs. JD | −1.98 (0.95) | −4.61 to 0.64 | 0.256 | |
DC vs. JW | −0.65 (0.95) | −3.27 to 1.98 | 1.000 | |
JD vs. JW | 1.34 (0.95) | −1.29 to 3.96 | 1.000 | |
GPx-post | DC vs. C | 2.58 (1.21) | −0.77 to 5.94 | 0.234 |
JD vs. C | 6.40 (1.26) | 2.91 to 9.90 | <0.001 | |
JW vs. C | 2.69 (1.21) | −0.65 to 6.03 | 0.188 | |
DC vs. JD | −3.82 (1.24) | −7.23 to −0.40 | 0.021 | |
DC vs. JW | −0.11 (1.21) | −3.46 to 3.25 | 1.000 | |
JD vs. JW | 3.71 (1.26) | 0.22 to 7.20 | 0.032 | |
TBARS-post | DC vs. C | −0.16 (0.09) | −0.41 to 0.09 | 0.506 |
JD vs. C | −0.40 (0.09) | −0.64 to −0.15 | <0.001 | |
JW vs. C | −0.33 (0.09) | −0.58 to −0.08 | 0.004 | |
DC vs. JD | 0.24 (0.09) | −0.01 to 0.49 | 0.065 | |
DC vs. JW | 0.17 (0.09) | −0.08 to 0.42 | 0.405 | |
JD vs. JW | −0.07 (0.09) | −0.32 to 0.18 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooshmand Moghadam, B.; Bagheri, R.; Ghanavati, M.; Khodadadi, F.; Cheraghloo, N.; Wong, A.; Nordvall, M.; Suzuki, K.; Shabkhiz, F. The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys. Antioxidants 2021, 10, 1675. https://doi.org/10.3390/antiox10111675
Hooshmand Moghadam B, Bagheri R, Ghanavati M, Khodadadi F, Cheraghloo N, Wong A, Nordvall M, Suzuki K, Shabkhiz F. The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys. Antioxidants. 2021; 10(11):1675. https://doi.org/10.3390/antiox10111675
Chicago/Turabian StyleHooshmand Moghadam, Babak, Reza Bagheri, Matin Ghanavati, Fatemeh Khodadadi, Neda Cheraghloo, Alexei Wong, Michael Nordvall, Katsuhiko Suzuki, and Fatemeh Shabkhiz. 2021. "The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys" Antioxidants 10, no. 11: 1675. https://doi.org/10.3390/antiox10111675
APA StyleHooshmand Moghadam, B., Bagheri, R., Ghanavati, M., Khodadadi, F., Cheraghloo, N., Wong, A., Nordvall, M., Suzuki, K., & Shabkhiz, F. (2021). The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys. Antioxidants, 10(11), 1675. https://doi.org/10.3390/antiox10111675