UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Preparation and Fermentation of VJ
2.3. Proximate Composition and Total Phenolic and Flavonoid Concentrations
2.4. Antioxidant Properties
2.4.1. 2,2-Diphenyl-1-Picrylhydrazyl Radical Scavenging Activity
2.4.2. Hydroxyl Radical Scavenging Activity
2.4.3. Ferric Reducing Antioxidant Power
2.4.4. Inhibition Rate of Lipid Peroxidation
2.5. VJ Fermentation Metabolite Analysis
2.5.1. UPLC-QTOF-MS/MS Profile
2.5.2. GC-MS Profile
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition and TP and TF Content
3.2. Antioxidant Capacity of Fermented VJ
3.3. Phytochemical Compounds Formed during VJ Fermentation
3.3.1. UPLC-QTOF-MS/MS Characterization of Fermented VJ
3.3.2. GC-MS Characterization of Fermented VJ
3.3.3. Comparative Analysis of Fermented VJ Phytochemicals and Their Antioxidant Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, B.T.; Bujna, E.; Fekete, N.; Tran, A.T.M.; Rezessy-Szabo, J.M.; Prasad, R.; Nguyen, Q.D. Probiotic Beverage From Pineapple Juice Fermented with Lactobacillus and Bifidobacterium Strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manga, J.A.M.; Zangué, S.C.D.; Tatsadjeu, L.N.; Zargar, M.; Albert, E.; Bayat, M. Producing probiotic beverage based on raffia sap fermented by Lactobacillus fermentum and Bifidobacterium bifidum. Res. Crop. 2019, 20, 629–634. [Google Scholar]
- Dias, C.O.; Scariot, M.C.; Amboni, R.D.d.M.C.; Arisi, A.C.M. Application of propidium monoazide coupled with quantitative PCR to evaluate cell viability of Bifidobacterium animalis subsp. lactis in a non-dairy probiotic beverage. Ann. Microbiol. 2020, 70, 22. [Google Scholar] [CrossRef]
- Lee, M.; Song, J.H.; Jung, M.Y.; Lee, S.H.; Chang, J.Y. Large-scale targeted metagenomics analysis of bacterial ecological changes in 88 kimchi samples during fermentation. Food Microbiol. 2017, 66, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Song, J.H.; Lee, S.H.; Jung, M.Y.; Chang, J.Y. Effect of seasonal production on bacterial communities in Korean industrial kimchi fermentation. Food Control 2018, 91, 381–389. [Google Scholar] [CrossRef]
- Lee, M.E.; Jang, J.Y.; Lee, J.H.; Park, H.W.; Choi, H.J.; Kim, T.W. Starter cultures for kimchi fermentation. J. Microbiol. Biotechnol. 2015, 25, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
- Carrillo, C.; Wilches-Pérez, D.; Hallmann, E.; Kazimierczak, R.; Rembiałkowska, E. Organic versus conventional beetroot. Bioactive compounds and antioxidant properties. Lwt 2019, 116, 108552. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Smiechowska, A.; Bartoszek, A.; Namiesnik, J. The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chem. 2008, 108, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, Q.; Huang, H.; Hou, K.; Dong, R.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber in vivo and in vitro. Food Funct. 2020, 11, 748–758. [Google Scholar] [CrossRef]
- Yu, L.L.; Zhou, K.K.; Parry, J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem. 2005, 91, 723–729. [Google Scholar] [CrossRef]
- Soares, J.C.; Rosalen, P.L.; Lazarini, J.G.; Massarioli, A.P.; da Silva, C.F.; Nani, B.D.; Franchin, M.; de Alencar, S.M. Comprehensive characterization of bioactive phenols from new Brazilian superfruits by LC-ESI-QTOF-MS, and their ROS and RNS scavenging effects and anti-inflammatory activity. Food Chem. 2019, 281, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.F.; Maciel, T.C.; Rodrigues, S. Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Res. Int. 2011, 44, 1276–1283. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Pussa, T.; Matt, D.; Luik, A.; Gozdowski, D.; Rembialkowska, E. Beetroot (Beta vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels and anticancer activity. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, E.C.; Aires, R.; Ton, A.M.M.; Amorim, F.G. New Insights on the Beneficial Effects of the Probiotic Kefir on Vascular Dysfunction in Cardiovascular and Neurodegenerative Diseases. Curr. Pharm. Des. 2020, 26, 3700–3710. [Google Scholar] [CrossRef] [PubMed]
- Al Kassaa, I.; Hamze, M.; Hober, D.; Chihib, N.E.; Drider, D. Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. Microb. Ecol. 2014, 67, 722–734. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Guo, Y.; Wu, P.; Wang, Y.; Kwaku Golly, M.; Ma, H. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. Food Chem. 2020, 311, 125960. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Leung, R.; Venus, C.; Zeng, T.; Tsopmo, A. Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chem. 2018, 254, 165–169. [Google Scholar] [CrossRef]
- Choi, I.S.; Ko, S.H.; Lee, M.E.; Kim, H.M.; Yang, J.E.; Jeong, S.-G.; Lee, K.H.; Chang, J.Y.; Kim, J.-C.; Park, H.W. Production, Characterization, and Antioxidant Activities of an Exopolysaccharide Extracted from Spent Media Wastewater after Leuconostoc mesenteroides WiKim32 Fermentation. ACS Omega 2021, 6, 8171–8178. [Google Scholar] [CrossRef] [PubMed]
- de Souza, S.A.; da Silva, T.M.G.; da Silva, E.M.S.; Camara, C.A.; Silva, T.M.S. Characterisation of phenolic compounds by UPLC-QTOF-MS/MS of geopropolis from the stingless bee Melipona subnitida (jandaira). Phytochem. Anal. 2018, 29, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Ogodo, A.C.; Ugbogu, O.C.; Onyeagba, R.A.; Okereke, H.C. In-vitro starch and protein digestibility and proximate composition of soybean flour fermented with lactic acid bacteria (LAB) consortia. Agric. Nat. Resour. 2018, 52, 503–509. [Google Scholar] [CrossRef]
- Olukomaiya, O.O.; Adiamo, O.Q.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 2020, 315, 126238. [Google Scholar] [CrossRef] [PubMed]
- Surveswaran, S.; Cai, Y.-Z.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef]
- Landete, J.M.; Curiel, J.A.; Rodríguez, H.; de las Rivas, B.; Muñoz, R. Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. J. Funct. Foods 2014, 7, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Ghani, M.A.; Barril, C.; Bedgood, D.R., Jr.; Prenzler, P.D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 2017, 230, 195–207. [Google Scholar] [CrossRef]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced antioxidant activity for apple juice fermented with Lactobacillus plantarum ATCC14917. Molecules 2019, 24, 51. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, M.T.; Hernandez, M.; Novak-Frazer, L.; Kuula, H.; Ramage, G.; Bowyer, P.; Warn, P.; Sorsa, T.; Rautemaa, R. DL-2-hydroxyisocaproic acid attenuates inflammatory responses in a murine Candida albicans biofilm model. Clin. Vaccine Immunol. 2014, 21, 1240–1245. [Google Scholar] [CrossRef] [Green Version]
- Sakko, M.; Tjäderhane, L.; Sorsa, T.; Hietala, P.; Järvinen, A.; Bowyer, P.; Rautemaa, R. 2-Hydroxyisocaproic acid (HICA): A new potential topical antibacterial agent. Int. J. Antimicrob. Agents 2012, 39, 539–540. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kosaka, M.; Shindo, K.; Kawasumi, T.; Kimoto-Nira, H.; Suzuki, C. Identification of antioxidants produced by Lactobacillus plantarum. Biosci. Biotechnol. Biochem. 2013, 77, 121006. [Google Scholar] [CrossRef]
- Wong, C.B.; Tanaka, A.; Kuhara, T.; Xiao, J.Z. Potential Effects of Indole-3-Lactic Acid, a Metabolite of Human Bifidobacteria, on NGF-induced Neurite Outgrowth in PC12 Cells. Microorganisms 2020, 8, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajanikar, R.; Nataraj, B.H.; Naithani, H.; Ali, S.A.; Panjagari, N.R.; Behare, P.V. Phenyllactic Acid: A Green Compound for Food Biopreservation. Food Control 2021, 128, 108184. [Google Scholar] [CrossRef]
- Ye, J.-H.; Huang, L.-Y.; Terefe, N.S.; Augustin, M.A. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chem. 2019, 286, 616–623. [Google Scholar] [CrossRef]
- Eckstein, J.A.; Ammerman, G.M.; Reveles, J.M.; Ackermann, B.L. Analysis of glutamine, glutamate, pyroglutamate, and GABA in cerebrospinal fluid using ion pairing HPLC with positive electrospray LC/MS/MS. J. Neurosci. Methods 2008, 171, 190–196. [Google Scholar] [CrossRef]
- Mucchetti, G.; Locci, F.; Massara, P.; Vitale, R.; Neviani, E. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses. J. Dairy Sci. 2002, 85, 2489–2496. [Google Scholar] [CrossRef]
- Hawkins, R.A.; Simpson, I.A.; Mokashi, A.; Vina, J.R. Pyroglutamate stimulates Na+ -dependent glutamate transport across the blood-brain barrier. FEBS Lett. 2006, 580, 4382–4386. [Google Scholar] [CrossRef] [Green Version]
- Bhat, R.; Axtell, R.; Mitra, A.; Miranda, M.; Lock, C.; Tsien, R.W.; Steinman, L. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 2580–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, K.; Shirai, T.; Ochiai, H.; Kasao, M.; Hayakawa, K.; Kimura, M.; Sansawa, H. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 2003, 57, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.C.P.; Louzada, P.R.; De Mello, F.G.; Ferreira, S.T. Neuroprotection against Aβ and glutamate toxicity by melatonin: Are GABA receptors involved? Neurotox. Res. 2003, 5, 323–327. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Z.; Huang, X.; Yang, K.; Gao, S.; Du, R. Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Sci. Hortic. 2014, 168, 132–137. [Google Scholar] [CrossRef]
- Rico-Rodriguez, F.; Villamiel, M.; Ruiz-Aceituno, L.; Serrato, J.C.; Montilla, A. Effect of the lactose source on the ultrasound-assisted enzymatic production of galactooligosaccharides and gluconic acid. Ultrason. Sonochem. 2020, 67, 104945. [Google Scholar] [CrossRef]
- Canete-Rodriguez, A.M.; Santos-Duenas, I.M.; Jimenez-Hornero, J.E.; Ehrenreich, A.; Liebl, W.; Garcia-Garcia, I. Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process. Biochem. 2016, 51, 1891–1903. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Elahi, F.; Daliri, E.B.; Tyagi, A.; Chen, X.Q.; Chelliah, R.; Kim, J.H.; Han, S.I.; Oh, D.H. UHPLC-ESI-QTOF-MS/MS characterization, antioxidant and antidiabetic properties of sorghum grains. Food Chem. 2021, 337, 127788. [Google Scholar] [CrossRef] [PubMed]
Parameters (g/100 g) | VJ | VJ + WiKim39 | VJ + WiKim0124 |
---|---|---|---|
Moisture | 7.05 ± 0.25 a | 7.01 ± 0.15 a | 6.66 ± 0.21 b |
Ash | 1.60 ± 0.12 | 1.68 ± 0.11 | 1.67 ± 0.15 |
Crude protein | 2.24 ± 0.01 c | 3.60 ± 0.05 a | 3.06 ± 0.02 b |
Crude fat | 0.49 ± 0.15 a | 0.69 ± 0.12 b | 0.69 ± 0.01 a |
Carbohydrate * | 88.173 ± 0.16 | 86.23 ± 0.14 | 87.07 ± 0.05 |
Crude fiber | 0.45 ± 0.15 b | 0.79 ± 0.01 b | 0.85 ± 0.01 a |
TP (µg Garlic acid equivalents) | 206.29 ± 1.44 c | 255.69 ± 2.44 a | 240.52 ± 0.72 b |
TF (µg Catechin equivalents) | 12.67 ± 0.09 b | 16.75 ± 0.13 a | 11.62 ± 0.15 c |
Class | Tentative Identification | RT (min) | Molecular Formula | Molecular Weight | Molecular Ion [M − H]− (m/z) | Error (ppm) | VJ | VJ + WiKim39 | VJ + WiKim0124 |
---|---|---|---|---|---|---|---|---|---|
Organic acids | Citric acid | 1.52 | C6H8O7 | 192 | 191.02 | 0.263 | ● * | ● | ● |
3-O-Coumaroylquinic acid | 14.09 | C16H18O8 | 338.1 | 337.094 | 2.856 | ● | ● | ● | |
D-Leucic acid a | 12.31 | C6H12O3 | 132.1 | 131.072 | 5.655 | ND | ● | ● | |
1,8-nonanedioic acid | 23.55 | C9H16O4 | 188.1 | 187.098 | 3.655 | ● | ● | ● | |
Indole-3-lactic acid a | 17.84 | C11H11NO3 | 205.1 | 204.067 | 1.636 | ND | ● | ● | |
Malic acid | 1.25 | C4H6O5 | 134 | 133.015 | 2.128 | ● | ND | ND | |
Phenols | Caffeic acid | 10.92 | C9H8O4 | 180 | 179.036 | 1.978 | ● | ND | ● |
5-Hydroxyquinoline | 18.28 | C9H7NO | 145.1 | 144.046 | 4.951 | ● | ● | ● | |
3-Phenyllactic acid a | 15.12 | C9H10O3 | 166.1 | 165.056 | 2.802 | ND | ● | ● | |
Salicylic acid | 7.39 | C7H6O3 | 138 | 137.024 | 0.054 | ● | ● | ● | |
Neochlorogenic acid | 7.77 | C16H18O9 | 354.1 | 353.089 | 2.492 | ● | ● | ● | |
Ferulic acid | 17.69 | C10H10O4 | 194.1 | 193.051 | 1.646 | ● | ND | ● | |
Sugar | Sucrose | 1.14 | C12H22O11 | 342.1 | 341.109 | 2.319 | ● | ● | ● |
D-Tagatose | 1.09 | C6H12O6 | 180.1 | 179.057 | 2.029 | ● | ● | ● | |
Miscellaneous | 9-(2,3-dihydroxypropoxy)-9-oxononanoic acid | 23.29 | C12H22O6 | 262.1 | 261.135 | 1.907 | ● | ● | ● |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Song, J.H.; Choi, E.J.; Yun, Y.-R.; Lee, K.W.; Chang, J.Y. UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential. Antioxidants 2021, 10, 1761. https://doi.org/10.3390/antiox10111761
Lee M, Song JH, Choi EJ, Yun Y-R, Lee KW, Chang JY. UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential. Antioxidants. 2021; 10(11):1761. https://doi.org/10.3390/antiox10111761
Chicago/Turabian StyleLee, Moeun, Jung Hee Song, Eun Ji Choi, Ye-Rang Yun, Ki Won Lee, and Ji Yoon Chang. 2021. "UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential" Antioxidants 10, no. 11: 1761. https://doi.org/10.3390/antiox10111761
APA StyleLee, M., Song, J. H., Choi, E. J., Yun, Y. -R., Lee, K. W., & Chang, J. Y. (2021). UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential. Antioxidants, 10(11), 1761. https://doi.org/10.3390/antiox10111761