A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Extraction of Phenolic Compounds
2.4. Estimation of Phenolic Compounds and Antioxidant Assay
2.4.1. Determination of Total Phenolic Content (TPC)
2.4.2. Determination of Total Flavonoid Content (TFC)
2.4.3. Determination of Total Tannin Content (TTC)
2.4.4. 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.4.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4.6. 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Assay
2.4.7. Total Antioxidant Capacity (TAC)
2.5. Characterization of Phenolic Compounds by LC-ESI-QTOF-MS/MS Analysis
2.6. HPLC–PDA Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compound Estimation (TPC, TFC and TTC)
3.2. Antioxidant Activity (DPPH, FRAP, ABTS and TAC)
3.3. Correlation among Different Antioxidant Variables
3.4. LC-MS Analysis
3.4.1. Phenolic Acids
Hydroxybenzoic Acids
Hydroxycinnamic Acids
Hydroxyphenylacetic Acids and Hydroxyphenylpropanoic Acids
3.4.2. Flavonoids
Anthocyanins, Dihydrochalcones and Dihydroflavonols
Flavanols
Flavonols
Flavanones, Flavones and Isoflavonoids
3.4.3. Other Phenolic Compounds
3.5. HPLC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolniak-Ostek, J. Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef]
- Silva, G.J.; Souza, T.M.; Barbieri, R.L.; De Oliveira, A.C. Origin, Domestication, and Dispersing of Pear (Pyrus spp.). Adv. Agric. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Jun-feng, G.; Xiao-dong, D. Present situation and future of pear processing technology in china. Storage Process 2017, 17, 1–4. [Google Scholar]
- Yim, S.; Nam, S. Physiochemical, nutritional and functional characterization of 10 different pear cultivars (pyrus spp.). J. Appl. Bot. Food Qual. 2016, 89, 73–81. [Google Scholar]
- Borges, G.; Mullen, W.; Crozier, A. Comparison of the polyphenolic composition and antioxidant activity of European commercial fruit juices. Food Funct. 2010, 1, 73–83. [Google Scholar] [CrossRef]
- Katz, I.H.; Nagar, E.E.; Okun, Z.; Shpigelman, A. The Link between Polyphenol Structure, Antioxidant Capacity and Shelf-Life Stability in the Presence of Fructose and Ascorbic Acid. Molecules 2020, 25, 225. [Google Scholar] [CrossRef] [Green Version]
- Brahem, M.; Renard, C.M.; Eder, S.; Loonis, M.; Ouni, R.; Mars, M.; Le Bourvellec, C. Characterization and quantification of fruit phenolic compounds of European and Tunisian pear cultivars. Food Res. Int. 2017, 95, 125–133. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef]
- Jie, Z.; Hongbao, W.; Jiajun, K.; Xiaofei, S.; Shutian, T. Purification and antioxidant activity of polyphenols from young pear fruits. Food Sci. China 2017, 38, 14–20. [Google Scholar]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities. Process 2019, 7, 764. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity. Foods 2019, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Samsonowicz, M.; Regulska, E.; Karpowicz, D.; Leśniewska, B. Antioxidant properties of coffee substitutes rich in polyphenols and minerals. Food Chem. 2019, 278, 101–109. [Google Scholar] [CrossRef]
- Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 2018, 269, 355–374. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef]
- Subbiah, V.; Zhong, B.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Screening of Phenolic Compounds in Australian Grown Berries by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential. Antioxidants 2021, 10, 26. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Zhong, B.; Robinson, N.A.; Warner, R.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS Characterization of Seaweed Phenolics and Their Antioxidant Potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef]
- Erbil, N.; Murathan, Z.T.; Arslan, M.; Ilcim, A.; Sayin, B. Antimicrobial, Antioxidant, and Antimutagenic Activities of Five Turkish Pear Cultivars. Erwerbs-Obstbau 2018, 60, 203–209. [Google Scholar] [CrossRef]
- Manzoor, M.; Anwar, F.; Bhatti, I.A.; Jamil, A. Variation of phenolics and antioxidant activity between peel and pulp parts of pear (pyrus communis L.) fruit. Pak. J. Bot. 2013, 45, 1521–1525. [Google Scholar]
- Azzini, E.; Maiani, G.; Durazzo, A.; Foddai, M.S.; Intorre, F.; Venneria, E.; Forte, V.; Lucchetti, S.; Ambra, R.; Pastore, G.; et al. Giovanni Varieties (Pyrus communis L.): Antioxidant Properties and Phytochemical Characteristics. Oxidative Med. Cell. Longev. 2019, 2019, 6714103-8. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Zhou, B.; Gao, W.; Cao, J.; Huang, L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem. 2014, 152, 531–538. [Google Scholar] [CrossRef]
- Rawat, P.; Saroj, N.; Rawat, P.; Kumar, P.; Singh, T.D.; Pal, M. Evaluation for total phenolic, total flavonoid and antioxidant activity of leaves and roots of pyrus pashia. Int. J. Med. Pharm. Res 2015, 1, 193–196. [Google Scholar]
- Patricia, V.M.; Syaputri, F.N.; Tugon, T.D.A.; Mardhatillah, A. Antioxidant Properties of Pyrus communis and Pyrus pyrifolia Peel Extracts. Borneo J. Pharm. 2020, 3, 64–70. [Google Scholar] [CrossRef]
- Ma, J.N.; Wang, S.L.; Zhang, K.; Wu, Z.G.; Hattori, M.; Chen, G.L.; Ma, C.M. Chemical components and antioxidant activity of the peels of commercial apple-shaped pear (fruit of pyrus pyrifolia cv. Pingguoli). J. Food Sci. 2012, 77, C1097–C1102. [Google Scholar]
- Velmurugan, C.; Bhargava, A. Total phenolic, flavonoids and tannin content of various extracts from pyrus communis fruit. Int. J. Pharm. Anal. Res. 2014, 3, 384–390. [Google Scholar]
- Nomura, K.; Takaoka, M.; Uematsu, C.; Ieguchi, T.; Katayama, H. Pear (pyrus l.) genetic resources from northern japan: Evaluation of antioxidant capacity. In Proceedings of the XII International Pear Symposium 1094, Leuven, Belgium, 14–18 July 2014; pp. 539–548. [Google Scholar]
- Galvis-Sánchez, A.C.; Gil-Izquierdo, A.; Gil, M.I. Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. J. Sci. Food Agric. 2003, 83, 995–1003. [Google Scholar] [CrossRef]
- Syrgiannidis, G.; Sotiropoulos, T.; Petridis, A.; Therios, I. ‘Vergina’ pear. HortScience 2011, 46, 130–131. [Google Scholar]
- Sotiropoulos, T.; Koutinas, N.; Giannakoula, A. ‘Naoussa’ pear. HortScience 2016, 51, 1438–1439. [Google Scholar]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Jamuna, K.; Ramesh, C.; Srinivasa, T.; Raghu, K. In vitro antioxidant studies in some common fruits. Int. J. Pharm. Pharm. Sci. 2011, 3, 60–63. [Google Scholar]
- Batista, S.; Guiné, R.; Barroca, M.J.; Gonçalves, F.; Pérez, M.D.; San José, M.; Ferreira, D. Sun-dried pears: Phenolic compounds and antioxidant activity. 7° Encontro Química Aliment. 2005, 2–18. [Google Scholar]
- Jamuna, K.; Ramesh, C.; Srinivasa, T.; Raghu, K. Total antioxidant capacity in aqueous extracts of some common fruits. Int. J. Pharm. Sci. Res. 2011, 2, 448. [Google Scholar]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Du, G.; Li, M.; Ma, F.; Liang, D. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
- Luna-Guevara, M.L.; Luna-Guevara, J.J.; Hernández-Carranza, P.; Ruíz-Espinosa, H.; Ochoa-Velasco, C.E. Phenolic compounds: A good choice against chronic degenerative diseases. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 59, pp. 79–108. [Google Scholar]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic profile of grape canes: Novel compounds identified by lc-esi-ltq-orbitrap-ms. Molecules 2019, 24, 3763. [Google Scholar]
- Rajauria, G.; Foley, B.; Abu-Ghannam, N. Identification and characterization of phenolic antioxidant compounds from brown Irish seaweed Himanthalia elongata using LC-DAD–ESI-MS/MS. Innov. Food Sci. Emerg. Technol. 2016, 37, 261–268. [Google Scholar] [CrossRef]
- Chen, S.; Lu, C.; Zhao, R. Identification and Quantitative Characterization of PSORI-CM01, a Chinese Medicine Formula for Psoriasis Therapy, by Liquid Chromatography Coupled with an LTQ Orbitrap Mass Spectrometer. Molecules 2015, 20, 1594–1609. [Google Scholar] [CrossRef] [Green Version]
- Catarino, M.D.; Silva, A.M.; Saraiva, S.C.; Sobral, A.J.; Cardoso, S.M. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab. J. Chem. 2018, 11, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.L.; Kermode, W.J. Salicylic acid in fresh and canned fruit and vegetables. J. Sci. Food Agric. 1981, 32, 833–836. [Google Scholar] [CrossRef]
- Pj, B.; Shibumon, G.; Sunny, K.; Cincy, G. 2,3-dihydroxybenzoic acid: An effective antifungal agent isolated from flacourtia inermis fruit. Int. J. Pharm. Clin. Res. 2010, 2, 101–105. [Google Scholar]
- Wang, J.; Jia, Z.; Zhang, Z.; Wang, Y.; Liu, X.; Wang, L.; Lin, R. Analysis of Chemical Constituents of Melastoma dodecandrum Lour. by UPLC-ESI-Q-Exactive Focus-MS/MS. Molecules 2017, 22, 476. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative analysis of chemical constituents of moringa oleifera leaves from china and india by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules 2019, 24, 942. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.-M.; Cheng, Y.-Y.; Tsai, T.-H. Integrated LC-MS/MS Analytical Systems and Physical Inspection for the Analysis of a Botanical Herbal Preparation. Molecules 2015, 20, 10641–10656. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, A.; Demirsoy, L.; Demirsoy, H.; Asan, A.; Gül, O. Phenolic compounds and chemical characteristics of pears (pyrus communis l.). Int. J. Food Prop. 2014, 18, 536–546. [Google Scholar]
- Simirgiotis, M.; Quispe, C.; Bórquez, J.; Areche, C.; Sepulveda, B. Fast Detection of Phenolic Compounds in Extracts of Easter Pears (Pyrus communis) from the Atacama Desert by Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC–Q/Orbitrap/MS/MS). Molecules 2016, 21, 92. [Google Scholar] [CrossRef] [Green Version]
- Hudina, M.; Stampar, F.; Orazem, P.; Petkovsek, M.M.; Veberic, R. Phenolic compounds profile, carbohydrates and external fruit quality of the ‘Concorde’ pear (Pyrus communis L.) after bagging. Can. J. Plant Sci. 2012, 92, 67–75. [Google Scholar] [CrossRef]
- Salta, J.; Martins, A.; Dos Santos, R.G.; Neng, N.; Nogueira, J.; Justino, J.; Rauter, A.P. Phenolic composition and antioxidant activity of Rocha pear and other pear cultivars—A comparative study. J. Funct. Foods 2010, 2, 153–157. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Harnly, J.M. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.). J. Agric. Food Chem. 2008, 56, 9094–9101. [Google Scholar]
- Ludwig, I.A.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.; Lean, M.E.; Crozier, A. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic. Biol. Med. 2015, 89, 758–769. [Google Scholar] [CrossRef] [Green Version]
- Piovesana, A.; Noreña, C.P.Z. Study of Acidified Aqueous Extraction of Phenolic Compounds from Hibiscus sabdariffa L. calyces. Open Food Sci. J. 2019, 11, 25–34. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.-C.; et al. Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of phenolic composition in lamiaceae spices by lc-esi-ms/ms. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar]
- Chaowuttikul, C.; Palanuvej, C.; Ruangrungsi, N. Quantification of chlorogenic acid, rosmarinic acid, and caffeic acid contents in selected Thai medicinal plants using RP-HPLC-DAD. Braz. J. Pharm. Sci. 2020, 56, 56. [Google Scholar] [CrossRef] [Green Version]
- Sasot, G.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Mercader-Martí, M.; Estruch, R.; Lamuela-Raventós, R.M. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach. Food Res. Int. 2017, 100, 435–444. [Google Scholar] [CrossRef]
- Cuadrado-Silva, C.T.; Pozo-Bayon, M.A.; Osorio, C. Targeted Metabolomic Analysis of Polyphenols with Antioxidant Activity in Sour Guava (Psidium friedrichsthalianum Nied.) Fruit. Molecules 2016, 22, 11. [Google Scholar] [CrossRef] [Green Version]
- Trautvetter, S.; Koelling-Speer, I.; Speer, K. Confirmation of phenolic acids and flavonoids in honeys by UPLC-MS. Apidologie 2009, 40, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Petkovska, A.; Gjamovski, V.; Stanoeva, J.P.; Stefova, M. Characterization of the Polyphenolic Profiles of Peel, Flesh and Leaves of Malus domestica Cultivars Using UHPLC-DAD-HESI-MSn. Nat. Prod. Commun. 2017, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, X.; Saleri, F.D.; Guo, M. Analysis of Flavonoids in Rhamnus davurica and Its Antiproliferative Activities. Molecules 2016, 21, 1275. [Google Scholar] [CrossRef]
- Raja, M.; Hernández-Revelles, J.; Hernández-Cassou, S.; Saurina, J. Determination of polyphenols in the pear pulp matrix by solvent extraction and liquid chromatography with UV-Vis detection. Anal. Methods 2014, 6, 9769–9776. [Google Scholar] [CrossRef]
- Chung, S.W. Anthocyanin Biosynthesis Associated with Skin Coloration in Highbush Blueberry Fruit During Ripening. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2019. [Google Scholar]
- Tsao, R.; Yang, R.; Young, A.J.C.; Zhu, H. Polyphenolic Profiles in Eight Apple Cultivars Using High-Performance Liquid Chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Dairpoosh, F. Profile of Polyphenols in a European Diet. Ph.D. Thesis, Jacobs University, Bremen, Germany, 2011. [Google Scholar]
- Alvarez Arraibi, A. Cosmeceutical Potential of Apple Pomace Phenolic Compounds: Development of a Natural-Based Dermal Hydrogel as Proof of Concept. Ph.D. Thesis, University of Salamanca, Salamanca, Spain, 2018. [Google Scholar]
- Lv, Q.; Luo, F.; Zhao, X.; Liu, Y.; Hu, G.; Sun, C.; Li, X.; Chen, K. Identification of Proanthocyanidins from Litchi (Litchi chinensis Sonn.) Pulp by LC-ESI-Q-TOF-MS and Their Antioxidant Activity. PLoS ONE 2015, 10, e0120480. [Google Scholar] [CrossRef] [Green Version]
- De Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Quantitative Analysis of Flavan-3-ols in Spanish Foodstuffs and Beverages. J. Agric. Food Chem. 2000, 48, 5331–5337. [Google Scholar] [CrossRef]
- Yuzuak, S.; Ballington, J.; Xie, D.Y. Hplc-qtof-ms/ms-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids flh 13-11 and flh 17-66. Metabolites 2018, 8, 57. [Google Scholar]
- Arts, I.C.W.; Van De Putte, B.; Hollman, P.C.H. Catechin Contents of Foods Commonly Consumed in the Netherlands. 1. Fruits, Vegetables, Staple Foods, and Processed Foods. J. Agric. Food Chem. 2000, 48, 1746–1751. [Google Scholar] [CrossRef]
- Long, W.; Ye, Z.; Ping, W.; Zhen, X.; Zhuang, W.J.; Chong, L.; Qiong, L. Rapid separation and identification of multiple constituents in vine tea by uflc system coupled with qtof-ms/ms. J. Pharm. Sci. Innov. 2015, 4, 120–126. [Google Scholar]
- Riethmüller, E.; Tóth, G.; Alberti, Á.; Végh, K.; Burlini, I.; Könczöl, Á.; Balogh, G.T.; Kéry, Á. First characterisation of flavonoid-and diarylheptanoid-type antioxidant phenolics in corylus maxima by hplc-dad-esi-ms. J. Pharm. Biomed. Anal. 2015, 107, 159–167. [Google Scholar]
- Guijarro-Díez, M.; Nozal, L.; Marina, M.L.; Crego, A.L. Metabolomic fingerprinting of saffron by LC/MS: Novel authenticity markers. Anal. Bioanal. Chem. 2015, 407, 7197–7213. [Google Scholar] [CrossRef]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Tsiaka, T.; Proestos, C.; Zoumpoulakis, P. Total phenolic content, antioxidant capacity and phytochemical profiling of grape and pomegranate wines. RSC Adv. 2015, 5, 101683–101692. [Google Scholar] [CrossRef]
- Barbosa, W.L.R.; Peres, A.; Gallori, S.; Vincieri, F.F. Determination of myricetin derivatives in Chrysobalanus icaco L. (Chrysobalanaceae). Rev. Bras. Farm. 2006, 16, 333–337. [Google Scholar] [CrossRef]
- Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds in Palm Fruits (Jelly and Fishtail Palm) and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Nogata, Y.; Ohta, H.; Yoza, K.-I.; Berhow, M.; Hasegawa, S. High-performance liquid chromatographic determination of naturally occurring flavonoids in Citrus with a photodiode-array detector. J. Chromatogr. A 1994, 667, 59–66. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Mukhopadhyay, S.; Robbins, R.J.; Harnly, J.M. Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. J. Food Compos. Anal. 2007, 20, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Vorsa, N.; Harrington, P.D.B.; Chen, P. Nontargeted Metabolomic Study on Variation of Phenolics in Different Cranberry Cultivars Using UPLC-IM-HRMS. J. Agric. Food Chem. 2018, 66, 12206–12216. [Google Scholar] [CrossRef]
- Vuković, N.L.; Vukić, M.D.; Đelić, G.T.; Kacaniova, M.M.; Cvijović, M. The investigation of bioactive secondary metabolites of the methanol extract of eryngium amethystinum. Kragujev. J. Sci. 2018, 40, 113–129. [Google Scholar]
- Pacifico, S.; Piccolella, S.; Lettieri, A.; Nocera, P.; Bollino, F.; Catauro, M. A metabolic profiling approach to an Italian sage leaf extract (SoA541) defines its antioxidant and anti-acetylcholinesterase properties. J. Funct. Foods 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.-Y.; Gao, W.-Y.; Wang, Y.; Wang, H.-Y.; Cao, J.-G.; Huang, L.-Q. Chemical Composition and Anti-inflammatory and Antioxidant Activities of Eight Pear Cultivars. J. Agric. Food Chem. 2012, 60, 8738–8744. [Google Scholar] [CrossRef]
- Pistelli, L.; Bertoli, A.; Gelli, F.; Bedini, L.; Ruffoni, B.; Pistelli, L. Production of Curcuminoids in Different in vitro Organs of Curcuma longa. Nat. Prod. Commun. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, H.; Rezaee, P.; Aliahmadi, A. Bioassay screening of 12 Iranian plants and detection of antibacterial compounds from Heracleum persicum using a TLC bioautography method. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 381–387. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.C.; Lazzarotto, M.; Zini, C.A. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, Y.; Cen, Y.; Yang, D.; Qi, Z.-C.; Hou, Z.; Han, S.; Chen, Q.; Liu, K. Bivariate Correlation Analysis of the Chemometric Profiles of Chinese Wild Salvia miltiorrhiza Based on UPLC-Qqq-MS and Antioxidant Activities. Molecules 2018, 23, 538. [Google Scholar] [CrossRef] [Green Version]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic acids of plant origin—A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Zymonė, K.; Viškelis, J.; Klevinskas, A.; Janulis, V. Determination of the Phenolic Composition and Antioxidant Activity of Pear Extracts. J. Chem. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Truong, X.T.; Park, S.-H.; Lee, Y.-G.; Jeong, H.Y.; Moon, J.-H.; Jeon, T.-I. Protocatechuic Acid from Pear Inhibits Melanogenesis in Melanoma Cells. Int. J. Mol. Sci. 2017, 18, 1809. [Google Scholar] [CrossRef] [Green Version]
- Tanrioven, D.; Eksi, A. Phenolic compounds in pear juice from different cultivars. Food Chem. 2005, 93, 89–93. [Google Scholar] [CrossRef]
- Li, X.; Gao, W.-Y.; Huang, L.-J.; Zhang, J.-Y.; Guo, X.-H. Antioxidant and Antiinflammation Capacities of Some Pear Cultivars. J. Food Sci. 2011, 76, C985–C990. [Google Scholar] [CrossRef]
Antioxidant Assays | Beurre Bosc | Josephinede Malines | Packham’s Triumph | Winter Nelis | Rico |
---|---|---|---|---|---|
TPC (mg GAE/g) | 3.14 ± 0.02 a | 2.75 ± 0.03 b | 2.19 ± 0.06 d | 1.89 ± 0.03 e | 2.45 ± 0.09 c |
TFC (mg QE/g) | 1.04 ± 0.07 b | 1.53 ± 0.09 a | 0.94 ± 0.07 c | 0.57 ± 0.05 e | 0.74 ± 0.07 d |
TTC (mg CE/g) | 1.43 ± 0.04 a | 1.01 ± 0.04 c | 0.81 ± 0.03 d | 0.72 ± 0.09 d | 1.10 ± 0.03 b |
DPPH (mg AAE/g) | 5.72 ± 0.11 a | 4.78 ± 0.06 b | 4.12 ± 0.09 c | 3.25 ± 0.03 d | 4.72 ± 0.06 b |
FRAP (mg AAE/g) | 3.93 ± 0.04 b | 4.37 ± 0.04 a | 3.14 ± 0.07 c | 2.15 ± 0.07 e | 2.94 ± 0.01 d |
ABTS (mg AAE/g) | 4.41 ± 0.07 a | 4.44 ± 0.01 a | 3.97 ± 0.10 b | 2.83 ± 0.06 d | 3.19 ± 0.04 c |
TAC (mg AAE/g) | 3.92 ± 0.04 c | 5.29 ± 0.09 a | 4.85 ± 0.03 b | 3.94 ± 0.01 c | 2.87 ± 0.09 d |
Variables | TPC | TFC | TTC | DPPH | FRAP | ABTS |
---|---|---|---|---|---|---|
TFC | 0.634 | |||||
TTC | 0.934 * | 0.322 | ||||
DPPH | 0.973 ** | 0.529 | 0.958 ** | |||
FRAP | 0.854 | 0.939 ** | 0.619 | 0.785 | ||
ABTS | 0.791 | 0.869 * | 0.555 | 0.731 | 0.940 ** | |
TAC | 0.063 | 0.716 | −0.279 | −0.072 | 0.510 | 0.621 |
No. | Molecular Formula | Proposed Compounds | RT (min) | Ionization (ESI+/ESI−) | Molecular Weight | Theoretical (m/z) | Observed (m/z) | Error (ppm) | MS2 Production | Pears |
---|---|---|---|---|---|---|---|---|---|---|
Phenolic acid | ||||||||||
Hydroxybenzoic Acids | ||||||||||
1 | C8H8O7S | Vanillic acid 4-sulfate | 5.122 | [M − H] − | 247.9991 | 246.9918 | 246.9915 | −1.2 | 167 | BB |
2 | C13H16O10 | Gallic acid 4-O-glucoside | 6.731 | [M − H] − | 332.0743 | 331.067 | 331.0675 | 1.5 | 169, 125 | * RI, BB, JM |
3 | C7H6O5 | Gallic acid | 6.878 | [M − H] − | 170.0215 | 169.0142 | 169.0145 | 1.8 | 125 | BB |
4 | C13H16O9 | Protocatechuic acid 4-O-glucoside | 7.524 | [M − H] − | 316.0794 | 315.0721 | 315.0718 | −1.0 | 153 | * BB, RI, JM, PT |
5 | C7H6O3 | 2-Hydroxybenzoic acid | 11.185 | [M − H] − | 138.0317 | 137.0244 | 137.025 | 4.4 | 93 | * BB, JM, RI, PT |
6 | C13H16O8 | 4-Hydroxybenzoic acid 4-O-glucoside | 11.218 | [M − H] − | 300.0845 | 299.0772 | 299.0759 | −4.3 | 255, 137 | * BB, WN |
7 | C14H10O9 | Gallic acid 3-O-gallate | 17.066 | [M − H] − | 322.0325 | 321.0252 | 321.0239 | −4.0 | 169 | BB |
8 | C7H6O4 | 2,3-Dihydroxybenzoic acid | 24.242 | [M − H] − | 154.0266 | 153.0193 | 153.0192 | −0.7 | 109 | * RI, JM |
Hydroxycinnamic Acids | ||||||||||
9 | C9H8O3 | m-Coumaric acid | 5.207 | [M − H] − | 164.0473 | 163.04 | 163.0397 | −1.8 | 119 | * RI, JM, PT |
10 | C9H8O2 | Cinnamic acid | 9.219 | ** [M − H] − | 148.0524 | 147.0451 | 147.0461 | 4.8 | 103 | * WN, RI, PT, BB |
11 | C14H14O9 | Feruloyl tartaric acid | 10.506 | [M − H] − | 326.0638 | 325.0565 | 325.0567 | 0.6 | 193, 149 | BB |
12 | C9H8O4 | Caffeic acid | 12.932 | ** [M − H] − | 180.0423 | 179.035 | 179.0346 | −2.2 | 143, 133 | * JM, BB, RI |
13 | C15H16O10 | Caffeic acid 3-O-glucuronide | 13.308 | [M − H] − | 356.0743 | 355.067 | 355.0672 | 0.6 | 179 | RI |
14 | C15H18O8 | p-Coumaric acid 4-O-glucoside | 14.962 | [M − H] − | 326.1002 | 325.0929 | 325.0911 | −5.5 | 163 | BB |
15 | C15H18O9 | Caffeoyl glucose | 19.343 | [M − H] − | 342.0951 | 341.0878 | 341.0865 | −3.8 | 179, 161 | * JM, PT |
16 | C16H18O9 | 3-Caffeoylquinic acid | 24.793 | [M − H] − | 354.0951 | 353.0878 | 353.0865 | −3.7 | 253, 190, 144 | JM |
17 | C16H18O10 | Ferulic acid 4-O-glucuronide | 26.748 | [M − H] − | 370.09 | 369.0827 | 369.0838 | 3.0 | 193 | JM |
18 | C16H18O8 | 3-p-Coumaroylquinic acid | 27.825 | [M − H] − | 338.1002 | 337.0929 | 337.0918 | −3.3 | 265, 173, 162 | JM |
19 | C13H12O8 | p-Coumaroyl tartaric acid | 28.947 | ** [M − H] − | 296.0532 | 295.0459 | 295.0457 | −0.7 | 115 | * RI, BB |
20 | C17H20O9 | 3-Feruloylquinic acid | 29.432 | ** [M − H] − | 368.1107 | 367.1034 | 367.1028 | −1.6 | 298, 288, 192, 191 | * JM, BB, WN |
21 | C16H20O9 | Ferulic acid 4-O-glucoside | 33.867 | [M − H] − | 356.1107 | 355.1034 | 355.1039 | 1.4 | 193, 178, 149, 134 | RI |
22 | C10H10O4 | Ferulic acid | 38.378 | [M − H] − | 194.0579 | 193.0506 | 193.0499 | −3.6 | 178, 149, 134 | JM |
23 | C18H16O8 | Rosmarinic acid | 39.746 | [M − H] − | 360.0845 | 359.0772 | 359.0773 | 0.3 | 179 | BB |
24 | C25H24O12 | 1,5-Dicaffeoylquinic acid | 45.17 | [M − H] − | 516.1268 | 515.1195 | 515.1176 | −3.7 | 353, 335, 191, 179 | JM |
25 | C15H18O7 | Cinnamoyl glucose | 60.985 | [M − H] − | 310.1053 | 309.098 | 309.0965 | −4.9 | 147, 131, 103 | BB |
Hydroxyphenylacetic Acids | ||||||||||
26 | C8H8O4 | 3,4-Dihydroxyphenylacetic acid | 10.011 | [M − H] − | 168.0423 | 167.035 | 167.0349 | −0.6 | 149, 123 | * RI, BB, WN, JM |
27 | C8H8O3 | 2-Hydroxy-2-phenylacetic acid | 10.821 | [M − H] − | 152.0473 | 151.04 | 151.0405 | 3.3 | 136, 92 | BB |
Hydroxyphenylpropanoic Acids | ||||||||||
28 | C9H10O4 | 3-Hydroxy-3-(3-hydroxyphenyl) propionic acid | 14.73 | [M − H] − | 182.0579 | 181.0506 | 181.0504 | −1.1 | 163, 135, 119 | BB |
29 | C15H18O10 | Dihydrocaffeic acid 3-O-glucuronide | 20.796 | [M − H] − | 358.09 | 357.0827 | 357.0828 | 0.3 | 181 | * RI, BB |
30 | C16H20O10 | Dihydroferulic acid 4-O-glucuronide | 29.117 | [M − H] − | 372.1056 | 371.0983 | 371.0975 | −2.2 | 195 | JM |
Flavonoid | ||||||||||
Anthocyanins | ||||||||||
31 | C24H25O13 | Petunidin 3-O-(6’’-acetyl-glucoside) | 27.386 | [M + H]+ | 521.1295 | 522.1368 | 522.1358 | −1.9 | 317 | WN |
32 | C43H49O24 | Cyanidin 3-O-(2-O-(6-O-(E)-caffeoyl-D glucoside)-D-glucoside)-5-O-D-glucoside | 40.107 | [M + H]+ | 949.2614 | 950.2687 | 950.2673 | −1.5 | 787, 463, 301 | BB |
Dihydrochalcones | ||||||||||
33 | C21H24O11 | 3-Hydroxyphloretin 2’-O-glucoside | 13.819 | [M − H] − | 452.1319 | 451.1246 | 451.1236 | −2.2 | 289, 273 | BB |
34 | C26H32O15 | 3-Hydroxyphloretin 2’-O-xylosyl-glucoside | 36.847 | [M − H] − | 584.1741 | 583.1668 | 583.1677 | 1.5 | 289 | * BB, RI |
Dihydroflavonols | ||||||||||
35 | C15H12O7 | Dihydroquercetin | 11.732 | [M − H] − | 304.0583 | 303.051 | 303.0501 | −3.0 | 285, 275, 151 | BB |
36 | C21H22O12 | Dihydromyricetin 3-O-rhamnoside | 34.071 | [M − H] − | 466.1111 | 465.1038 | 465.1044 | 1.3 | 301 | JM |
Flavanols | ||||||||||
37 | C15H14O7 | (+)-Gallocatechin | 4.676 | [M − H] − | 306.074 | 305.0667 | 305.0676 | 3.0 | 261, 219 | * PT, BB |
38 | C22H24O13 | 4’-O-Methyl-(-)-epigallocatechin 7-O-glucuronide | 6.911 | [M − H] − | 496.1217 | 495.1144 | 495.1153 | 1.8 | 451, 313 | BB |
39 | C30H26O12 | Procyanidin dimer B1 | 23.22 | [M − H] − | 578.1424 | 577.1351 | 577.1318 | −5.7 | 451 | JM |
40 | C16H16O6 | 3’-O-Methylcatechin | 24.124 | [M − H] − | 304.0947 | 303.0874 | 303.0878 | 1.3 | 271, 163 | BB |
41 | C15H14O6 | (+)-Catechin | 26.351 | [M − H] − | 290.079 | 289.0717 | 289.0712 | −1.7 | 245, 205, 179 | * JM, BB |
42 | C45H38O18 | Procyanidin trimer C1 | 28.687 | [M − H] − | 866.2058 | 865.1985 | 865.1941 | −5.1 | 739, 713, 695 | JM |
43 | C22H18O10 | (+)-Catechin 3-O-gallate | 36.333 | [M − H] − | 442.09 | 441.0827 | 441.0825 | −0.5 | 289, 169, 125 | BB |
Flavanones | ||||||||||
44 | C28H30O18 | Hesperetin 3’,7-O-diglucuronide | 9.315 | [M − H] − | 654.1432 | 653.1359 | 653.1362 | 0.5 | 477, 301, 286, 242 | RI |
45 | C22H22O12 | Hesperetin 3’-O-glucuronide | 47.368 | [M − H] − | 478.1111 | 477.1038 | 477.1022 | −3.4 | 301, 286, 257, 242 | PT |
Flavones | ||||||||||
46 | C27H30O14 | Rhoifolin | 27.229 | [M − H] − | 578.1636 | 577.1563 | 577.1538 | −4.3 | 413, 269 | JM |
47 | C27H30O15 | Apigenin 6,8-di-C-glucoside | 42.901 | ** [M − H] − | 594.1585 | 593.1512 | 593.1485 | −4.6 | 503, 473 | * JM, WN |
48 | C21H20O11 | 6-Hydroxyluteolin 7-O-rhamnoside | 46.341 | ** [M − H] − | 448.1006 | 447.0933 | 447.0915 | −4.0 | 301 | * PT, JM, WN, BB |
49 | C15H10O4 | 7,4’-Dihydroxyflavone | 82.529 | [M + H]+ | 254.0579 | 255.0652 | 255.0646 | −2.4 | 227, 199, 171 | * RI, BB |
Flavonols | ||||||||||
50 | C21H20O13 | Myricetin 3-O-galactoside | 19.288 | [M − H] − | 480.0904 | 479.0831 | 479.081 | −4.4 | 317 | PT |
51 | C27H30O17 | Myricetin 3-O-rutinoside | 31.52 | [M − H] − | 626.1483 | 625.141 | 625.1386 | −3.8 | 301 | JM |
52 | C43H48O24 | Spinacetin 3-O-(2’’-p-coumaroylglucosyl) (1->6)- [apiosyl (1->2)]-glucoside | 33.242 | [M − H] − | 948.2536 | 947.2463 | 947.2456 | −0.7 | 741, 609, 301 | JM |
53 | C33H40O19 | Kaempferol 3-O-(2’’-rhamnosyl-galactoside) 7-O-rhamnoside | 35.077 | [M − H] − | 740.2164 | 739.2091 | 739.2091 | 0.0 | 593, 447, 285 | RI |
54 | C27H30O16 | Kaempferol 3,7-O-diglucoside | 37.384 | [M − H] − | 610.1534 | 609.1461 | 609.1453 | −1.3 | 447, 285 | * JM, RI |
55 | C33H40O20 | Kaempferol 3-O-glucosyl-rhamnosyl-galactoside | 40.184 | ** [M − H] − | 756.2113 | 755.204 | 755.2047 | 0.9 | 285 | * JM, WN, RI |
56 | C21H20O12 | Myricetin 3-O-rhamnoside | 40.234 | [M − H] − | 464.0955 | 463.0882 | 463.0882 | 0.0 | 317 | * JM, PT |
Isoflavonoids | ||||||||||
57 | C15H12O4 | 2-Dehydro-O-desmethylangolensin | 77.899 | [M − H] − | 256.0736 | 255.0663 | 255.0678 | 5.9 | 135, 119 | BB |
58 | C15H12O5 | 3’,4’,7-Trihydroxyisoflavanone | 78.287 | [M − H] − | 272.0685 | 271.0612 | 271.0612 | 0.0 | 177, 151, 119, 107 | * JM, BB |
59 | C15H10O5 | 3’-Hydroxydaidzein | 81.816 | [M + H]+ | 270.0528 | 271.0601 | 271.0591 | −3.7 | 253, 241, 225 | RI |
Stilbenes | ||||||||||
60 | C20H22O8 | Resveratrol 5-O-glucoside | 38.063 | [M − H] − | 390.1315 | 389.1242 | 389.1245 | 0.8 | 227 | JM |
Other Polyphenols | ||||||||||
Curcuminoids | ||||||||||
61 | C20H18O5 | Demethoxycurcumin | 81.976 | [M − H] − | 338.1154 | 337.1081 | 337.108 | −0.3 | 217 | PT |
Furanocoumarins | ||||||||||
62 | C13H10O5 | Isopimpinellin | 4.478 | [M + H]+ | 246.0528 | 247.0601 | 247.0605 | 1.6 | 232, 217, 205, 203 | PT |
Hydroxybenzaldehydes | ||||||||||
63 | C8H8O2 | p-Anisaldehyde | 30.338 | **[M + H]+ | 136.0524 | 137.0597 | 137.0599 | 1.5 | 122, 109 | * JM, BB |
64 | C7H6O2 | 4-Hydroxybenzaldehyde | 44.756 | [M − H] − | 122.0368 | 121.0295 | 121.0298 | 2.5 | 77 | * JM, PT, BB, RI |
Hydroxybenzoketones | ||||||||||
65 | C9H10O7S | 2-Hydroxy-4-methoxyacetophenone 5-sulfate | 9.446 | [M − H] − | 262.0147 | 261.0074 | 261.0067 | −2.7 | 181,97 | BB |
66 | C10H12O5 | 2,3-Dihydroxy-1-guaiacylpropanone | 21.442 | **[M − H] − | 212.0685 | 211.0612 | 211.0605 | −3.3 | 167, 123, 105, 93 | * RI, JM |
Hydroxycoumarins | ||||||||||
67 | C10H8O4 | Scopoletin | 43.298 | [M − H] − | 192.0423 | 191.035 | 191.0361 | 5.8 | 176 | JM |
Other Polyphenols | ||||||||||
68 | C12H16O7 | Arbutin | 5.129 | [M − H] − | 272.0896 | 271.0823 | 271.0828 | 1.8 | 109 | JM |
69 | C27H22O12 | Lithospermic acid | 5.834 | [M − H] − | 538.1111 | 537.1038 | 537.1037 | −0.2 | 493, 339, 295 | BB |
70 | C36H30O16 | Salvianolic acid B | 28.598 | [M − H] − | 718.1534 | 717.1461 | 717.1436 | −3.5 | 519, 339, 321, 295 | PT |
Phenolic Terpenes | ||||||||||
71 | C20H28O4 | Carnosic acid | 80.419 | [M − H] − | 332.1988 | 331.1915 | 331.1905 | −3.0 | 287, 269 | PT |
Tyrosols | ||||||||||
72 | C10H12O4 | 3,4-DHPEA-AC | 8.172 | [M − H] − | 196.0736 | 195.0663 | 195.0666 | 1.5 | 135 | * RI, WN |
73 | C14H20O8 | Hydroxytyrosol 4-O-glucoside | 9.777 | [M − H] − | 316.1158 | 315.1085 | 315.1076 | −2.9 | 153, 123 | BB |
No. | Compound Name | RT (min) | Beurre Bosc (mg/g) | Josephine de Malines (mg/g) | Packham’s Triumph (mg/g) | Winter Nelis (mg/g) | Rico (mg/g) | Polyphenol Classes |
---|---|---|---|---|---|---|---|---|
1 | Gallic acid | 6.836 | 5.68 ± 0.34 a | 3.25 ± 0.16 b | 0.25 ± 0.02 d | 1.28 ± 0.07 c | 2.43 ± 0.21 b | Phenolic acid |
2 | Protocatechuic acid | 12.569 | 3.54 ± 0.31 a | 1.27 ± 0.11 c | 2.41 ± 0.12 b | - | - | Phenolic acid |
3 | p-Hydroxybenzoic acid | 20.24 | 2.15 ± 0.17 b | 1.64 ± 0.11 c | 3.14 ± 0.15 a | 2.14 ± 0.10 b | 0.95 ± 0.05 d | Phenolic acid |
4 | Chlorogenic acid | 20.579 | 17.58 ± 0.88 a | 9.78 ± 0.78 d | 12.35 ± 0.99 c | 14.51 ± 0.87 b | 1.53 ± 0.13 e | Phenolic acid |
5 | Caffeic acid | 25.001 | 3.58 ± 0.21 b | 1.85 ± 0.11 c | 2.48 ± 0.14 c | 0.98 ± 0.09 d | 4.57 ± 0.36 a | Phenolic acid |
6 | Catechin | 19.704 | 14.89 ± 0.89 b | 17.45 ± 1.39 a | 4.59 ± 0.41 e | 9.45 ± 0.75 d | 11.25 ± 1.01 c | Flavonoid |
7 | Epicatechin | 24.961 | 6.98 ± 0.49 a | 3.64 ± 0.15 b | 2.37 ± 0.19 c | 1.58 ± 0.14 d | 2.31 ± 0.20 c | Flavonoid |
8 | Epicatechin gallate | 38.015 | 2.31 ± 0.11 a | 1.89 ± 0.13 a | - | - | 1.25 ± 0.08 b | Flavonoid |
9 | Quercetin | 70.098 | 6.38 ± 0.44 b | 14.57 ± 1.01 a | 3.28 ± 0.16 c | 5.49 ± 0.44 b | 4.58 ± 0.23 b | Flavonoid |
10 | Kaempferol | 80.347 | 3.37 ± 0.17 c | 4.58 ± 0.41 b | 8.59 ± 0.60 a | 3.27 ± 0.16 c | 1.28 ± 0.10 d | Flavonoid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants 2021, 10, 151. https://doi.org/10.3390/antiox10020151
Wang Z, Barrow CJ, Dunshea FR, Suleria HAR. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants. 2021; 10(2):151. https://doi.org/10.3390/antiox10020151
Chicago/Turabian StyleWang, Zening, Colin J. Barrow, Frank R. Dunshea, and Hafiz A. R. Suleria. 2021. "A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties" Antioxidants 10, no. 2: 151. https://doi.org/10.3390/antiox10020151
APA StyleWang, Z., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2021). A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants, 10(2), 151. https://doi.org/10.3390/antiox10020151