In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Their Selenium Enrichment
2.2. Animal Model and Study Design
2.3. Experimental Diets
2.4. Antioxidant and Oxidative Stress Parameters
2.5. Determining Total Selenium and Se Species Contents
2.6. Detection of Se Nanoparticles Using Transmission Electron Microscope (TEM)
2.7. Microbiota Composition
2.8. Statistical Analyses
3. Results
3.1. Selenium Enrichment and Diets
3.2. Effects of Selenium-Enriched Strains on Biochemical Parameters and Enzyme Activities in Tissue Homogenates and Blood
3.3. Effects of Selenium-Enriched Strains on Total Selenium and Selenium-Species Contents in Tissue Homogenates
3.4. Effect of Selenium-Enriched Strains on Bacterial Populations in Fecal Matter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Cardiovascular Diseases (CVDs): Fact. Sheet N 317; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Chua, K.J.; Kwok, W.C.; Aggarwal, N.; Sun, T.; Chang, M.W. Designer Probiotics for the Prevention and Treatment of Human diseases. Curr. Opin. Chem. Biol. 2017, 40, 8–16. [Google Scholar] [CrossRef]
- Amaretti, A.; Di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant Properties of Potentially Probiotic Bacteria: In Vitro and in Vivo Activities. Appl. Microbiol. Biotechnol. 2013, 97, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Steinbrenner, H.; Speckmann, B.; Klotz, L.O. Selenoproteins: Antioxidant Selenoenzymes and Beyond. Arch. Biochem. Biophys. 2016, 595, 113–119. [Google Scholar] [CrossRef]
- Malyar, R.M.; Li, H.; Liu, D.; Abdulrahim, Y.; Farid, R.A.; Gan, F.; Ali, W.; Enayatullah, H.; Banuree, S.A.H.; Huang, K.; et al. Selenium/Zinc-Enriched Probiotics Improve Serum Enzyme Activity, Antioxidant Ability, Inflammatory Factors and Related Gene Expression of Wistar Rats Inflated Under Heat Stress. Life Sci. 2020, 248, 117464. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Farkhondeh, T.; Samini, F.; Borji, A. Protective Effects of Carvacrol Against Oxidative Stress Induced by Chronic Stress in Rat‘S Brain, Liver and Kidney. Biochem. Res. Int. 2016, 2016, 2645237. [Google Scholar] [CrossRef] [Green Version]
- Brigelius-Flohé, R. Selenium in Human Health and Disease: An Overview. Mol. Integr. Toxicol. 2018, 3–26. [Google Scholar]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Yi, H.W.; Zhu, X.X.; Huang, X.L.; Lai, Y.Z.; Tang, Y. Selenium-Enriched Bifidobacterium Longum Protected Alcohol and High Fat Diet Induced Hepatic Injury in Mice. Chin. J. Nat. Med. 2020, 18, 169–177. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, Z.; Wang, D.; Yao, H.; Li, S. Selenium Deficiency Inhibits Differentiation and Immune Function and Imbalances the Th1/Th2 of Dendritic Cells. Metallomics 2018, 10, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, M.; Mansury, S.; Bahmani, F.; Heidar, Z.; Amirani, E.; Asemi, Z. The Effects of Probiotic and Selenium Co-Supplementation on Parameters of Mental Health, Hormonal Profiles, and Biomarkers of Inflammation and Oxidative Stress in Women with Polycystic Ovary Syndrome. J. Ovarian Res. 2018, 11, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.; Zhao, Z.; Wang, Y.; Huang, K. Preparation of Selenium/Zinc-Enriched Probiotics and Their Effect on Blood Selenium and Zinc Concentrations, Antioxidant Capacities, and Intestinal Microflora in Canine. Biol. Trace Elem. Res. 2011, 141, 170–183. [Google Scholar] [CrossRef]
- Yang, J.; Huang, K.; Qin, S.; Wu, X.; Zhao, Z.; Chen, F. Antibacterial Action of Selenium-Enriched Probiotics against Pathogenic Escherichia coli. Dig. Dis. Sci. 2009, 54, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Oraby, M.M.; Allababidy, T.; Ramadan, E.M. The Bioavailability of Selenium in Saccharomyces cerevisiae. Ann. Agric. Sci. 2015, 60, 307–315. [Google Scholar] [CrossRef]
- Lamberti, C.; Mangiapane, E.; Pessione, A.; Mazzoli, R.; Giunta, C.; Pessione, E. Proteomic Characterization of a Selenium-Metabolizing Probiotic Lact. Reuteri Lb2 BM for Nutraceutical Applications. Proteomics 2011, 11, 2212–2221. [Google Scholar] [CrossRef] [PubMed]
- Pescuma, M.; Gomez-Gomez, B.; Perez-Corona, T.; Font, G.; Madrid, Y.; Mozzi, F. Food Prospects of Selenium Enriched-Lactobacillus acidophilus CRL 636 and Lactobacillus reuteri CRL 1101. J. Funct. Foods 2017, 35, 466–473. [Google Scholar] [CrossRef]
- Pusztahelyi, T.; Kovács, S.; Pócsi, I.; Prokisch, J. Selenite-Stress Selected Mutant Strains of Probiotic Bacteria for Se Source Production. J. Trace Elem. Med. Biol. 2015, 30, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Nagy, G.; Benko, I.; Kiraly, G.; Voros, O.; Tanczos, B.; Sztrik, A.; Takács, T.; Pocsi, I.; Prokisch, J.; Banfalvi, G. Cellular and Nephrotoxicity of Selenium Species. J. Trace Elem. Med. Biol. 2015, 30, 160–170. [Google Scholar] [CrossRef]
- Mrvčić, J.; Stanzer, D.; Solić, E.; Stehlik-Tomas, V. Interaction of Lactic Acid Bacteria with Metal Ions: Opportunities for Improving Food Safety and Quality. World J. Microbiol. Biotechnol. 2012, 28, 2771–2782. [Google Scholar] [CrossRef] [PubMed]
- Rother, M.; Hatfield, D.; Berry, M.; Gladyshev, V. Selenium Metabolism in Prokaryotes. In Selenium; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, K.; Zhang, J.; Chen, Q.; Liu, G.; Shang, N.; Qin, W.; Li, P.; Lin, F. Accumulation and Species Distribution of Selenium in Se-Enriched Bacterial Cells of the Bifidobacterium animalis 01. Food Chem. 2009, 115, 727–734. [Google Scholar] [CrossRef]
- Krausova, G.; Kana, A.; Hyrslova, I.; Mrvikova, I.; Kavkova, M. Development of Selenized Lactic Acid Bacteria and Their Selenium Bioaccummulation Capacity. Fermentation 2020, 6, 91. [Google Scholar] [CrossRef]
- Hyrslova, I.; Krausova, G.; Bartova, J.; Kolesar, L.; Jaglic, Z.; Stankova, B.; Curda, L. Characterization of Enterococcus Faecium CCDM 922 in Respect of its Technological and Probiotic Properties. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 474–482. [Google Scholar] [CrossRef]
- Shiobara, Y.; Ogra, Y.; Suzuki, K.T. Exchange of Endogenous Selenium for Dietary Selenium as 82 Se-Enriched Selenite in Brain, Liver, Kidneys and Testes. Life Sci. 2000, 67, 3041–3049. [Google Scholar] [CrossRef]
- Takahashi, K.; Suzuki, N.; Ogra, Y. Bioavailability Comparison of Nine Bioselenocompounds In Vitro and In Vivo. Int. J. Mol. Sci. 2017, 18, 506. [Google Scholar] [CrossRef] [Green Version]
- Shini, S.; Sultan, A.; Bryden, W.L. Selenium Biochemistry and Bioavailability: Implications for Animal Agriculture. Agriculture 2015, 5, 1277–1288. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Guo, Y.; Qiao, L.; Ma, L.; Cheng, Y.; Roman, A. Biogenic Synthesis of Novel Functionalized Selenium Nanoparticles by Lactobacillus casei ATCC 393 and its Protective Effects on Intestinal Barrier Dysfunction Caused by Enterotoxigenic Escherichia coli K88. Front. Microbiol. 2018, 9, 1129. [Google Scholar] [CrossRef] [Green Version]
- Nagy, G.; Pinczes, G.; Pinter, G.; Pocsi, I.; Prokisch, J.; Banfalvi, G. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria. Int. J. Mol. Sci. 2016, 17, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, H.; Khatoon, N.; Khan, M.A.; Husain, S.A.; Saravanan, M.; Sardar, M. Synthesis of Selenium Nanoparticles Using Probiotic Bacteria Lactobacillus acidophilus and their Enhanced Antimicrobial Activity Against Resistant Bacteria. J. Clust. Sci. 2020, 31, 1003–1011. [Google Scholar] [CrossRef]
- Pieniz, S.; Andreazza, R.; Mann, M.B.; Camargo, F.; Brandelli, A. Bioaccumulation and Distribution of Selenium in Enterococcus durans. J. Trace Elem. Med. Biol. 2017, 40, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Martínez, F.G.; Moreno-Martin, G.; Pescuma, M.; Madrid-Albarrán, Y.; Mozzi, F. Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids. Front. Bioeng. Biotechnol. 2020, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Zhang, L.; Fan, M.; Wei, X. Response Surface Design for Accumulation of Selenium by Different Lactic Acid Bacteria. 3 Biotech 2017, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Eszenyi, P.; Sztrik, A.; Babka, B.; Prokisch, J. Elemental, Nano-Sized (100–500 nm) Selenium Production by Probiotic Lactic Acid Bacteria. Int. J. Biosci. Biochem. Bioinformatics 2011, 1, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; et al. Nano-Selenium and its Nanomedicine Applications: A Critical Review. Int. J. Nanomed. 2018, 13, 2107–2128. [Google Scholar] [CrossRef] [Green Version]
- Behne, D.; Wolters, W. Distribution of Selenium and Glutathione Peroxidase in the Rat. J. Nutr. 1983, 113, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.P.; Xia, Y.M.; Ha, P.C.; Butler, J.A.; Whanger, P.D. Distribution of Selenium Between Plasma Fractions in Guinea Pigs and Humans with Various Intakes of Dietary Selenium. J. Trace Elem. Med. Biol. 1998, 12, 8–15. [Google Scholar] [CrossRef]
- Arteel, G.E.; Sies, H. The Biochemistry of Selenium and the Glutathione System. Environ. Toxicol. Pharmacol. 2001, 10, 153–158. [Google Scholar] [CrossRef]
- Rýdlová, M.; Růnová, K.; Száková, J.; Fučíková, A.; Hakenová, A.; Mlejnek, P.; Zídek, V.; Tremlová, J.; Mestek, O.; Kaňa, A.; et al. The Response of Macro- and Micronutrient Nutrient Status and Biochemical Processes in Rats Fed on a Diet with Selenium-Enriched Defatted Rapeseed and/or Vitamin E Supplementation. BioMed Res. Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Fujihara, T.; Orden, E.A. The Effect of Dietary Vitamin E Level on Selenium Status in Rats. J. Anim. Physiol. Anim. Nutr. 2014, 98, 921–927. [Google Scholar] [CrossRef]
- Arnaud, J.; van Dael, P.; Michalke, B. Selenium Interactions with Other Trace Elements, with Nutrients (And Drugs) in Humans. In Selenium. Molecular and Integrative Toxicology; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Benstoem, C.; Goetzenich, A.; Kraemer, S.; Borosch, S.; Manzanares, W.; Hardy, G.; Stoppe, C. Selenium and its Supplementation in Cardiovascular Disease—What do We Know? Nutrients 2015, 7, 3094–3118. [Google Scholar] [CrossRef] [Green Version]
- Kurek, E.; Ruszczynska, A.; Wojciechowski, M.; Czauderna, M.; Bulska, E. Study on Speciation of Selenium in Animal Tissues Using High Performance Liquid Chromatography with on-line Detection by Liquid Coupled Plasma Mass Spectrometry. Chem. Anal. 2009, 54, 43–57. [Google Scholar]
- Qin, S.; Gao, J.; Huang, K. Effects of Different Selenium Sources on Tissue Selenium Concentrations, Blood gsh-px Activities and Plasma Interleukin Levels in Finishing Lambs. Biol. Trace Elem. Res. 2007, 116, 91–102. [Google Scholar] [CrossRef]
- Han, X.J.; Qin, P.; Li, W.X.; Ma, Q.G.; Ji, C.; Zhang, J.Y.; Zhao, L.H. Effect of Sodium Selenite and Selenium Yeast on Performance, Egg Quality, Antioxidant Capacity, and Selenium Deposition of Laying Hens. Poult. Sci. 2017, 96, 3973–3980. [Google Scholar] [CrossRef] [PubMed]
- Sobeková, A.; Holovská, K.; Lenártová, V.; Holovská, K., Jr.; Javorský, P.; Boldižárová, K.; Grešáková, L.; Leng, L. Effects of Feed Supplemented with Selenite or Se-Yeast on Antioxidant Enzyme Activities in Lamb Tissues. J. Anim. Feed Sci. 2006, 15, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhu, H.; Qi, Y.; Wu, C.; Zhang, J.; Shao, L.; Tan, J.; Chen, D. Absorption and Distribution of Selenium Following Oral Administration of Selenium-Enriched Bifidobacterium Longum DD98, Selenized Yeast, or Sodium Selenite in Rats. Biol. Trace Elem. Res. 2020, 197, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Piao, J.; Gu, L. Effects of selenium-enriched garlic on blood lipids and lipid peroxidation in Experimental Hyperlipidemic Rats. Wei Sheng Yan Jiu 2002, 31, 93–96. [Google Scholar]
- Marounek, M.; Dokoupilová, A.; Volek, Z.; Hoza, I. Quality of Meat and Selenium Content in Tissues of Rabbits Fed Diets Supplemented with Sodium Selenite, Selenized Yeast and Selenized Algae. World Rabbit Sci. 2009, 17, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Sun, L.H.; Huang, J.Q.; Briens, M.; Qi, D.S.; Xu, S.W.; Lei, X.G. A Novel Organic Selenium Compound Exerts Unique Regulation of Selenium Speciation, Selenogenome, and Selenoproteins in Broiler Chicks. J. Nutr. 2017, 147, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, S.; Peak, D.; Chen, N.; Hamilton, C.; Niyogi, S. Tissue-Specific Accumulation and Speciation of Selenium in Rainbow Trout (Oncorhynchus mykiss) Exposed to Elevated Dietary Selenomethionine. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012, 155, 560–565. [Google Scholar] [CrossRef]
- Sánchez-Martínez, M.; Pérez-Corona, T.; Martínez-Villaluenga, C.; Frías, J.; Peñas, E.; Porres, J.M.; Urbano, G.; Cámara, C.; Madrid, Y. Synthesis of 77Se-Methylselenocysteine when Preparing Sauerkraut in the Presence of 77Se-Selenite. Metabolic Transformation of 77Se-Methylselenocysteine in Wistar Rats Determined by LC–IDA–ICP–MS. Anal. Bioanal. Chem. 2014, 406, 7949–7958. [Google Scholar] [CrossRef] [Green Version]
- Juniper, D.T.; Phipps, R.H.; Ramos-Morales, E.; Bertin, G. Selenium Persistency and Speciation in the Tissues of Lambs Following the Withdrawal of Dietary High-Dose Selenium-Enriched Yeast. Animal 2008, 2, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Gawor, A.; Ruszczynska, A.; Czauderna, M.; Bulska, E. Determination of Selenium Species in Muscle, Heart, and Liver Tissues of Lambs Using Mass Spectrometry Methods. Animals 2020, 10, 808. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Huang, Y.; Liu, K.; Pan, S.; Qin, Z.; Wu, T.; Xu, X. Cardamine Hupingshanensis Aqueous Extract Improves Intestinal Redox Status and Gut Microbiota in Se-deficient Rats. J. Sci. Food Agric. 2021, 101, 989–996. [Google Scholar] [CrossRef]
- Hrdina, J.; Banning, A.; Kipp, A.; Loh, G.; Blaut, M.; Brigelius-Flohé, R. The Gastrointestinal Microbiota Affects the Selenium Status and Selenoprotein Expression in Mice. J. Nutr. Biochem. 2009, 20, 638–648. [Google Scholar] [CrossRef]
- Kasaikina, M.V.; Kravtsova, M.A.; Lee, B.C.; Seravalli, J.; Peterson, D.A.; Walter, J.; Legge, R.; Benson, A.K.; Hatfield, D.L.; Gladyshev, V.N. Dietary Selenium Affects Host Selenoproteome Expression by Influencing the Gut Microbiota. FASEB J. 2011, 25, 2492–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Suzuki, N.; Ogra, Y. Effect of Gut Microflora on Nutritional Availability of Selenium. Food Chem. 2020, 319, 126537. [Google Scholar] [CrossRef]
- Zhai, Q.; Cen, S.; Li, P.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Effects of Dietary Selenium Supplementation on Intestinal Barrier and Immune Responses Associated with its Modulation of Gut Microbiota. Environ. Sci. Technol. Lett. 2018, 5, 724–730. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Y.; Qi, Y.; Ji, R.; Zhang, J.; Qian, Z.; Wu, C.; Tan, J.; Shao, L.; Chen, D. Preparation and Characterization of Selenium Enriched-Bifidobacterium Longum DD98 and its Repairing Effects on Antibiotic-Induced Intestinal Dysbacteriosis in Mice. Food Funct. 2019, 10, 4975–4984. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, L.; Yu, L.; Sun, L.; Li, K.; Tong, C.; Xu, W.; Cui, G.; Long, M.; Li, P. Selenium-Enriched Yeast Reduces Caecal Pathological Injuries and Intervenes Changes of the Diversity of Caecal Microbiota Caused by Ochratoxin-A in broilers. Food Chem. Toxicol. 2020, 137, 111139. [Google Scholar] [CrossRef]
- Gangadoo, S.; Dinev, I.; Chapman, J.; Hughes, R.J.; Van, T.T.H.; Moore, R.J.; Stanley, D. Selenium Nanoparticles in Poultry Feed Modify Gut Microbiota and Increase Abundance Faecalibacterium Prausnitzii. Appl. Microbiol. Biotechnol. 2018, 102, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Gangadoo, S.; Bauer, B.W.; Bajagai, Y.S.; Van, T.T.H.; Moore, R.J.; Stanley, D. In Vitro Growth of Gut Microbiota with Selenium Nanoparticles. Anim. Nutr. 2019, 5, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, L.; Hao, Q.; Li, X.; Liu, F. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production by Clostridium with Community Metabolic Pathway Bifurcation. ACS Sustain. Chem. Eng. 2020, 8, 7574–7580. [Google Scholar] [CrossRef]
- List, C.; Hosseini, Z.; Lederballe Meibom, K.; Hatzimanikatis, V.; Bernier-Latmani, R. Impact of Iron Reduction on the Metabolism of Clostridium Acetobutylicum. Environ. Microbiol. 2019, 21, 3548–3563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butel, M.J.; Roland, N.; Hibert, A.; Popot, F.; Favre, A.; Tessedre, A.C.; Bensaada, M.; Rimbault, A.; Szylit, O. Clostridial Pathogenicity in Experimental Necrotising Enterocolitis in Gnotobiotic Quails and Protective Role of Bifidobacteria. J. Med. Microbiol. 1998, 47, 391–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rada, V.; Nevoral, J.; Trojanová, I.; Tománková, E.; Smehilová, M.; Killer, J. Growth of Infant Faecal Bifidobacteria and Clostridia on Prebiotic Oligosaccharides in in vitro Conditions. Anaerobe 2008, 14, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.; Vahidi, H.; Owlia, P.; Khujin, M.H.; Khamisabadi, A. Yeast Enriched with Selenium: A Promising Source of Selenomethionine and Seleno-Proteins. Trends Pept. Protein Sci. 2017, 1, 130–134. [Google Scholar]
Se Concentration (mg/kg) | Added Se Form | |
---|---|---|
A—Altromin 1324 | 0.408 ± 0.086 | inorganic |
B—Altromin C 1045 | 0.183 ± 0.039 | - |
C—Altromin C 1045 + ST | 0.233 ± 0.076 | - |
D—Altromin C 1045 + SeST | 0.439 ± 0.016 | Organically bound |
E—Altromin C 1045 + EF | 0.185 ± 0.032 | - |
F—Altromin C 1045 + SeEF | 0.445 ± 0.078 | Organically bound |
Sample | Cu (mg/kg) | Zn (mg/kg) | Cr (mg/kg) | Fe (mg/kg) |
---|---|---|---|---|
A—Altromin 1324 | 26.0 ± 9.0 a | 63.7 ± 9.9 a | 51.4 ± 8.4 a | 418 ± 43 a |
B—Altromin C 1045 | 14.4 ± 5.4 b | 48.7 ± 2.3 b | 37.8 ± 2.9 b | 125 ± 11 b |
C—Altromin C 1045 + ST | 13.8 ± 4.8 b | 47.7 ± 1.2 b | 37.3 ± 6.4 b | 123 ± 28 b |
D—Altromin C 1045 + SeST | 13.2 ± 2.3 b | 47.8 ± 6.8 b | 37.4 ± 5.6 b | 117 ± 16 b |
E—Altromin C 1045 + EF | 13.3 ± 3.3 b | 46.8 ± 3.9 b | 38.2 ± 7.4 b | 119 ± 13 b |
F—Altromin C 1045 + SeEF | 15.8 ± 5.5 b | 47.1 ± 2.0 b | 36.4 ± 6.8 b | 122 ± 11 b |
Group | Body Weight Gain (g) | Heart (g) | Brain (g) | Liver (g) | Kidneys (g) |
---|---|---|---|---|---|
A—Altromin 1324 | 102 (60) a | 1.04 (0.13) a | 1.58 (0.20) b | 13.7 (4.8) a | 2.86 (0.46) a |
B—Altromin C 1045 | 85 (41) a | 1.25 (0.11) a | 2.12 (0.08) a | 14.3 (2.7) a | 3.27 (0.34) a |
C—Altromin C 1045 + ST | 89 (67) a | 1.34 (0.25) a | 2.15 (0.10) a | 14.8 (2.7) a | 3.38 (0.29) a |
D—Altromin C 1045 + SeST | 68 (35) a | 1.27 (0.15) a | 2.14 (0.06) a | 14.3 (1.4) a | 3.32 (0.24) a |
E—Altromin C 1045 + EF | 75 (42) a | 1.25(0.14) a | 2.13 (0.06) a | 15.1 (1.8) a | 3.40 (0.46) a |
F—Altromin C 1045 + SeEF | 65 (50) a | 1.21 (0.11) a | 2.09 (0.13) a | 14.6 (2.0) a | 3.30 (0.32) a |
Group | Cholesterol mmol/L | TAG (mmol/L) | HDL Cholesterol (mmol/L) |
---|---|---|---|
A—Altromin 1324 | 1.69 (0.23) a | 1.01 (0.44) a | 1.25 (0.26) a |
B—Altromin C 1045 | 1.55 (0.25) a | 0.79 (0.45) a | 1.16 (0.22) a |
C—Altromin C 1045 + ST | 1.46 (0.22) a | 0.49 (0.38) a | 1.04 (0.12) a |
D—Altromin C 1045 + SeST | 1.44 (0.18) a | 0.59 (0.49) a | 1.03 (0.14) a |
E—Altromin C 1045 + EF | 1.49 (0.27) a | 0.87 (0.43) a | 1.09 (0.23) a |
F—Altromin C 1045 + SeEF | 1.53 (0.24) a | 0.66 (0.38) a | 1.10 (0.19) a |
Group | Heart GPx (ng/mL) | Heart GPx (U/mL) | Brain GPx (ng/mL) | Brain GPx (U/mL) | Serum GPx (ng/mL) | Serum GPx (U/mL) |
---|---|---|---|---|---|---|
A—Altromin 1324 | 45.7 (8.7) a | 13.3 (3.7) a | 51.8 (7.0) a | 15.3 (2.3) a | 27.9 (2.09) b | 0.34 (0.39) a |
B—Altromin C 1045 | 41.9 (4.1) a | 14.6 (1.3) a | 49.8 (5.3) a | 14.5 (3.3) a | 25.1 (2.58) a | 1.49 (2.27) a |
C—Altromin C 1045 + ST | 28.6 (12.0) b | 14.8 (2.3) a | 49.8 (4.6) a | 14.7 (4.2) a | 24.6 (1.84) a | 0.15 (0.09) a |
D—Altromin C 1045 + SeST | 34.7 (8.3) a | 12.1 (6.1) a | 50.9 (3.3) a | 12.0 (2.7) a | 25.0 (1.90) a | 0.12 (0.07) a |
E—Altromin C 1045 + EF | 39.3 (5.7) a | 15.7 (2.2) a | 50.1 (4.5) a | 11.3 (1.4) a | 25.5 (1.16) a | 0.90 (1.63) a |
F—Altromin C 1045 + SeEF | 40.4 (6.1) a | 14.5 (2.7) a | 51.8 (1.8) a | 9.4 (1.3) b | 24.2 (1.69) a | 0.16 (0.29) a |
Group | Heart GR (ng/mL) | Heart GR (U/mL) | Brain GR (ng/mL) | Brain GR (U/mL) | Serum MDA (ng/mL) | Brain MDA (ng/mL) | Heart MDA (ng/mL) |
---|---|---|---|---|---|---|---|
A—Altromin 1324 | 88.8 (11.9) a | 138.8 (5.0) a | 0.67 (0.46) a | 158.9 (23.5) a | 280 (97) a | 469 (86) a | 348 (89) a |
B—Altromin C 1045 | 75.5 (10.9) a | 135.7 (6.5) a | 0.35 (0.23) a | 178.1 (67.1) a | 305 (182) a | 454 (49) a | 288 (144) a |
C—Altromin C 1045 + ST | 43.9 (15.2) b | 138.6 (12.2) a | 0.48 (0.23) a | 156.8 (8.3) a | 296 (35) a | 414 (63) a | 348 (61) a |
D—Altromin C 1045 + SeST | 43.2 (7.9) b | 136.0 (13.7) a | 0.60 (0.13) a | 150.0 (10.1) a | 260 (81) a | 432 (48) a | 358 (92) a |
E—Altromin C 1045 + EF | 49.2 (14.8) b | 149.4 (7.6) b | 0.31 (0.13) a | 144.4 (18.8) a | 201 (59) a | 445 (39) a | 570 (100) b |
F—Altromin C 1045 + SeEF | 38.3 (10.1) b | 155.3 (3.9) b | 0.38 (0.28) a | 139.0 (8.0) a | 164 (51) b | 485 (79) a | 460 (65) b |
Sample | Se (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | Cr (mg/kg) | Fe (mg/kg) |
---|---|---|---|---|---|
A—Altromin 1324 | 1.22 (0.17) a | 12.0 (3.4) a | 16.6 (2.9) a | 0.233 (0.039) a | 88 (27) a |
B—Altromin C 1045 | 0.79 (0.15) b | 6.2 (1.5) b | 17.3 (2.7) a | 0.254 (0.045) a | 131 (69) a |
C—Altromin C 1045 + ST | 0.79 (0.07) b | 6.4 (1.4) b | 17.4 (1.8) a | 0.205 (0.046) a | 132 (84) a |
D—Altromin C 1045 + SeST | 1.08 (0.18) ac | 7.4 (2.9) b | 17.5 (1.4) a | 0.221 (0.026) a | 94 (47) a |
E—Altromin C 1045 + EF | 0.81 (0.16) b | 6.7 (2.2) b | 17.2 (2.1) a | 0.243 (0.076) a | 90 (54) a |
F—Altromin C 1045 + SeEF | 0.89 (0.12) bc | 5.0 (0.7) b | 16.1 (2.4) a | 0.200 (0.027) a | 77 (38) a |
Sample | Se (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | Cr (mg/kg) | Fe (mg/kg) |
---|---|---|---|---|---|
A—Altromin 1324 | 0.383 (0.058) a | 2.25 (0.26) a | 11.9 (1.7) a | 0.070 (0.017) a | 131 (37) a |
B—Altromin C 1045 | 0.137 (0.018) b | 2.43 (0.25) a | 11.9 (1.5) a | 0.067 (0.011) a | 113 (17) ab |
C—Altromin C 1045 + ST | 0.152 (0.023) b | 2.42 (0.27) a | 11.5 (1.1) a | 0.074 (0.015) a | 119 (13) ab |
D—Altromin C 1045 + SeST | 0.252 (0.055) c | 2.37 (0.31) a | 11.2 (2.1) a | 0.072 (0.015) a | 110 (14) ab |
E—Altromin C 1045 + EF | 0.142 (0.029) b | 2.44 (0.21) a | 10.5 (1.1) a | 0.066 (0.016) a | 104 (28) ab |
F—Altromin C 1045 + SeEF | 0.213 (0.039) c | 2.31 (0.12) a | 11.1 (1.3) a | 0.072 (0.013) a | 105 (23) b |
Groups | Total Counts (log CFU/g) | |||
---|---|---|---|---|
Clostridium | Enterobacteriaceae | Escherichia coli | Lactobacillus | |
A—Altromin 1324 | 3.04 (0.46) d | 5.01 (0.67) b | 4.98 (0.72) b | 7.78 (0.64) ab |
B—Altromin C 1045 | 1.99 (0.43) c | 4.42 (0.57) b | 4.37 (0.62) b | 7.87 (0.62) ab |
C—Altromin C 1045 + ST | 1.85 (0.60) bc | 4.74 (0.51) b | 4.58 (0.42) b | 7.98 (0.48) ab |
D—Altromin C 1045 + SeST | 1.51 (0.80) bc | 4.79 (0.77) b | 4.73 (0.64) b | 8.29 (0.61) b |
E—Altromin C 1045 + EF | 0.96 (0.32) a | 4.68 (0.92) b | 4.40 (0.53) b | 8.34 (0.55) b |
F—Altromin C 1045 + SeEF | 1.39 (0.38) ab | 3.39 (0.77) a | 3.25 (1.04) a | 7.64 (0.61) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krausova, G.; Kana, A.; Vecka, M.; Hyrslova, I.; Stankova, B.; Kantorova, V.; Mrvikova, I.; Huttl, M.; Malinska, H. In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats. Antioxidants 2021, 10, 463. https://doi.org/10.3390/antiox10030463
Krausova G, Kana A, Vecka M, Hyrslova I, Stankova B, Kantorova V, Mrvikova I, Huttl M, Malinska H. In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats. Antioxidants. 2021; 10(3):463. https://doi.org/10.3390/antiox10030463
Chicago/Turabian StyleKrausova, Gabriela, Antonin Kana, Marek Vecka, Ivana Hyrslova, Barbora Stankova, Vera Kantorova, Iva Mrvikova, Martina Huttl, and Hana Malinska. 2021. "In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats" Antioxidants 10, no. 3: 463. https://doi.org/10.3390/antiox10030463
APA StyleKrausova, G., Kana, A., Vecka, M., Hyrslova, I., Stankova, B., Kantorova, V., Mrvikova, I., Huttl, M., & Malinska, H. (2021). In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats. Antioxidants, 10(3), 463. https://doi.org/10.3390/antiox10030463