Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Antioxidant Capacity by DPPH Assay
2.3. Antioxidant Capacity by ABTS Assay
2.4. Total Polyphenol Content
2.5. Fast Blue BB Assay
2.6. Total Flavonoid Content
2.7. LC-MS Analysis
2.8. Extraction Procedure
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossen, M.S.; Ali, M.Y.; Jahurul, M.H.A.; Abdel-Daim, M.M.; Gan, S.H.; Khalil, M.I. Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacol. Rep. 2017, 69, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Honey Market Presentation. Spring 2020. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/animals_and_animal_products/documents/market-presentation-honey_spring2020_en.pdf (accessed on 3 March 2021).
- Olas, B. Honey and Its Phenolic Compounds as an Effective Natural Medicine for Cardiovascular Diseases in Humans? Nutrients 2020, 12, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczuk, I.; Jeżewska-Zychowicz, M.; Trafiałek, J. Conditions of honey consumption in selected regions of Poland. Acta Sci. Pol. Technol. Aliment. 2017, 16, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Rahman, K.; Hussain, A.; Ullah, S.; Zai, I.U.M. Phytochemical analysis and chemical composition of different branded and unbranded honey samples. Int. J. Microbiol. Res. 2013, 4, 132–137. [Google Scholar] [CrossRef]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othma, N.H. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxid. Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atrouse, O.M.; Oran, S.A.; Al-Abbadi, S.Y. Chemical analysis and identification of pollen grains from different Jordanian honey samples. Int. J. Food Sci. Technol. 2004, 39, 413–417. [Google Scholar] [CrossRef]
- Chen, L.; Mehta, A.; Berenbaum, M.; Zangerl, A.R.; Engeseth, N.J. Honeys from different floral sources as inhibitors of enzymatic browning in fruit and vegetable homogenates. J. Agric. Food Chem. 2000, 48, 4997–5000. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.W. The chemical composition of honey. J. Chem. Educ. 2007, 84, 1643. [Google Scholar] [CrossRef]
- Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, flavones, flavanones, and human health: Epidemiological evidence. J. Med. Food 2005, 8, 281–290. [Google Scholar] [CrossRef]
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Othman, N.H. Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malays. J. Med. Sci. 2013, 20, 6–13. [Google Scholar] [PubMed]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A. Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules 2014, 19, 2497–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abubakar, M.B.; Abdullah, W.Z.; Sulaiman, S.A.; Suen, A.B. A review of molecular mechanisms of the antileukemic effects of phenolic compounds in honey. Int. J. Mol. Sci. 2012, 13, 15054–15073. [Google Scholar] [CrossRef] [Green Version]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A. Honey: A novel antioxidant. Molecules 2012, 17, 4400–4423. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M. Lipid peroxidation: A radical chain reaction. Free Radic. Biol. Med. 1989, 2, 188–218. [Google Scholar]
- Al-Waili, N.S. Effects of daily consumption of honey solution on hematological indices and blood levels of minerals and enzymes in normal individuals. J. Med. Food 2003, 6, 135–140. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Dobersek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food. Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Wilczyńska, A. Phenolic content and antioxidant activity of different types of polish honey—A short report. Pol. J. Food Nutr. Sci. 2010, 60, 309–313. [Google Scholar]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Rasad, H.; Entezari, M.H.; Ghadiri, E.; Mahaki, B.; Pahlavani, N. The effect of honey consumption compared with sucrose on lipid profile in young healthy subjects (randomized clinical trial). Clin. Nutr. ESPEN 2018, 26, 8–12. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Burlando, B.; Cornara, L. Honey in dermatology and skin care: A review. J. Cosmet. Dermatol. 2013, 12, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.-C.; Chen, H.-Y. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.; Ozyurek, M.; Guclu, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Samec, D.; Piljac-Zegarac, J. Fluctuations in the levels of antioxidant compounds and antioxidant capacity of ten small fruits during one year of frozen storage. Int. J. Food Prop. 2015, 18, 21–32. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E. Comparative analysis of the antioxidant capacity of selected fruit juices and nectars: Chokeberry juice as a rich source of polyphenols. Int. J. Food Prop. 2016, 19, 1317–1324. [Google Scholar] [CrossRef]
- Vela, L.; de Lorenzo, C.; Perez, R.A. Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J. Sci. Food Agric. 2007, 87, 1069–1075. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Medina, M.B. Determination of the total phenolics in juices and superfruits by a novel chemical method. J. Funct. Foods 2011, 3, 79–87. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E.; Przygoński, K. Antioxidant properties and phenolic compounds of vitamin C-rich juices. J. Food Sci. 2018, 83, 2237–2246. [Google Scholar] [CrossRef]
- Kapci, B.; Neradova, E.; Cizkova, H.; Voldrich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant capacity of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Biesaga, M.; Pyrzyńska, K. Stability of bioactive polyphenols from honey during different extraction methods. Food Chem. 2013, 136, 46–54. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Bajerska, J. Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chem. 2015, 172, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.; Gośliński, M.; Szwengiel, A. Multidimensional comparative analysis of phenolic compounds of organic juices with high antioxidant capacity. J. Sci. Food Agric. 2017, 97, 2657–2663. [Google Scholar] [CrossRef]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Attanzio, A.; Tesoriere, L.; Allegra, M.; Livrea, M.A. Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) have high reducing power and antioxidant capacity. Heliyon 2016, 2, e00193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moniruzzaman, M.; Sulaiman, S.A.; Khalil, I.; Gan, S.H. Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey. Chem. Cent. J. 2013, 7, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheldof, N.; Engeseth, N.J. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J. Agric. Food Chem. 2002, 50, 3050–3055. [Google Scholar] [CrossRef]
- Alzahrani, H.A.; Alsabehi, R.; Boukraâ, L.; Abdellah, F.; Bellik, Y.; Bakhotmah, B.A. Antibacterial and antioxidant potency of floral honeys from different botanical and geographical origins. Molecules 2012, 17, 10540–10549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalil, M.I.; Alam, N.; Moniruzzaman, M.; Sulaiman, S.A.; Gan, S.H. Phenolic acid composition and antioxidant properties of Malaysian honeys. J. Food Sci. 2011, 76, C921–C928. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Thakali, K.M.; Xie, C.; Kondo, M.; Tong, Y.; Ou, B.; Jensen, G.; Medina, M.B.; Schauss, A.G.; Wu, X. Bioactivities of açaí (Euterpe precatoria Mart.) fruit pulp, superior antioxidant and anti-inflammatory properties to Euterpe oleracea. Mart. Food Chem. 2012, 133, 671–677. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic profile and antioxidant properties of Polish honeys. Int. J. Food Sci. Technol. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Kuś, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerkovic, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Swartz, M.E. UPLCTM: An introduction and review. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1253–1263. [Google Scholar] [CrossRef]
- Marshall, S.M.; Schneider, K.R.; Cisneros, K.V.; Gu, L. Determination of antioxidant capacities, α-dicarbonyls, and phenolic phytochemicals in Florida varietal honeys using HPLC-DAD-ESI-MS. J. Agric. Food Chem. 2014, 62, 8623–8631. [Google Scholar] [CrossRef]
- Jasicka-Misiak, I.; Paliwoda, A.; Dereń, M.; Kafarski, P. Phenolic compounds and abscisic acid as potential markers for the floral origin of two Polish unifloral honeys. Food Chem. 2012, 131, 1149–1156. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Wu, H.-L.; Wang, J.-Y.; Tu, D.-Z.; Kang, C.; Zhao, J.; Chen, Y.; Miu, X.-X.; Yu, R.-Q. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm. Food Chem. 2013, 138, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Petrus, K.; Schwartz, H.; Sontag, G. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 2555–2563. [Google Scholar] [CrossRef]
Samples | DPPH mg Tx kg−1 | ABTS mM Tx | TP mg GAE kg−1 | FBBB mg GAE kg−1 | TF mg CAE kg−1 |
---|---|---|---|---|---|
Acacia | 94 ± 1 i | 1.40 ± 0.23 e | 763 ± 23 h | 503 ± 11 i | 408 ± 12 f |
Artificial | 0 ± 0 j | 0.20 ± 0.10 g | 977 ± 80 g | 815 ± 8 f | 0 ± 0 g |
Buckwheat 1 | 376 ± 5 d | 1.78 ± 0.10 c | 2468 ± 113 b | 1276 ± 9 d | 1047 ± 23 c |
Buckwheat 2 | 511 ± 9 b | 1.83 ± 0.20 c | 3508 ± 178 a | 1824 ± 16 a | 1723 ± 98 a |
Goldenrod | 449 ± 9 c | 2.02 ± 0.08 b | 2500 ± 127 b | 1466 ± 38 c | 1416 ± 105 b |
Heather 1 | 211 ± 3 f | 1.56 ± 0.19 d | 1526 ± 132 e | 1279 ± 27 d | 794 ± 62 d |
Heather 2 | 271 ± 3 e | 1.64 ± 0.15 c,d | 2419 ± 173 b | 1299 ± 10 d | 1517 ± 87 b |
Honeydew 1 | 542 ± 7 b | 2.08 ± 0.13 b | 2434 ± 62 b | 1542 ± 11 b, c | 1772± 202 a |
Honeydew 2 | 613 ±20 a | 2.41 ± 0.43 a | 2648 ± 88 b | 1873 ±23 a | 1874 ± 148 a |
Honeydew 3 | 265 ± 5 e | 1.43 ± 0.12 e | 1614 ± 124 e | 1014 ± 16 e | 604 ± 29 e |
Linden | 130 ± 3 h | 1.09 ± 0.09 f | 913 ± 54 g | 694 ± 8 g | 420 ± 24 f |
Malaysian | 410 ± 10 c,d | 2.11 ± 0.38 a b | 2186 ± 199 c | 1824 ± 26 a | 1761 ± 115 a |
Manuka 250 | 396 ± 6 d | 2.33 ± 0.32 a | 2493 ± 95 b | 1854 ± 7 a | 1498 ± 41 b |
Manuka 400 | 450 ± 15 c | 2.35 ± 0.67 a | 2418 ± 156 b | 1623 ± 37 b | 1268 ± 65 b,c |
Multifloral 1 | 123 ± 2 h | 1.40 ± 0.14 e | 943 ± 60 g | 600 ± 16 h | 408 ± 15 f |
Multifloral 2 | 155 ± 3 g | 1.59 ± 0.21 d | 1173 ± 132 f | 745 ± 18 g | 438 ± 30 f |
Multifloral 3 | 364 ± 12 d | 2.00 ± 0.37 b | 1848 ± 69 d | 1299 ± 41 d | 1373 ± 11 b |
Phacelia | 238 ± 5 e,f | 1.57 ± 0.02 d | 1872 ± 94 d | 918 ± 27 e | 715 ± 53 d |
Rapeseed | 139 ± 3 g,h | 1.41 ± 0.07 e | 1016 ± 162 f,g | 820 ± 4 f | 494 ± 31 e |
Raspberry | 162 ± 3 g | 1.67 ± 0.11 c, d | 1091 ± 59 f | 699 ± 24 g | 568 ± 62 e |
Sunflower | 123 ± 2 h | 0.97 ± 0.06 f | 824 ± 27 h | 492 ± 12 i | 402 ± 23 f |
h | Caffeic Acid | Chlorogenic Acid | Ferulic Acid | p-Coumaric Acid | Protocatechuic Acid * | Sinapic Acid | Syringic Acid * | Vanillic Acid |
---|---|---|---|---|---|---|---|---|
Acacia | nd | nd | 0.25 ± 0.02 e | nd | nd | nd | nd | 0.18 ± 0.01 c |
Phacelia | 0.45 ± 0.02 d | 0.88 ± 0.03 d | 1.18 ± 0.03 b | 2.83 ± 0.11 b | nd | nd | 0.12 ± 0.01 e | 0.54 ± 0.02 b |
Buckwheat 1 | nd | 0.69 ± 0.03 d | nd | 0.83 ± 0.05 e | nd | nd | nd | nd |
Buckwheat 2 | nd | 0.56 ± 0.03 e | nd | 2.13 ± 0.09 c | nd | nd | nd | nd |
Linden | 0.69 ± 0.04 c | 0.73 ± 0.01 d | 0.21 ± 0.01 e | nd | nd | nd | 0.11 ± 0.01 e | nd |
Malaysian | 0.65 ± 0.09 c | 3.06 ± 0.13 a | 0.11 ± 0.01 f | 0.46 ± 0.01 g | nd | 0.07 ± 0.01 a | 0.22 ± 0.01 d | 0.33 ± 0.02 b,c |
Raspberry | 0.44 ± 0.03 d | 0.29 ± 0.02 f | 1.55 ± 0.06 a | 2.44 ± 0.03 c | nd | nd | 0.17 ± 0.01 d | 0.52 ± 0.03 b |
Manuka 250 | 38.67 ± 2.02 a | 2.68 ± 0.03 b | nd | 0.84 ± 0.04 e | nd | nd | 0.64 ± 0.05 b | nd |
Manuka 400 | 35.69 ± 0.12 a | 3.29 ± 0.15 a | nd | 0.64 ± 0.04 f | nd | nd | 0.4 ± 0.02 c | nd |
Goldenrod | 0.53 ± 0.04 c,d | nd | 1.66 ± 0.04 a | 3.36 ± 0.18 b | nd | nd | 0.21 ± 0.02 d | 1.05 ± 0.04 a |
Rapeseed | nd | 0.56 ± 0.05 e | 0.32 ± 0.03 d,e | 0.65 ± 0.02 f | nd | nd | 0.22 ± 0.02 d | nd |
Sunflower | nd | 0.49 ± 0.04 e | 0.14 ± 0.01 f | nd | nd | nd | nd | 0.20 ± 0.01 c |
Honeydew 3 | 0.59 ± 0.02 c | 0.74 ± 0.05 d | 0.44 ± 0.05 d | 1.45 ± 0.08 d | 0.29 ± 0.02 b | nd | 0.13 ± 0.02 e | nd |
Honeydew 1 | 1.2 ± 0.03 b | 0.78 ± 0.1 d | 0.31 ± 0.02 d,e | 0.95 ± 0.02 e | 0.66 ± 0.03 a | nd | nd | nd |
Honeydew 2 | 0.92 ± 0.07 b | 0.83 ± 0.05 d | 0.22 ± 0.01 e | 0.63 ± 0.05 f | 0.77 ± 0.01 a | nd | 0.11 ± 0.02 e | 0.27 ± 0.01 c |
Artificial | nd | nd | nd | nd | nd | nd | nd | nd |
Multifloral 1 | nd | 1.34 ± 0.04 c | nd | nd | nd | nd | nd | nd |
Multifloral 2 | 1.09 ± 0.01 b | 1.35 ± 0.08 c | 0.38 ± 0.04 d | 1.59 ± 0.07 d | nd | nd | 0.2 ± 0.01 d | 0.45 ± 0.03 b |
Multifloral 3 | nd | 0.36 ± 0.01 f | 1.31 ± 0.09 b | 4.05 ± 0.06 a | nd | nd | 1.05 ± 0.03 a | 0.97 ± 0.04 a |
Heather 1 | nd | 0.46 ± 0.04 e | 0.71 ± 0.02 c | 2.21 ± 0.06 c | nd | nd | 0.16 ± 0.02 d | 0.55 ± 0.03 b |
Heather 2 | 0.4 ± 0.05 d | nd | 1.10 ± 0.01 b | 4.09 ± 0.24 a | nd | nd | nd | 0.43 ± 0.02 b |
Sample | Apigenin | Astragalin ** | Datiscetin ** | Genistein ** | Kaempferol ** | Luteolin ** | Quercetin | Quercetrin ** | Rhamnetin ** | Rutin ** |
---|---|---|---|---|---|---|---|---|---|---|
Acacia | 0.04 ± 0 d | nd | nd | nd | 0.15 ± 0.01 g | nd | nd | nd | nd | nd |
Artificial | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Buckwheat 1 | 0.03 ± 0 d | nd | nd | nd | 0.08 ± 0.01 g | nd | nd | nd | nd | nd |
Buckwheat 2 | 0.03 ± 0 d | nd | nd | nd | 0.11 ± 0 g | nd | 0.11 ± 0 f | nd | nd | nd |
Goldenrod | 0.16 ± 0.02 b | nd | nd | nd | 1.18 ± 0.05 c | 0.06 ± 0 d | 0.31 ± 0.01 e | 0.04 ± 0.01 b | nd | 0.07 ± 0 b |
Heather 1 | 0.06 ± 0.01 d | nd | nd | nd | 1.42 ± 0.02 b | 0.06 ± 0.01 d | 0.94 ± 0.03 b | 0.11 ± 0 a | nd | 0.15 ± 0.01 a |
Heather 2 | 0.26 ± 0 a | 0.07 ± 0 c | 0.07 ± 0.01 e | nd | 0.97 ± 0.02 c | 0.08 ± 0 d | 0.21 ± 0 e | nd | nd | nd |
Honeydew 1 | 0.11 ± 0.01 c | 0.12 ± 0.01 b | 0.23 ± 0.03 c,d | 0.41 ± 0.03 a | 0.47 ± 0.04 e | 0.04 ± 0 d | 0.54 ± 0.05 c | nd | nd | nd |
Honeydew 2 | 0.09 ± 0 c | 0.11 ± 0 b | 0.16 ± 0 d | 0.28 ± 0.03 b | 0.43 ± 0.04 e | 0.04 ± 0 d | 0.44 ± 0.1 c,d | nd | nd | nd |
Honeydew 3 | 0.07 ± 0 c,d | nd | nd | nd | 0.33 ± 0 e,f | 0.03 ± 0 d | 0.25 ± 0.01 e | nd | nd | nd |
Linden | 0.09 ± 0.01 c | nd | 0.09 ± 0 e | nd | 0.38 ± 0 e | 0.07 ± 0 d | 0.21 ± 0 e | nd | nd | nd |
Malaysian | nd | 0.66 ± 0 a | 0.06 ± 0 e | nd | nd | nd | nd | nd | nd | nd |
Manuka 250 | 0.15 ± 0 b | nd | 2.75 ± 0.03 a | nd | 0.43 ± 0.03 e | 0.3 ± 0 a | 0.64 ± 0 c | nd | 0.21 ± 0.01 a | nd |
Manuka 400 | 0.12 ± 0 c | nd | 2.09 ± 0.04 b | nd | 0.46 ± 0.01 e | nd | 0.64 ± 0.02 c | nd | 0.24 ± 0 a | nd |
Multifloral 1 | 0.06 ± 0.01 d | nd | nd | nd | 0.29 ± 0.03 f | nd | 0.14 ± 0 f | nd | nd | nd |
Multifloral 2 | 0.12 ± 0.01 c | 0.05 ± 0 c | nd | nd | 0.84 ± 0.05 c,d | nd | 0.42 ± 0 d | nd | nd | nd |
Multifloral 3 | 0.2 ± 0 b | nd | 0.34 ± 0.02 c | nd | 2.27 ± 0.02 a | 0.14 ± 0.01 c | 2.08 ± 0.05 a | nd | nd | nd |
Phacelia | 0.19 ± 0 b | nd | 0.16 ± 0 d | nd | 1.13 ± 0.04 c | 0.17 ± 0 b,c | 0.37 ± 0.02 d | nd | nd | nd |
Rapeseed | 0.06 ± 0 d | 0.06 ± 0 c | 0.08 ± 0 e | nd | 0.78 ± 0.02 d | 0.04 ± 0 d | 0.28 ± 0.03 e | nd | nd | 0.05 ± 0 b |
Raspberry | 0.17 ± 0.01 b | nd | 0.45 ± 0.03 c | nd | 0.95 ± 0.05 c | 0.21 ± 0.01 b | 0.23 ± 0.01 e | nd | nd | nd |
Sunflower | 0.03 ± 0 d | 0.05 ± 0 c | nd | nd | 0.12 ± 0.01 g | nd | 0.23 ± 0.02 e | nd | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gośliński, M.; Nowak, D.; Szwengiel, A. Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants 2021, 10, 530. https://doi.org/10.3390/antiox10040530
Gośliński M, Nowak D, Szwengiel A. Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants. 2021; 10(4):530. https://doi.org/10.3390/antiox10040530
Chicago/Turabian StyleGośliński, Michał, Dariusz Nowak, and Artur Szwengiel. 2021. "Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin" Antioxidants 10, no. 4: 530. https://doi.org/10.3390/antiox10040530
APA StyleGośliński, M., Nowak, D., & Szwengiel, A. (2021). Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants, 10(4), 530. https://doi.org/10.3390/antiox10040530