Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Extract Preparation
2.3. Biological Activities
2.3.1. Evaluation of Enzyme Activity Inhibition in Cell-Free Systems
2.3.2. Evaluation of Free Radical Scavenging in Cell-Free Systems
2.4. Phytochemical Analysis
2.4.1. Total Phenolic Content
2.4.2. UHPLC-DAD-MSn Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Disc. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, P.A.G.M.; Keller, K.; Hansel, R.; Chandler, R.F. Adverse Effects of Herbal Drugs, 1st ed.; Springer Verlag: Berlin/Heidelberg, Germany, 1993; pp. 1–13. [Google Scholar]
- Schulz, V.; Hansel, R.; Tyler, V.E. Rational Phytotherapy, 4th ed.; Springer Verlag: Heidelberg, Germany, 2001. [Google Scholar]
- Duke, J.A. Zielona Apteka, 1st ed.; Parsons Walton Press: Warszawa, Poland, 2005. [Google Scholar]
- Lutomski, J. Ziołolecznictwo Tradycja I Przyszłość, 1st ed.; Tower Press: Gdańsk, Poland, 2003. [Google Scholar]
- Schilcher, H.; Dorsch, W. Ziołolecznictwo W Pediatrii, 1st ed.; MedPharm: Wrocław, Poland, 2010. [Google Scholar]
- Samochowiec, L. Kompendium Ziołolecznictwa, 2nd ed.; Elsevier Urban &Partner: Wrocław, Poland, 2002. [Google Scholar]
- Tadić, V.; Arsić, I.; Zvezdanović, J.; Zugić, A.; Cvetković, D.; Pavkov, S. The estimation of the traditionally used yarrow (Achillea millefolium L. Asteraceae) oil extracts with anti-inflamatory potential in topical application. J. Ethnopharmacol. 2017, 199, 138–148. [Google Scholar] [CrossRef]
- Bickers, D.R.; Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef] [Green Version]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [Green Version]
- Davalli, P.; Mitic, T.; Caporali, A.; Lauriola, A.; D’Arca, D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell. Longev. 2016, 2016, 3565127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B. Oxidants human disease: Some new concepts. FASEB J. 1987, 1, 358–364. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–342. [Google Scholar] [CrossRef] [Green Version]
- Piwowarski, J.P.; Kiss, A.K. C-glucosidic ellagitannins from Lythri herba (Ph. Eur.). Chromatographic profile and structure determination. Phytochem. Anal. 2013, 24, 336–348. [Google Scholar] [CrossRef] [PubMed]
- USP XXII-NF XVII (1990) 644–645; United States Pharmacopoeia Convention, Inc.: Rockville, MD, USA, 1990.
- Piwowarski, J.P.; Kiss, A.K.; Kozłowska-Wojciechowska, M. Anti-hyaluronidase anti-elastase activity screening of tannin-rich plant materials used in traditional polish medicine for external treatment of diseases with inflammatory background. J. Ethnopharmacol. 2011, 137, 937–941. [Google Scholar] [CrossRef]
- Bazylko, A.; Piwowarski, J.P.; Filipek, A.; Bonarewicz, J.; Tomczyk, M. In vitro antioxidant and anti-inflammatory activities of extracts from Potentilla recta and its main ellagitannin, agrimoniin. J. Ethnopharmacol. 2013, 149, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Kirpotina, L.N.; Jakiw, L.; Khlebnikov, A.I.; Blaskovich, C.L.; Jutila, M.A.; Quinn, M.T. Immunomodulatory activity of oenothein B isolated from Epilobium angustifolium. J. Immunol. 2009, 83, 6754–6766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Park, S.H.; Kimm, S.K. Antioxidant activity free radical scavenging capacity between Korean medicinal plants flavonoids by assay, Guided comparison. Plant. Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- Kiss, A.K.; Filipek, A.; Czerwinska, M.; Naruszewicz, M. Oenothera paradoxa defatted seeds extract its bioactive component penta-O-galloyl-β-D-glucose decreased production of reactive oxygen species inhibited release of leukotriene B4 interleukin-8 elastase myeloperoxidase in human neutrophils. J. Agric. Food Chem. 2010, 58, 9960–9966. [Google Scholar] [CrossRef]
- O’Dowd, Y.; Driss, F.; Dang, P.M.C.; Elbim, C.; Gougerot-Pocidalo, M.A.; Pasquier, C.; El-Benna, J. Antioxidant effect of hydroxytyrosol, a polyphenol from olive oil: Scavenging of hydrogen peroxide but not superoxide anion produced by human neutrophils. Biochem. Pharmacol. 2004, 68, 2003–2008. [Google Scholar] [CrossRef]
- Bazylko, A.; Granica, S.; Filipek, A.; Piwowarski, J.; Stefanska, J.; Osinska, E.; Kiss, A.K. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L. Ind. Crops Prod. 2013, 50, 88–94. [Google Scholar] [CrossRef]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD 2 and NALP 3 in interleukin-1β generation. Clin. Exp. Immunol. 2006, 147, 227–235. [Google Scholar]
- Landen, X.N.; Li, D.; Stahle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef] [Green Version]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Chagas-Paula, D.A.; Oliveira, T.B.; Faleiro, D.P.V.; Oliveira, R.B.; Da Costa, F.B. Outstanding anti-inflammatory potential of selected Asteraceae species through the potent dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. Planta Med. 2015, 81, 1296–1307. [Google Scholar] [CrossRef] [Green Version]
- Olczyk, P.; Komosińska-Vassev, K.; Winsz-Szczotka, K.; Kuźnik-Trocha, K.; Olczyk, K. Hyaluronan: Structure, metabolism, functions, and role in wound healing. Postepy Hig. Med. Dosw. 2008, 62, 651–659. [Google Scholar]
- Stern, R.; Asari, A.A.; Sugahara, K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Torii, T.; Matsuda, K.; Yamada, Y. Anti-allergic effects of extracts from commercial products of cooked burdock. Food Sci. Technol. Res. 2009, 15, 423–426. [Google Scholar] [CrossRef] [Green Version]
- Duque, L.; Bravo, K.; Osorio, E. A holistic anti-aging approach applied in selected cultivated medicinal plants: A view of photoprotection of the skin by different mechanisms. Ind. Crops Prod. 2017, 97, 431–439. [Google Scholar] [CrossRef]
- Herold, A.; Cremer, L.; Călugaru, A.; Tamaş, V.; Ionescu, F.; Manea, S.; Szegli, G. Hydroalcoholic plant extracts with anti-inflammatory activity. Roum. Arch. Microbiol. Immunol. 2003, 62, 117–129. [Google Scholar] [PubMed]
- Trouillas, P.; Callistea, C.A.; Allaisc, D.P.; Simonb, A.; Marfaka, A.; Delageb, C.; Durouxa, J.L. Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chem. 2003, 80, 399–407. [Google Scholar] [CrossRef]
- Kindl, M.; Blažeković, B.; Bucar, F.; Vladimir-Knežević, S. Antioxidant and anticholinesterase potential of six Thymus species. Evid. Based Complement. Alternat. Med. 2015, 2015, 403950. [Google Scholar] [CrossRef] [Green Version]
- Kindl, M.; Blažeković, B.; Bucar, F.; Vladimir-Knežević, S.A.; Williams, G.M.; Jeffrey, A.M. Oxidative DNA damage: Endogenous and chemically induced. Regul. Toxicol. Pharmacol 2000, 32, 283–292. [Google Scholar]
- Robak, J.; Gryglewski, R.J. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, J.M.; Yang, J.J.; Chuang, S.C.; Ujiie, T. Anti-inflammatory and radical scavenge effects of Arctium lappa Ujiie. AJCM 1996, 24, 127–137. [Google Scholar]
- Güder, A.; Korkmaz, H. Evaluation of in-vitro antioxidant properties of hydroalcoholic solution extracts Urtica dioica L., Malva neglecta Wallr. and their mixture. Iran. J. Pharm. Res. 2012, 11, 913–923. [Google Scholar]
- Stojanovic, R.; Belscak-Cvitanovic, A.; Manojlovic, V.; Komes, D.; Nedovic, V.; Bugarski, B. Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. J. Sci. Food Agric. 2012, 92, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Dias, I.M.; Barros, L.; Duenas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.; Santos-Buelga, C.; Ferreira, I.C. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, R.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010, 51, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Sonmezdag, A.; Kelebek, H.; Selli, S. Characterization of aroma-active and phenolic profiles of wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. J. Food Sci. Technol. 2016, 53, 1957–1965. [Google Scholar] [CrossRef] [Green Version]
- Tušek, A.J.; Benković, M.; Valinger, D.; Jurina, T.; Belščak-Cvitanović, A.; Kljusurić, J.G. Optimizing bioactive compounds extraction from different medicinal plants and prediction through nonlinear and linear models. Ind. Crops Prod. 2018, 126, 449–458. [Google Scholar] [CrossRef]
- Szakiel, A.; Ruszkowski, D.; Janiszowska, W. Saponins in Calendula officinalis L.—Structure, biosynthesis, transport and biological activity. Phytochem. Rev. 2005, 4, 151–158. [Google Scholar] [CrossRef]
- Su, S.; Wink, M. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 2015, 117, 340–350. [Google Scholar]
- Liu, W.; Li, J.; Zhang, X.; Zu, Y.; Yang, Y.; Liu, W.; Xu, Z.; Gao, H.; Sun, X.; Jiang, X.; et al. Current advances in naturally occurring caffeoylquinic acids: Structure, bioactivity, and synthesis. J. Agric. Food Chem. 2020, 68, 10489–10516. [Google Scholar] [CrossRef]
- Colica, C.; Di Renzo, L.; Aiello, V.; De Lorenzo, A.; Abenavoli, L. Rosmarinic acid as potential anti-inflammatory agent. Rev. Recent Clin. Trials 2018, 13, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Bulgakov, V.P.; Inyushkina, Y.V.; Fedoreyev, S.A. Rosmarinic acid and its derivatives: Biotechnology and applications. Crit. Rev. Biotechnol. 2012, 32, 203–217. [Google Scholar] [CrossRef]
- Rana, A.C.; Gulliya, B. Chemistry and pharmacology of flavonoids-a review. Indian J. Pharm. Educ. Res. 2019, 53, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Liou, S.-S.; Tzeng, T.-F.; Lee, S.-L.; Liu, I.-M. Effect of topical application of chlorogenic acid on excision wound healing in rats. Planta Med. 2013, 79, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release 2019, 269, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis 2007, 12, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Panday, A.; Sahoo, M.K.; Osorio, D.; Batra, S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Moll. Immunol. 2015, 12, 5–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maraldi, T. Natural compounds as modulators of NADPH oxidases. Oxid. Med. Cell. Longev. 2013, 2013, 271602. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hamada, H.; Gerk, P.M. Natural compounds against cancer, inflammation, and oxidative stress. BioMed. Res. Int. 2019, 2019, 9495628. [Google Scholar] [CrossRef]
- Nasso, R.; Pagliara, V.; D’Angelo, S.; Rullo, R.; Masullo, M.; Arcone, R. Annurca apple polyphenol extract affects acetylcholinesterase and mono-amine oxidase in vitro enzyme activity. Pharmaceuticals 2021, 14, 62. [Google Scholar] [CrossRef]
Extract | Anti-LOX (% ± SD) | Anti-HYAL (% ± SD) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(µg/mL) | ||||||||||
100 | 200 | 300 | 400 | 500 | 50 | 150 | 300 | 500 | ||
Arctii lappae folium (All) | H2O | 8.10 ± 0.35 | 20.85 ± 0.78 # | 27.66 ± 1.06 # | 35.93 ± 0.93 | 46.06 ± 1.14 | 2.19 ± 1.38 | 1.94 ± 0.83 | 2.59 ± 1.00 | 5.52 ± 0.95 |
EtOH | 6.89 ± 0.75 | 14.61 ± 0.40 | 19.84 ± 0.90 | 33.69 ± 2.08 | 39.89 ± 1.07 | 3.46 ± 3.56 | 1.23 ± 1.13 | 4.76 ± 0.71 | 4.16 ± 1.56 | |
Arctii lappae radix (Alk) | H2O | 1.26 ± 0.20 | 1.87 ± 0.32 | 5.37 ± 0.33 | 7.02 ± 0.45 | 8.63 ± 0.54 | 1.42 ± 1.14 | 6.33 ± 0.94 | 7.07 ± 1.49 | 8.68 ± 2.70 |
EtOH | 0.50 ± 0.23 | 2.03 ± 0.44 | 3.01 ± 0.55 | 5.02 ± 1.09 | 7.08 ± 1.33 | 1.75 ± 1.05 | 7.92 ± 5.18 # | 2.53 ± 0.08 | 3.30 ± 0.34 | |
Arctii mini folium (Aml) | H2O | 13.71 ± 2.10 ## | 17.86 ± 2.72 | 19.05 ± 2.88 | 21.52 ± 1.41 | 22.65 ± 0.99 | 0.55 ± 0.15 | 0.64 ± 0.32 | 1.31 ± 1.03 | 2.52 ± 0.55 |
EtOH | 10.69 ± 1.91 | 13.64 ± 1.26 | 16.02 ± 0.55 | 21.81 ± 1.43 | 27.85 ± 2.47 | 0.45 ± 0.21 | 1.76 ± 0.76 | 1.72 ± 0.52 | 2.31 ± 0.86 | |
Arctii mini radix (Amk) | H2O | 7.36 ± 0.58 | 9.08 ± 0.38 | 12.95 ± 1.61 | 20.38 ± 0.73 | 26.61 ± 0.87 | 2.99 ± 1.68 | 4.29 ± 1.75 | 17.35 ± 0.83 # | 46.26 ± 0.81 # |
EtOH | 3.96 ± 0.57 | 9.12 ± 0.62 | 13.87 ± 0.77 | 15.69 ± 2.01 | 21.18 ± 0.88 | 0.59 ± 0.29 | 3.99 ± 1.45 | 4.85 ± 2.22 | 8.71 ± 2.35 | |
Calendulae flos (C) | H2O | 5.80 ± 0.86 | 5.69 ± 0.32 | 8.04 ± 0.64 | 9.12 ± 0.80 | 10.96 ± 0.81 | 0.48 ± 0.66 | 1.31 ± 1.75 | 1.80 ± 2.11 | 2.24 ± 0.79 |
EtOH | 2.70 ± 0.58 | 2.35 ± 0.41 | 4.32 ± 1.69 | 5.81 ± 0.62 | 6.63 ± 0.65 | 0.95 ± 0.83 | 1.52 ± 0.27 | 3.64 ± 0.52 | 5.85 ± 0.32 | |
Centaureae flos (B) | H2O | 5.71 ± 0.65 | 13.87 ± 1.13 | 20.09 ± 1.30 | 22.80 ± 2.08 | 27.44 ± 2.02 | 2.11 ± 0.81 | 2.24 ± 1.65 | 3.34 ± 1.20 | 3.09 ± 1.46 |
EtOH | 3.64 ± 0.24 | 7.89 ± 0.53 | 16.16 ± 0.70 | 23.26 ± 0.90 | 26.04 ± 1.02 | 1.43 ± 0.71 | 3.34 ± 1.53 | 7.58 ± 1.72 | 12.05 ± 2.78 | |
Galii aparinae herba (P) | H2O | 7.87 ± 0.44 | 13.63 ± 0.58 | 20.22 ± 1.07 | 26.48 ± 1.45 | 30.61 ± 0.97 | 0.87 ± 0.72 | 2.94 ± 0.76 | 2.94 ± 0.75 | 5.25 ± 1.8 |
EtOH | 3.26 ± 0.19 | 7.53 ± 0.37 | 12.15 ± 0.96 | 19.26 ± 2.46 | 27.88 ± 2.14 | 2.98 ± 1.41 | 2.45 ± 1.06 | 2.44 ± 1.05 | 4.73 ± 2.45 | |
Millefolii herba (K) | H2O | 14.94 ± 0.40 ## | 20.23 ± 1.03 # | 33.77 ± 0.85 # | 47.27 ± 1.81 # | 52.05 ± 4.39 # | 0.45 ± 0.32 | 1.65 ± 0.39 | 1.90 ± 0.65 | 3.01 ± 0.57 |
EtOH | 6.03 ± 0.19 | 22.07 ± 0.38 # | 33.16 ± 1.50 # | 42.05 ± 3.98 # | 46.49 ± 1.08 | 0.46 ± 0.23 | 1.02 ± 0.24 | 2.78 ± 0.84 | 2.81 ± 0.52 | |
Sambuci nigrae folium (S) | H2O | 4.92 ± 0.30 | 10.33 ± 0.55 | 12.15 ± 1.14 | 12.66 ± 0.85 | 21.69 ± 1.42 | 0.86 ± 0.81 | 2.30 ± 1.29 | 2.39 ± 2.62 | 3.52 ± 2.94 |
EtOH | 4.69 ± 0.48 | 6.30 ± 0.24 | 8.40 ± 0.70 | 13.45 ± 1.35 | 19.57 ± 1.96 | 0.24 ± 0.29 | 0.88 ± 1.26 | 3.46 ± 2.13 | 2.92 ± 1.49 | |
Serpylli herba (Th) | H2O | 11.94 ± 1.22 # | 26.18 ± 0.71 ## | 53.46 ± 0.75 ## | 70.83 ± 5.15 ## | 90.58 ± 4.96 ## | 8.41 ± 0.48 | 71.71 ± 4.91 ## | 90.44 ± 3.70 ## | 98.77 ± 1.50 ## |
EtOH | 8.29 ± 0.53 | 24.37 ± 2.11 ## | 43.73 ± 3.01 # | 65.58 ± 3.65 ## | 90.49 ± 2.27 ## | 8.24 ± 2.31 | 8.24 ± 2.31 | 16.63 ± 4.02 # | 28.69 ± 2.48 | |
Taraxaci herba (M) | H2O | 12.21 ± 1.01 # | 18.99 ± 1.15 | 25.06 ± 1.09 | 19.97 ± 1.28 | 28.14 ± 1.00 | 0.36 ± 0.25 | 2.99 ± 1.50 | 11.83 ± 3.57 | 42.28 ± 3.18 # |
EtOH | 4.22 ± 0.50 | 7.13 ± 0.57 | 9.49 ± 0.25 | 17.60 ± 1.27 | 27.42 ± 1.36 | 1.43 ± 0.80 | 1.96 ± 0.88 | 2.87 ± 0.89 | 3.29 ± 0.83 | |
Urticae herba (U) | H2O | 12.75 ± 0.55 # | 26.49 ± 1.4 ## | 38.55 ± 1.95 # | 49.61 ± 1.56 # | 60.18 ± 5.58 # | 0.82 ± 0.55 | 2.02 ± 0.91 | 8.22 ± 3.62 | 9.77 ± 1.45 |
EtOH | 4.90 ± 0.46 | 11.92 ± 0.61 | 18.70 ± 1.94 | 25.09 ± 1.22 | 33.16 ± 4.26 | 1.68 ± 0.64 | 2.06 ± 0.52 | 2.18 ± 0.93 | 2.18 ± 0.93 | |
Violae herba (Vt) | H2O | 2.53 ± 0.10 | 6.25 ± 0.54 | 8.91 ± 0.47 | 17.16 ± 1.37 | 24.53 ± 1.54 | 2.57 ± 0.48 | 5.21 ± 0.86 | 12.37 ± 2.76 | 15.71 ± 4.56 |
EtOH | 3.33 ± 0.77 | 5.08 ± 0.67 | 8.64 ± 0.65 | 17.71 ± 1.79 | 19.59 ± 2.22 | 1.56 ± 1.37 | 2.23 ± 2.85 | 4.62 ± 1.88 | 4.73 ± 2.09 |
Extract | DPPH (% ± SD); SC50 (µg/mL ± SD) | H2O2 (% ± SD); SC50 (µg/mL ± SD) | O2·− (% ± SD); SC50 (µg/mL ± SD) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(µg/mL) | ||||||||||||||||
10 | 20 | 50 | 150 | 250 | 2.5 | 5 | 15 | 25 | 50 | 5 | 10 | 25 | 75 | 125 | ||
Arctii lappae folium | H2O | 19.14 ± 1.29 | 30.00 ± 1.81 | 63.68 ± 4.12 | 90.15 ± 1.91 | 91.43 ± 0.86 | 4.62 ± 2.04 | 10.98 ± 1.44 | 25.49 ± 3.00 | 53.6 ± 3.54 | 96.13 ± 2.31 ## | 27.81 ± 2.02 | 47.42 ± 3.40 | 64.67 ± 5.46 | 77.55 ± 5.46 | 83.24 ± 3.57 |
[SC50 = 32.99 ± 2.44] | [SC50 = 17.92 ± 1.84] | [SC50 = 26.52 ± 5.22] | ||||||||||||||
EtOH | 15.36 ± 0.64 | 29.06 ± 1.71 | 55.22 ± 2.51 | 91.69 ± 0.76 | 92.21 ± 0.72 | 6.70 ± 2.76 | 13.75 ± 2.65 | 30.05 ± 4.38 | 94.72 ± 3.19 ## | 98.90 ± 1.03 ## | 22.58 ± 1.54 | 38.93 ± 2.91 | 61.51 ± 3.98 | 75.79 ± 4.46 | 76.38 ± 5.48 | |
[SC50 = 36.17 ± 1.62] | [SC50 = 12.28 ± 1.01] | [SC50 = 35.19 ± 6.30] | ||||||||||||||
Arctii lappae radix | H2O | 5.68 ± 0.75 | 22.11 ± 5.26 | 22.40 ± 5.35 | 29.55 ± 4.02 | 43.81 ± 3.71 | 5.29 ± 1.26 | 6.26 ± 0.60 | 8.22 ± 2.94 | 10.92 ± 2.07 | 19.68 ± 2.77 | 15.83 ± 1.39 | 19.40 ± 1.59 | 29.79 ± 2.68 | 38.07 ± 3.09 | 52.64 ± 4.73 |
[SC50 = NA] | [SC50 = NA] | [SC50 = NA] | ||||||||||||||
EtOH | 3.60 ± 1.15 | 6.63 ± 1.37 | 16.92 ± 2.53 | 34.75 ± 2.02 | 50.33 ± 3.23 | 5.27 ± 3.40 | 9.22 ± 3.49 | 11.93 ± 3.85 | 11.14 ± 2.69 | 13.33 ± 3.14 | 12.60 ± 1.15 | 14.30 ± 0.74 | 18.87 ± 1.47 | 35.32 ± 2.76 | 44.36 ± 2.90 | |
[SC50 = NA] | [SC50 = NA] | [SC50 = NA] | ||||||||||||||
Arctii mini folium | H2O | 6.61 ± 2.06 | 23.09 ± 2.20 | 37.37 ± 7.94 | 40.94 ± 5.66 | 40.73 ± 3.21 | 2.21 ± 0.86 | 3.55 ± 1.50 | 2.72 ± 1.59 | 5.30 ± 1.88 | 9.71 ± 2.30 | 12.96 ± 1.62 | 18.37 ± 1.60 | 40.74 ± 3.32 | 54.39 ± 0.85 | 62.71 ± 2.10 |
[SC50 = NA] | [SC50 = NA] | [SC50 = 90.22 ± 9.76] | ||||||||||||||
EtOH | 8.51 ± 1.63 | 11.60 ± 1.33 | 21.60 ± 1.95 | 43.60 ± 1.56 | 69.21 ± 2.38 | NA | 3.38 ± 1.49 | 4.22 ± 0.08 | 9.56 ± 0.70 | 18.71 ± 4.78 | 19.44 ± 0.93 | 24.80 ± 1.29 | 30.52 ± 2.06 | 43.99 ± 2.44 | 59.23 ± 3.41 | |
[SC50 = 119.11 ± 11.94] | [SC50 = NA] | [SC50 = 140.54 ± 32.80] | ||||||||||||||
Arctii mini radix | H2O | 15.55 ± 1.82 | 16.82 ± 0.99 | 25.63 ± 1.24 | 60.70 ± 3.02 | 73.85 ± 5.16 | 7.05 ± 1.67 | 9.97 ± 1.82 | 15.52 ± 1.41 | 19.35 ± 2.44 | 52.79 ± 6.57 | 36.09 ± 0.65 | 43.69 ± 1.00 # | 57.90 ± 2.68 | 63.93 ± 2.78 | 75.87 ± 6.50 |
[SC50 = 79.23 ± 11.74] | [SC50 = 116.35 ± 56.73] | [SC50 = 30.14 ± 4.77] | ||||||||||||||
EtOH | 8.56 ± 1.22 | 18.42 ± 1.14 | 38.44 ± 2.27 | 67.66 ± 3.08 | 84.58 ± 0.70 | 3.67 ± 1.31 | 6.94 ± 2.50 | 11.44 ± 1.51 | 22.87 ± 2.69 | 42.76 ± 4.51 | 44.85 ± 2.81 | 51.96 ± 4.52 # | 61.08 ± 3.56 | 62.08 ± 3.14 | 71.98 ± 2.18 | |
[SC50 = 58.43 ± 3.79] | [SC50 = NA] | [SC50 = 16.99 ± 7.31] | ||||||||||||||
Calendulae flos | H2O | 8.34 ± 0.76 | 20.51 ± 3.04 | 15.74 ± 1.40 | 44.09 ± 2.79 | 55.12 ± 1.94 | 7.00 ± 1.11 | 12.82 ± 1.3 | 15.10 ± 3.59 | 20.37 ± 1.96 | 25.71 ± 3.90 | 8.89 ± 0.59 | 28.80 ± 3.70 | 24.85 ± 2.62 | 35.80 ± 3.18 | 53.23 ± 4.17 |
[SC50 = NA] | [SC50 = NA] | [SC50 = NA] | ||||||||||||||
EtOH | 7.85 ± 0.43 | 7.53 ± 0.97 | 16.71 ± 1.83 | 33.32 ± 1.52 | 49.51 ± 2.98 | 7.70 ± 4.09 | 8.82 ± 1.79 | 10.25 ± 2.97 | 10.70 ± 2.78 | 39.75 ± 2.26 | 4.82 ± 0.54 | 7.13 ± 0.52 | 7.79 ± 0.18 | 14.01 ± 0.25 | 29.24 ± 2.00 | |
[SC50 = NA] | [SC50 = NA] | [SC50 = NA] | ||||||||||||||
Centaureae flos | H2O | 9.90 ± 1.25 | 13.84 ± 0.37 | 33.79 ± 3.99 | 66.83 ± 2.70 | 73.41 ± 4.88 | 3.23 ± 0.09 | 4.56 ± 2.35 | 7.64 ± 3.84 | 11.25 ± 1.70 | 22.23 ± 4.81 | 16.35 ± 0.70 | 23.39 ± 2.21 | 32.47 ± 2.45 | 54.77 ± 5.32 | 67.64 ± 6.4 |
[SC50 = 71.76 ± 10.23] | [SC50 = NA] | [SC50 = 86.31 ± 24.02] | ||||||||||||||
EtOH | 6.56 ± 1.02 | 12.03 ± 0.62 | 26.68 ± 2.12 | 54.26 ± 3.09 | 77.69 ± 5.25 | 7.07 ± 2.47 | 4.83 ± 2.37 | 8.41 ± 3.36 | 12.88 ± 2.73 | 24.54 ± 3.67 | 22.38 ± 1.6 | 25.00 ± 1.35 | 26..39 ± 1.36 | 38.18 ± 1.70 | 53.07 ± 3.57 | |
[SC50 = 83.66 ± 11.56] | [SC50 = NA] | [SC50 = NA] | ||||||||||||||
Galii aparinae herba | H2O | 10.93 ± 0.75 | 15.97 ± 1.00 | 35.1 ± 2.14 | 78.6 ± 4.74 | 80.47 ± 1.34 | 6.78 ± 2.60 | 6.5 ± 1.33 | 15.64 ± 3.78 | 20.79 ± 1.94 | 34.20 ± 4.83 | 23.51 ± 1.46 | 34.7 ± 2.68 | 40.24 ± 4.55 | 64.67 ± 5.64 | 75.09 ± 3.02 |
[SC50 = 56.93 ± 6.94] | [SC50 = NA] | [SC50 = 29.80 ± 6.83] | ||||||||||||||
EtOH | 11.40 ± 0.65 | 14.56 ± 1.88 | 32.07 ± 1.88 | 77.44 ± 3.40 | 85.54 ± 2.24 | 4.75 ± 2.20 | 9.06 ± 2.94 | 16.44 ± 3.87 | 18.12 ± 5.79 | 41.48 ± 4.38 | 30.11 ± 3.40 | 39.03 ± 3.98 | 46.98 ± 4.65 | 63.72 ± 5.23 | 72.81 ± 2.89 | |
[SC50 = 56.40 ± 4.40] | [SC50 = NA] | [SC50 = 24.92 ± 7.89] | ||||||||||||||
Millefolii herba | H2O | 18.66 ± 4.55 | 22.8 ± 9.93 | 44.63 ± 2.48 | 80.48 ± 3.07 | 87.36 ± 2.46 | 8.58 ± 3.02 | 9.88 ± 3.81 | 22.94 ± 3.70 | 35.15 ± 1.76 | 35.76 ± 5.43 | 18.97 ± 1.12 | 24.04 ± 2.84 | 51.41 ± 4.94 | 82.44 ± 2.94 | 85.71 ± 1.58 |
[SC50 = 44.39 ± 7.85] | [SC50 = NA] | [SC50 = 41.41 ± 4.35] | ||||||||||||||
EtOH | 21.42 ± 3.60 | 30.94 ± 1.87 | 55.17 ± 1.00 | 90.53 ± 1.26 | 92.1 ± 1.36 | 10.26 ± 2.53 | 12.76 ± 3.23 | 17.05 ± 2.87 | 26.04 ± 5.07 | 69.09 ± 4.30 # | 27.37 ± 3.43 | 45.66 ± 4.62 | 64.29 ± 4.49 | 75.41 ± 5.14 | 77.80 ± 6.11 | |
[SC50 = 33.76 ± 2.58] | [SC50 = 48.15 ± 13.67] | [SC50 = 28.63 ± 7.48] | ||||||||||||||
Sambuci nigrae folium | H2O | 15.40 ± 2.02 | 15.45 ± 2.19 | 47.94 ± 3.92 | 83.41 ± 4.40 | 86.73 ± 3.32 | 7.85 ± 5.63 | 11.13 ± 1.65 | 16.40 ± 3.16 | 21.37 ± 4.31 | 40.58 ± 5.6 | 23.23 ± 2.49 | 41.21 ± 3.22 | 51.93 ± 3.5 | 71.00 ± 3.94 | 79.67 ± 2.36 |
[SC50 = 46.09 ± 5.30] | [SC50 = NA] | [SC50 = 38.14 ± 6.30] | ||||||||||||||
EtOH | 14.80 ± 0.87 | 32.25 ± 3.00 | 53.83 ± 2.46 | 89.92 ± 1.62 | 90.29 ± 1.15 | 4.68 ± 1.91 | 4.00 ± 2.66 | 18.13 ± 2.63 | 37.46 ± 5.71 | 94.81 ± 2.29 ## | 31.32 ± 3.10 | 34.41 ± 2.84 | 43.07 ± 3.05 | 67.35 ± 2.01 | 75.83 ± 1.79 | |
[SC50 = 36.49 ± 2.44] | [SC50 = 23.26 ± 2.92] | [SC50 = 44.64 ± 7.22] | ||||||||||||||
Serpylli herba | H2O | 22.76 ± 4.11 | 47.97 ± 3.35 ## | 84.89 ± 3.49 ## | 88.82 ± 1.81 | 86.33 ± 2.88 | 13.78 ± 2.12 | 23.05 ± 3.42 ## | 47.09 ± 3.07 ## | 82.22 ± 2.66 # | 96.46 ± 2.70 ## | 40.62 ± 3.92 # | 46.39 ± 4.02 | 64.94 ± 4.52 | 76.09 ± 3.07 | 76.36 ± 2.52 |
[SC50 = 22.31 ± 3.48] | [SC50 = 10.87 ± 1.04] | [SC50 = 20.39 ± 6.10] | ||||||||||||||
EtOH | 39.12 ± 2.79 ## | 49.54 ± 0.88 ## | 88.11 ± 6.06 ## | 91.93 ± 3.46 | 92.13 ± 2.55 | 14.76 ± 2.34 | 23.48 ± 2.82 ## | 23.48 ± 2.82 | 85.10 ± 3.31 # | 99.17 ± 1.11 ## | 39.49 ± 3.34 # | 59.53 ± 2.32 ## | 70.48 ± 2.70 | 74.19 ± 5.64 | 74.60 ± 4.94 | |
[SC50 = 15.02 ± 2.09] | [SC50 = 9.41 ± 0.71] | [SC50 = 13.60 ± 3.45] | ||||||||||||||
Taraxaci herba | H2O | 9.91 ± 1.12 | 21.47 ± 1.35 | 45.61 ± 2.14 | 79.21 ± 4.77 | 84.62 ± 3.48 | 5.34 ± 2.32 | 8.25 ± 2.18 | 31.65 ± 3.49 | 72.88 ± 3.29 | 97.64 ± 2.17 ## | 22.23 ± 1.68 | 24.63 ± 2.55 | 48.52 ± 2.64 | 71.49 ± 3.06 | 76.12 ± 3.19 |
[SC50 = 48.91 ± 4.78] | [SC50 = 14.69 ±1.25] | [SC50 = 49.00 ± 6.37] | ||||||||||||||
EtOH | 22.08 ± 1.93 | 23.97 ± 1.49 | 49.35 ± 3.14 | 87.62 ± 3.17 | 88.88 ± 2.63 | 2.81 ± 1.27 | 14.81 ± 2.73 | 47.44 ± 6.68 ## | 73.16 ± 4.74 | 95.83 ± 3.29 ## | 19.62 ± 2.35 | 25.87 ± 2.47 | 64.60 ± 3.18 | 64.60 ± 3.18 | 69.74 ± 3.29 | |
[SC50 = 38.63 ± 3.57] | [SC50 = 13,10 ± 1,59] | [SC50 = 60.59 ± 10.09] | ||||||||||||||
Urticae herba | H2O | 19.49 ± 2.38 | 23.00 ± 1.35 | 50.29 ± 3.45 | 82.57 ± 1.51 | 78.85 ± 3.67 | 7.61 ± 1.40 | 11.55 ± 4.01 | 15.35 ± 2.20 | 23.82 ± 3.39 | 34.54 ± 2.65 | 21.75 ± 0.95 | 24.95 ± 1.25 | 35.42 ± 2.15 | 60.50 ± 4.45 | 76.15 ± 4.29 |
[SC50 = 44.15 ± 4.61] | [SC50 = NA] | [SC50 = 63.75 ± 10.52] | ||||||||||||||
EtOH | 15.78 ± 2.52 | 17.97 ± 0.56 | 37.98 ± 1.62 | 83.14 ± 5.46 | 89.81 ± 0.91 | 7.35 ± 3.16 | 10.56 ± 4.12 | 21.59 ± 3.97 | 34.13 ± 4.67 | 61.82 ± 2.64 # | 10.23 ± 0.70 | 18.94 ± 1.48 | 22.43 ± 2.18 | 47.51 ± 2.14 | 67.28 ± 3.73 | |
[SC50 = 47.54 ± 3.79] | [SC50 = 45.97 ± 9.99] | [SC50 = 112.91 ± 17.59] | ||||||||||||||
Violae herba | H2O | 10.32 ± 1.25 | 14.89 ± 2.44 | 15.85 ± 2.22 | 32.51 ± 8.35 | 55.55 ± 3.38 | 11.33 ± 2.05 | 13.35 ± 2.09 | 15.37 ± 1.78 | 23.60 ± 2.64 | 34.42 ± 2.20 | 13.18 ± 0.82 | 22.39 ± 2.25 | 33.53 ± 3.00 | 41.86 ± 3.37 | 58.41 ± 3.80 |
[SC50 = NA] | [SC50 = NA] | [SC50 = 140.39 ± 37.08] | ||||||||||||||
EtOH | 10.57 ± 1.30 | 16.61 ± 0.82 | 23.40 ± 1.80 | 47.54 ± 0.63 | 66.06 ± 0.69 | 7.29 ± 0.86 | 5.40 ± 0.84 | 10.44 ± 1.32 | 10.44 ± 1.32 | 22.17 ± 1.64 | 15.22 ± 0.92 | 24.96 ± 2.32 | 24.85 ± 1.16 | 28.94 ± 1.98 | 50.71 ± 3.81 | |
[SC50 = 115.99 ± 5.57] | [SC50 = NA] | [SC50 = NA] |
Extract | Aqueous (% ± SD) | 70% Ethanolic (% ± SD) |
---|---|---|
Arctii lappae folium | 8.34 ± 0.60 | 11.74 ± 1.14 |
Arctii lappae radix | 2.60 ± 0.15 | 2.57 ± 0.24 |
Arctii mini folium | 3.11 ± 0.77 | 4.67 ± 0.72 |
Arctii mini radix | 9.25 ± 1.54 | 8.20 ± 0.89 |
Calendulae flos | 4.95 ± 0.51 | 5.15 ± 0.60 |
Centaureae flos | 6.07 ± 0.85 | 6.82 ± 0.87 |
Galii aparinae herba | 8.01 ± 1.14 | 6.78± 1.33 |
Millefolii herba | 9.90 ± 0.82 | 13.61 ± 1.87 |
Sambuci nigrae folium | 10.55 ± 0.77 | 9.78 ± 0.66 |
Serpylli herba | 20.61 ± 1.13 ## | 21.25 ± 2.90 ## |
Taraxaci herba | 10.05 ± 0.93 | 12.46 ± 1.77 |
Urticae herba | 8.64 ± 1.03 | 8.36 ± 1.08 |
Violae herba | 6.02 ± 1.23 | 6.68 ± 1.44 |
No. | Rt (min) | Compound | Max. UV (nm) | (M − H)− m/z | MS2 ions m/z | NL Detected Amu | |
---|---|---|---|---|---|---|---|
K EtOH | 1 | 8.1 | Caffeoylquinic acid | 216 | 353 | 191 | - |
2 | 15.8 | Quercetin O-hexoside | 202, 332 | 463 | 301 | 162 | |
3 | 18.8 | Luteolin O-hexoside Luteolin O-glucuronide | 204, 343 | 447 461 | 285 285 | 162 176 | |
4 | 21.4 | Dicaffeoylquinic acid | 213, 329 | 515 | 353 | 162 | |
5 | 21.8 | Dicaffeoylquinic acid Apigenin O-hexoside | 204, 329 | 515 431 | 353 269 | 162 162 | |
6 | 22.9 | Dicaffeoylquinic acid | 213, 328 | 515 | 353 | 162 | |
Th EtOH | 1 | 22.9 | Quercetin O-glucuronide | 212, 281, 343 | 477 | 301 | 176 |
2 | 26.2 | Luteolin O-glucuronide | 271, 338 | 461 | 285 | 176 | |
3 | 30.2 | Apigenin O-glucuronide | 267, 334 | 445 | 269 | 176 | |
4 | 31.4 | Rosmarinic acid | 197, 328 | 359 | 197 | 162 | |
5 | 32.6 | Salvianolic acid K | 198, 323 | 555 | 493, 359, 161 | - | |
6 | 34.1 | Salvianolic acid (H, I or J) | 198, 325 | 537 | 493, 359, 161- | - | |
All EtOH | 1 | 8.0 | Caffeoylquinic acid | 216,326 | 353 | 191 | - |
2 | 21.1 | Dicaffeoylmaloylquinic acid | 216, 328 | 631 | 515, 469, 353 | 162 | |
3 | 23.0 | Dicaffeoylsuccinoylquinic acid | 216, 329 | 615 | 515. 453, 353 | 162 | |
4 | 25.0 | Dicaffeoylsuccinoylquinic acid | 217, 328 | 615 | 515, 453, 353, 191 | 162 | |
5 | 26.7 | Dicaffeoyldisuccinoylquinic acid | 218, 329 | 715 | 553 | 162 | |
6 | 29.4 | Tricaffeoylsuccinoylquinic acid | 218, 327 | 777 | 615 | 162 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mainka, M.; Czerwińska, M.E.; Osińska, E.; Ziaja, M.; Bazylko, A. Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland. Antioxidants 2021, 10, 698. https://doi.org/10.3390/antiox10050698
Mainka M, Czerwińska ME, Osińska E, Ziaja M, Bazylko A. Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland. Antioxidants. 2021; 10(5):698. https://doi.org/10.3390/antiox10050698
Chicago/Turabian StyleMainka, Marta, Monika E. Czerwińska, Ewa Osińska, Maria Ziaja, and Agnieszka Bazylko. 2021. "Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland" Antioxidants 10, no. 5: 698. https://doi.org/10.3390/antiox10050698
APA StyleMainka, M., Czerwińska, M. E., Osińska, E., Ziaja, M., & Bazylko, A. (2021). Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland. Antioxidants, 10(5), 698. https://doi.org/10.3390/antiox10050698