Dietary Phenolic Acids and Their Major Food Sources Are Associated with Cognitive Status in Older Italian Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Dietary Assessment
2.4. Estimation of Phenolic Acid Consumption
2.5. Cognitive Status Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [CrossRef] [Green Version]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [CrossRef] [Green Version]
- Angelino, D.; Godos, J.; Ghelfi, F.; Tieri, M.; Titta, L.; Lafranconi, A.; Marventano, S.; Alonzo, E.; Gambera, A.; Sciacca, S.; et al. Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2019, 70, 652–667. [Google Scholar] [CrossRef] [PubMed]
- Tieri, M.; Ghelfi, F.; Vitale, M.; Vetrani, C.; Marventano, S.; Lafranconi, A.; Godos, J.; Titta, L.; Gambera, A.; Alonzo, E.; et al. Whole grain consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2020, 71, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.; Godos, J.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Trigueiro, H.; Gambera, A.; Alonzo, E.; et al. Nut and legume consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2021, 1–8. [Google Scholar] [CrossRef]
- Rajaram, S.; Jones, J.; Lee, G.J. Plant-Based Dietary Patterns, Plant Foods, and Age-Related Cognitive Decline. Adv. Nutr. 2019, 10, S422–S436. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Godos, J.; Galvano, F.; Giovannucci, E.L. Coffee, caffeine, and health outcomes: An umbrella review. Annu. Rev. Nutr. 2017, 37, 131–156. [Google Scholar] [CrossRef] [Green Version]
- Yi, M.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Zhao, R.; Wan, Q.; Du, L.; Zhou, Y. Tea Consumption and Health Outcomes: Umbrella Review of Meta-Analyses of Observational Studies in Humans. Mol. Nutr. Food Res. 2019, 63, e1900389. [Google Scholar] [CrossRef]
- Marino, M.; Del Bo, C.; Martini, D.; Porrini, M.; Riso, P. A review of registered clinical trials on dietary (poly)phenols: Past efforts and possible future directions. Foods 2020, 9, 1606. [Google Scholar] [CrossRef]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary Polyphenol Intake, Blood Pressure, and Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.-F.; Ruan, Y.; Li, Z.-H.; Li, D. Flavonoid subclasses and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 2850–2862. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol. Nutr. Food Res. 2021, 65, e2001019. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Sinatra, D.; Blanco, I.; Mulè, S.; La Verde, M.; Marranzano, M. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort. Nutrients 2017, 9, 1531. [Google Scholar] [CrossRef] [Green Version]
- Rienks, J.; Barbaresko, J.; Oluwagbemigun, K.; Schmid, M.; Nöthlings, U. Polyphenol exposure and risk of type 2 diabetes: Dose-response meta-analyses and systematic review of prospective cohort studies. Am. J. Clin. Nutr. 2018, 108, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Stepaniak, U.; Micek, A.; Stefler, D.; Bobak, M.; Pająk, A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur. J. Nutr. 2017, 56, 1409–1420. [Google Scholar] [CrossRef] [Green Version]
- Salomone, F.; Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Grosso, G.; Godos, J.; Galvano, F.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Higher phenolic acid intake independently associates with lower prevalence of insulin resistance and non-alcoholic fatty liver disease. JHEP Rep. 2020, 2, 100069. [Google Scholar] [CrossRef] [Green Version]
- Godos, J.; Castellano, S.; Ray, S.; Grosso, G.; Galvano, F. Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study. Molecules 2018, 23, 999. [Google Scholar] [CrossRef] [Green Version]
- Godos, J.; Ferri, R.; Castellano, S.; Angelino, D.; Mena, P.; Del Rio, D.; Caraci, F.; Galvano, F.; Grosso, G. Specific Dietary (Poly)phenols Are Associated with Sleep Quality in a Cohort of Italian Adults. Nutrients 2020, 12, 1226. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The Mediterranean healthy eating, ageing, and lifestyle (MEAL) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Galvano, F.; Grosso, G. Metabolic profile of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study cohort. Med. J. Nutrition Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, D.; Platania, A.; Conti, A.; Falla, M.; D’Urso, M.; Marranzano, M. Dietary micronutrient and mineral intake in the mediterranean healthy eating, ageing, and lifestyle (MEAL) study. Antioxidants 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Marventano, S.; Godos, J.; Platania, A.; Galvano, F.; Mistretta, A.; Grosso, G. Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2018, 69, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef]
- Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2017, 68, 750–756. [Google Scholar] [CrossRef]
- Godos, J.; Rapisarda, G.; Marventano, S.; Galvano, F.; Mistretta, A.; Grosso, G. Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy. NFS J. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Pfeiffer, E. A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J. Am. Geriatr. Soc. 1975, 23, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Erkinjuntti, T.; Sulkava, R.; Wikström, J.; Autio, L. Short Portable Mental Status Questionnaire as a screening test for dementia and delirium among the elderly. J. Am. Geriatr. Soc. 1987, 35, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, A.; Ferrucci, L. Verso una definizione clinica della fragilità: Utilità dell’approccio multidimensionale. G Gerontol 2011, 59, 125–129. [Google Scholar]
- Goni, L.; Fernández-Matarrubia, M.; Romanos-Nanclares, A.; Razquin, C.; Ruiz-Canela, M.; Martínez-González, M.Á.; Toledo, E. Polyphenol intake and cognitive decline in the Seguimiento Universidad de Navarra (SUN) Project. Br. J. Nutr. 2020, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Kesse-Guyot, E.; Fezeu, L.; Andreeva, V.A.; Touvier, M.; Scalbert, A.; Hercberg, S.; Galan, P. Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J. Nutr. 2012, 142, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Du, X.; Han, G.; Gao, W. Association between tea consumption and risk of cognitive disorders: A dose-response meta-analysis of observational studies. Oncotarget 2017, 8, 43306–43321. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-P.; Wu, Y.-F.; Cheng, H.-Y.; Xia, T.; Ding, H.; Wang, H.; Wang, Z.-M.; Xu, Y. Habitual coffee consumption and risk of cognitive decline/dementia: A systematic review and meta-analysis of prospective cohort studies. Nutrition 2016, 32, 628–636. [Google Scholar] [CrossRef]
- Grosso, G.; Stepaniak, U.; Topor-Mądry, R.; Szafraniec, K.; Pająk, A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 2014, 30, 1398–1403. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.-C.; et al. Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Grabska-Kobylecka, I.; Kaczmarek-Bak, J.; Figlus, M.; Prymont-Przyminska, A.; Zwolinska, A.; Sarniak, A.; Wlodarczyk, A.; Glabinski, A.; Nowak, D. The Presence of Caffeic Acid in Cerebrospinal Fluid: Evidence That Dietary Polyphenols Can Cross the Blood-Brain Barrier in Humans. Nutrients 2020, 12, 1531. [Google Scholar] [CrossRef] [PubMed]
- Obrenovich, M.E.; Donskey, C.J.; Schiefer, I.T.; Bongiovanni, R.; Li, L.; Jaskiw, G.E. Quantification of phenolic acid metabolites in humans by LC-MS: A structural and targeted metabolomics approach. Bioanalysis 2018, 10, 1591–1608. [Google Scholar] [CrossRef] [PubMed]
- Ceppa, F.; Mancini, A.; Tuohy, K. Current evidence linking diet to gut microbiota and brain development and function. Int. J. Food Sci. Nutr. 2019, 70, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Salvucci, E. The human-microbiome superorganism and its modulation to restore health. Int. J. Food Sci. Nutr. 2019, 70, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Frolinger, T.; Sims, S.; Smith, C.; Wang, J.; Cheng, H.; Faith, J.; Ho, L.; Hao, K.; Pasinetti, G.M. The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Sci. Rep. 2019, 9, 3546. [Google Scholar] [CrossRef] [Green Version]
- Mena, P.; Bresciani, L. Dietary fibre modifies gut microbiota: what’s the role of (poly)phenols? Int. J. Food Sci. Nutr. 2020, 71, 783–784. [Google Scholar] [CrossRef]
- Garrido, J.; Gaspar, A.; Garrido, E.M.; Miri, R.; Tavakkoli, M.; Pourali, S.; Saso, L.; Borges, F.; Firuzi, O. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie 2012, 94, 961–967. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ali, T.; Alam, S.I.; Ullah, R.; Zeb, A.; Lee, K.W.; Rutten, B.P.F.; Kim, M.O. Ferulic Acid Rescues LPS-Induced Neurotoxicity via Modulation of the TLR4 Receptor in the Mouse Hippocampus. Mol. Neurobiol. 2019, 56, 2774–2790. [Google Scholar] [CrossRef]
- Morroni, F.; Sita, G.; Graziosi, A.; Turrini, E.; Fimognari, C.; Tarozzi, A.; Hrelia, P. Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer’s Disease Involves Nrf2/HO-1 Pathway. Aging Dis. 2018, 9, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, A.A.; Alboghobeish, S.; Ahangarpour, A. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice. Korean J. Physiol. Pharmacol. 2018, 22, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Bansal, N. Caffeic acid phenethyl ester rescued streptozotocin-induced memory loss through PI3-kinase dependent pathway. Biomed. Pharmacother. 2018, 101, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Koyama, N.; Yokoo, T.; Segawa, T.; Maeda, M.; Sawmiller, D.; Tan, J.; Town, T. Gallic acid is a dual α/β-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice. J. Biol. Chem. 2020, 295, 16251–16266. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.-Z.; Huo, Y.-Q.; Yu, B.; Liu, C.-J.; Zhou, R.; Bao, H.-H.; Tang, S.-W. Molecular insights into the inhibitory mechanisms of gallate moiety on the Aβ1-40 amyloid aggregation: A molecular dynamics simulation study. Int. J. Biol. Macromol. 2020, 156, 40–50. [Google Scholar] [CrossRef]
- Diaz, A.; Muñoz-Arenas, G.; Caporal-Hernandez, K.; Vázquez-Roque, R.; Lopez-Lopez, G.; Kozina, A.; Espinosa, B.; Flores, G.; Treviño, S.; Guevara, J. Gallic acid improves recognition memory and decreases oxidative-inflammatory damage in the rat hippocampus with metabolic syndrome. Synapse 2020, 75, e22186. [Google Scholar] [CrossRef]
- Dornelles, G.L.; de Oliveira, J.S.; de Almeida, E.J.R.; Mello, C.B.E.; Rodrigues, B.R.E.; da Silva, C.B.; Petry, L.D.S.; Pillat, M.M.; Palma, T.V.; de Andrade, C.M. Ellagic acid inhibits neuroinflammation and cognitive impairment induced by lipopolysaccharides. Neurochem. Res. 2020, 45, 2456–2473. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, L.; Liu, T.; Wang, J.; Wen, A.; Ding, Y. Ellagic acid protects mice against sleep deprivation-induced memory impairment and anxiety by inhibiting TLR4 and activating Nrf2. Aging 2020, 12, 10457–10472. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Liu, H.; Zhang, W.; Liu, X.; Jiang, B.; Fei, H.; Sun, Z. Ellagic acid ameliorates learning and memory impairment in APP/PS1 transgenic mice via inhibition of β-amyloid production and tau hyperphosphorylation. Exp. Ther. Med. 2018, 16, 4951–4958. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, F.H.; Mesbah-Ardakani, M.; Nasr-Esfahani, M.H. Ferulic Acid exerts concentration-dependent anti-apoptotic and neuronal differentiation-inducing effects in PC12 and mouse neural stem cells. Eur. J. Pharmacol. 2018, 841, 104–112. [Google Scholar] [CrossRef]
- Kurauchi, Y.; Hisatsune, A.; Isohama, Y.; Mishima, S.; Katsuki, H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br. J. Pharmacol. 2012, 166, 1151–1168. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.P.; Rai, H.; Singh, G.; Singh, G.K.; Mishra, S.; Kumar, S.; Srikrishna, S.; Modi, G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease. Eur. J. Med. Chem. 2021, 215, 113278. [Google Scholar] [CrossRef]
- Mena, P.; Del Rio, D. Gold standards for realistic (poly)phenol research. J. Agric. Food Chem. 2018, 66, 8221–8223. [Google Scholar] [CrossRef] [PubMed]
Phenolic Acid Intake | |||||
---|---|---|---|---|---|
Q1, n = 219 (Mean = 114.4 mg/d) | Q2, n = 220 (Mean = 202.7 mg/d) | Q3, n = 208 (Mean = 306.6 mg/d) | Q4, n = 236 (Mean = 711.8 mg/d) | p-Value | |
Age groups, mean (SD) | 67.1 (10.3) | 65.6 (9.8) | 63.1 (8.2) | 64.1 (9.5) | <0.001 |
Sex, n (%) | 0.053 | ||||
Men | 46 (33.6) | 67 (46.2) | 49 (33.8) | 63 (43.4) | |
Women | 91 (66.4) | 78 (53.8) | 96 (66.2) | 82 (56.6) | |
Educational status, n (%) | 0.812 | ||||
Low | 88 (64.2) | 86 (59.3) | 80 (55.2) | 88 (60.7) | |
Medium | 29 (21.2) | 38 (26.2) | 41 (28.3) | 34 (23.4) | |
High | 20 (14.6) | 21 (14.5) | 24 (16.6) | 23 (15.9) | |
Smoking status, n (%) | 0.001 | ||||
Never smoker | 84 (61.3) | 76 (52.4) | 93 (64.1) | 87 (60.0) | |
Former smoker | 15 (10.9) | 39 (26.9) | 35 (24.1) | 29 (15.2) | |
Current smoker | 38 (27.7) | 30 (20.7) | 17 (11.7) | 36 (24.8) | |
Physical activity level, n (%) | <0.001 | ||||
Low | 45 (41.3) | 39 (32.0) | 41 (33.9) | 21 (18.8) | |
Moderate | 34 (31.2) | 63 (51.6) | 71 (58.7) | 70 (62.5) | |
High | 30 (27.5) | 20 (16.4) | 9 (7.4) | 21 (18.8) | |
Alcohol intake, n (%) | <0.001 | ||||
No | 28 (20.4) | 46 (31.7) | 40 (27.6) | 25 (17.2) | |
Moderate | 96 (70.1) | 78 (53.8) | 66 (45.5) | 61 (42.1) | |
Regular | 13 (9.5) | 21 (14.5) | 39 (26.9) | 59 (40.7) | |
Mediterranean diet adherence, n (%) | <0.001 | ||||
Low | 54 (27.7) | 55 (24.6) | 26 (11.5) | 33 (13.9) | |
Medium | 64 (32.8) | 63 (28.1) | 65 (28.6) | 65 (27.4) | |
High | 77 (39.5) | 106 (47.3) | 136 (59.9) | 139 (58.6) |
Phenolic Acid Intake | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
Phenolic acids, median (SE), mg/day | 122.1 (2.4) | 205.2 (1.8) | 302.9 (2.5) | 509.2 (34.0) |
Model 1, OR (95% CI) a | 1 | 0.33 (0.17–0.64) | 0.51 (0.28–0.94) | 0.34 (0.17–0.71) |
Model 2, OR (95% CI) b | 1 | 0.26 (0.12–0.57) | 0.69 (0.32–1.45) | 0.35 (0.14–0.89) |
Model 3, OR (95% CI) c | 1 | 0.27 (0.13–0.58) | 0.74 (0.34–1.57) | 0.36 (0.14–0.92) |
Hydroxybenzoic acids, median (SE), mg/day | 8.8 (0.8) | 64.0 (0.5) | 131.6 (2.1) | 284.2 (34.4) |
Model 1, OR (95% CI) a | 1 | 0.83 (0.45–1.53) | 0.77 (0.40–1.48) | 0.73 (0.38–1.41) |
Model 2, OR (95% CI) b | 1 | 0.84 (0.40–1.74) | 0.82 (0.38–1.77) | 1.01 (0.45–2.22) |
Model 3, OR (95% CI) c | 1 | 0.84 (0.40–1.75) | 0.82 (0.38–1.78) | 1.00 (0.45–2.22) |
Hydroxycinammic acids, median (SE), mg/day | 66.3 (1.3) | 105.9 (0.9) | 154.4 (1.1) | 243.0 (4.8) |
Model 1, OR (95% CI) a | 1 | 1.00 (0.57–1.77) | 0.35 (1.78–0.71) | 0.43 (0.20–0.92) |
Model 2, OR (95% CI) b | 1 | 0.83 (0.43–1.61) | 0.26 (0.11–0.59) | 0.35 (0.14–0.88) |
Model 3, OR (95% CI) c | 1 | 0.83 (0.43–1.62) | 0.26 (0.11–0.62) | 0.35 (0.13–0.91) |
Hydroxyphenylacetic acids, median (SE), mg/day | 0.0 (0.0) | 0.2 (0.0) | 0.4 (0.004) | 0.8 (0.1) |
Model 1, OR (95% CI) a | 1 | 0.93 (0.51–1.68) | 0.42 (0.20–0.88) | 0.82 (0.43–1.58) |
Model 2, OR (95% CI) b | 1 | 0.47 (0.23–0.97) | 0.26 (0.11–0.61) | 0.45 (0.18–1.10) |
Model 3, OR (95% CI) c | 1 | 0.48 (0.24–0.99) | 0.26 (0.11–0.63) | 0.46 (0.19–1.11) |
Caffeic acid, median (SE), mg/day | 0.4 (0.0) | 0.8 (0.0) | 1.4 (0.0) | 3.3 (0.1) |
Model 1, OR (95% CI) a | 1 | 0.51 (0.28–0.93) | 0.26 (0.13–0.53) | 0.46 (0.24–0.89) |
Model 2, OR (95% CI) b | 1 | 0.57 (0.27–1.18) | 0.28 (0.12–0.63) | 0.31 (0.11–0.92) |
Model 3, OR (95% CI) c | 1 | 0.58 (0.28–1.21) | 0.29 (0.12–0.68) | 0.32 (0.11–0.93) |
Cinnamic acid, median (SE), mg/day | 0.0 (0.0) | 0.1 (0.0) | 0.2 (0.0) | 0.5 (0.1) |
Model 1, OR (95% CI) a | 1 | 0.82 (0.43–1.54) | 0.98 (0.52–1.84) | 0.74 (0.38–1.44) |
Model 2, OR (95% CI) b | 1 | 0.63 (0.29–1.36) | 1.02 (0.50–2.08) | 0.57 (0.27–1.22) |
Model 3, OR (95% CI) c | 1 | 0.65 (0.30–1.39) | 1.04 (0.51–2.11) | 0.60 (0.28–1.29) |
Vanillic acid, median (SE), mg/day | 0.1 (0.0) | 0.1 (0.0) | 0.4 (0.0) | 0.8 (0.0) |
Model 1, OR (95% CI) a | 1 | 0.50 (0.26–0.96) | 0.51 (0.27–0.96) | 0.59 (0.31–1.14) |
Model 2, OR (95% CI) b | 1 | 0.34 (0.15–0.74) | 0.46 (0.21–1.00) | 0.43 (0.17–1.05) |
Model 3, OR (95% CI) c | 1 | 0.34 (0.15–0.74) | 0.48 (0.22–1.06) | 0.45 (0.18–1.11) |
Ferulic acid, median (SE), mg/day | 0.6 (0.0) | 1.4 (0.0) | 2.7 (0.0) | 5.5 (0.2) |
Model 1, OR (95% CI) a | 1 | 0.65 (0.35–1.20) | 0.75 (0.42–1.35) | 0.32 (0.14–0.73) |
Model 2, OR (95% CI) b | 1 | 0.73 (0.36–1.47) | 1.04 (0.50–2.15 | 0.39 (015–0.98) |
Model 3, OR (95% CI) c | 1 | 0.76 (0.37–1.55) | 1.13 (0.53–2.39) | 0.42 (0.16–1.07) |
Food Group Intake, OR (95% CI) a | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
Coffee b | 1 | 0.52 (0.12–2.14) | 0.96 (0.45–2.04) | 0.44 (0.20–0.98) |
Nuts c | 1 | 1.52 (0.71–3.27) | 1.19 (0.54–2.62) | 1.16 (0.48–2.77) |
Tea d | 1 | 0.76 (0.38–1.53) | 0.39 (0.18–0.82) | 0.30 (0.12–0.72) |
Olive oil e | 1 | 1.01 (0.43–2.35) | 1.37 (0.60–3.08) | - |
Beer f | 1 | 0.81 (0.42–1.57) | 1.22 (0.43–3.47) | 1.63 (0.43–6.15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godos, J.; Caraci, F.; Micek, A.; Castellano, S.; D’Amico, E.; Paladino, N.; Ferri, R.; Galvano, F.; Grosso, G. Dietary Phenolic Acids and Their Major Food Sources Are Associated with Cognitive Status in Older Italian Adults. Antioxidants 2021, 10, 700. https://doi.org/10.3390/antiox10050700
Godos J, Caraci F, Micek A, Castellano S, D’Amico E, Paladino N, Ferri R, Galvano F, Grosso G. Dietary Phenolic Acids and Their Major Food Sources Are Associated with Cognitive Status in Older Italian Adults. Antioxidants. 2021; 10(5):700. https://doi.org/10.3390/antiox10050700
Chicago/Turabian StyleGodos, Justyna, Filippo Caraci, Agnieszka Micek, Sabrina Castellano, Emanuele D’Amico, Nadia Paladino, Raffaele Ferri, Fabio Galvano, and Giuseppe Grosso. 2021. "Dietary Phenolic Acids and Their Major Food Sources Are Associated with Cognitive Status in Older Italian Adults" Antioxidants 10, no. 5: 700. https://doi.org/10.3390/antiox10050700
APA StyleGodos, J., Caraci, F., Micek, A., Castellano, S., D’Amico, E., Paladino, N., Ferri, R., Galvano, F., & Grosso, G. (2021). Dietary Phenolic Acids and Their Major Food Sources Are Associated with Cognitive Status in Older Italian Adults. Antioxidants, 10(5), 700. https://doi.org/10.3390/antiox10050700