Effects of Antioxidant Vitamins, Curry Consumption, and Heavy Metal Levels on Metabolic Syndrome with Comorbidities: A Korean Community-Based Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Parameters
2.3. Laboratory Measurements
2.4. Determination of Serum Pb, Hg, and Cd Levels
2.5. Urinary Cotinine and Smoking Verification
2.6. Metabolic Syndrome
2.7. Serum Levels of Vitamins A, D, and E
2.8. Food and Vitamin Intakes
2.9. Statistical Analysis
3. Results
3.1. Characteristics of Participants with Respect to Metabolic Syndrome
3.2. Characteristics of Daily Vitamin Intakes and Serum Heavy Metal Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916. [Google Scholar]
- Song, S.; Song, H. Dietary and lifestyle factors associated with weight status among Korean adolescents from multicultural families: Using data from the 2017–2018 Korea youth risk behavior surveys. Korean J. Community Nutr. 2019, 24, 465–475. [Google Scholar] [CrossRef]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.F.; Rosário, W.R.; Farias, A.C.R.; de Souza, R.G.; Gondim, R.S.D.; Barroso, W.A. Metabolic syndrome and COVID-19: An update on the associated comorbidities and proposed therapies. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 809–814. [Google Scholar] [CrossRef]
- Le Roux, C.W. COVID-19 alters thinking and management in metabolic diseases. Nat. Rev. Endocrinol. 2021, 17, 71–72. [Google Scholar] [CrossRef]
- Arbi, S.; Oberholzer, H.M.; Van Rooy, M.J.; Venter, C.; Bester, M.J. Effects of chronic exposure to mercury and cadmium alone and in combination on the coagulation system of Sprague-Dawley rats. Ultrastruct. Pathol. 2017, 41, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Angeli, J.K.; Pereira, C.A.C.; de Oliveira Faria, T.; Stefanon, I.; Padilha, A.S.; Vassallo, D.V. Cadmium exposure induces vascular injury due to endothelial oxidative stress: The role of local angiotensin II and COX-2. Free Radic. Biol. Med. 2013, 65, 838–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valera, B.; Muckle, G.; Poirier, P.; Jacobson, S.W.; Jacobson, J.L.; Dewailly, E. Cardiac autonomic activity and blood pressure among Inuit children exposed to mercury. Neurotoxicology 2012, 33, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Poursafa, P.; Ataee, E.; Motlagh, M.E.; Ardalan, G.; Tajadini, M.H.; Yazdi, M.; Kelishadi, R. Association of serum lead and mercury level with cardiometabolic risk factors and liver enzymes in a nationally representative sample of adolescents: The CASPIAN-III study. Environ. Sci. Pollut. Res. 2014, 21, 13496–13502. [Google Scholar] [CrossRef]
- Kim, N.H.; Hyun, Y.Y.; Lee, K.-B.; Chang, Y.; Ryu, S.; Oh, K.-H.; Ahn, C. Erratum: Environmental heavy metal exposure and chronic kidney disease in the general population. J. Korean Med Sci. 2015, 30, 507. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, C.; Kaji, T.; Sakamoto, M.; Kozuka, H. Cadmium stimulation of plasminogen activator inhibitor-1 release from human vascular endothelial cells in culture. Toxicology 1993, 83, 215–223. [Google Scholar] [CrossRef]
- Vaziri, N.D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H454–H465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salonen, J.T.; Seppänen, K.; Lakka, T.A.; Salonen, R.; Kaplan, G.A. Mercury accumulation and accelerated progression of carotid atherosclerosis: A population-based prospective 4-year follow-up study in men in eastern Finland. Atherosclerosis 2000, 148, 265–273. [Google Scholar] [CrossRef]
- Eshak, E.; Arafa, A. Thiamine deficiency and cardiovascular disorders. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 965–972. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korea Centers for Disease Control and Prevention. Korea National Health & Nutrition Examination Survey. Available online: https://knhanes.cdc.go.kr/knhanes/eng/index.do (accessed on 20 January 2021).
- An, J.Y.; Hong, Y.R.; Kong, S.G.J.C.; Pediatrics, E. Changes in the prevalence of anemia in Korean adolescents, 1998–2018. Clin. Exp. Pediatrics 2021, 64, 86. [Google Scholar] [CrossRef]
- Park, S.; Ham, J.-O.; Lee, B.-K. Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men. Nutrition 2015, 31, 111–118. [Google Scholar] [CrossRef]
- Lee, K.-J.; Kim, J.-I. Relating factors for depression in Korean working women: Secondary analysis of the fifth Korean National Health and Nutrition Examination Survey (KNHANES V). Asian Nurs. Res. 2015, 9, 265–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, K.-H.; Lee, Y. Negative correlation between vitamin A and positive correlation between vitamin E and inflammation among healthy adults in Korea: Based on the Korea National Health and Nutrition Examination Survey (KNHANES) 2016–2018 7th Edition. J. Inflamm. Res. 2020, 13, 799. [Google Scholar] [CrossRef]
- Benowitz, N.; Jacob, P.; Ahijevych, K.; Jarvis, M.; Hall, S.; LeHouezec, J. SRNT subcommittee on biochemical verification. Biochem. Verif. Tob. Use Cessat. Nicotine Tob. Res. 2002, 4, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Jung-Choi, K.-H.; Khang, Y.-H.; Cho, H.-J. Hidden female smokers in Asia: A comparison of self-reported with cotinine-verified smoking prevalence rates in representative national data from an Asian population. Tob. Control 2012, 21, 536–542. [Google Scholar] [CrossRef]
- Gregory, C.O.; McCullough, M.L.; Ramirez-Zea, M.; Stein, A.D. Diet scores and cardio-metabolic risk factors among Guatemalan young adults. Br. J. Nutr. 2008, 101, 1805–1811. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Western pacific region, International association for the study of obesity. The Asia-pacific perspective. Redefining Obes. Its Treat., 2000. Available online: https://apps.who.int/iris/handle/10665/206936 (accessed on 17 December 2020).
- Yun, S.; Duc, H.N.; Park, J.S.; Oh, C.; Kim, M.S. The association between metabolic syndrome and iron status in pre-and postmenopausal women: KNHANES in 2012. Br. J. Nutr. 2021, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Duc, H.N.; Oh, H.; Yoon, I.M.; Kim, M.-S. Association between levels of thiamine intake, diabetes, cardiovascular diseases and depression in Korea: A national cross-sectional study. J. Nutr. Sci. 2021, 10, e31. [Google Scholar] [CrossRef]
- Kwon, Y. Association of curry consumption with blood lipids and glucose levels. Nutr. Res. Pract. 2016, 10, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paik, H.Y. Dietary Reference Intakes for Koreans (KDRIs). Asia Pac. J. Clin. Nutr. 2008, 17, 416–419. [Google Scholar]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: New York, NY, USA, 2013; Volume 398. [Google Scholar]
- Wang, M.; Liu, R.; Chen, W.; Peng, C.; Markert, B. Effects of urbanization on heavy metal accumulation in surface soils, Beijing. J. Environ. Sci. 2018, 64, 328–334. [Google Scholar] [CrossRef]
- Czeisler, M.É.; Lane, R.I.; Petrosky, E.; Wiley, J.F.; Christensen, A.; Njai, R.; Weaver, M.D.; Robbins, R.; Facer-Childs, E.R.; Barger, L.K. Mental health, substance use, and suicidal ideation during the COVID-19 pandemic—United States, June 24–30, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1049. [Google Scholar] [CrossRef]
- Kelishadi, R.; Askarieh, A.; Motlagh, M.E.; Tajadini, M.; Heshmat, R.; Ardalan, G.; Fallahi, S.; Poursafa, P. Association of blood cadmium level with cardiometabolic risk factors and liver enzymes in a nationally representative sample of adolescents: The CASPIAN-III study. J. Environ. Public Health 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Singh, S.; Agrawal, A.; Siddiqi, N.J.; Sharma, B. Phytochemicals mediated remediation of neurotoxicity induced by heavy metals. Biochem. Res. Int. 2015, 2015, 534769. [Google Scholar] [CrossRef] [Green Version]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef]
- Song, Y.; Yang, S.K.; Kim, J.; Lee, D.-C. Association between C-reactive protein and metabolic syndrome in Korean adults. Korean J. Fam. Med. 2019, 40, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinh quoc Luong, K.; Nguyen, L.T.H. The impact of thiamine treatment in the diabetes mellitus. J. Clin. Med. Res. 2012, 4, 153. [Google Scholar]
- Thornalley, P.; Babaei-Jadidi, R.; Al Ali, H.; Rabbani, N.; Antonysunil, A.; Larkin, J.; Ahmed, A.; Rayman, G.; Bodmer, C. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia 2007, 50, 2164–2170. [Google Scholar] [CrossRef] [Green Version]
- Thameem, F.; Wolford, J.K.; Bogardus, C.; Prochazka, M. Analysis of slc19a2, on 1q23. 3 encoding a thiamine transporter as a candidate gene for type 2 diabetes mellitus in pima indians. Mol. Genet. Metab. 2001, 72, 360–363. [Google Scholar] [CrossRef]
- Kalis, M.; Kumar, R.; Janciauskiene, S.; Salehi, A.; Cilio, C.M. α 1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic β-cells. Islets 2010, 2, 185–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, M.R. Importance of water-soluble vitamins as regulatory factors of genetic expression. Rev. Investig. Clin. Organo Hosp. Enferm. Nutr. 2002, 54, 77. [Google Scholar]
- Yang, Z.; Ge, J.; Yin, W.; Shen, H.; Liu, H.; Guo, Y. The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure. Yan ke xue bao (2016) 2004, 20, 259–263. [Google Scholar]
- Berrone, E.; Beltramo, E.; Solimine, C.; Ape, A.U.; Porta, M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J. Biol. Chem. 2006, 281, 9307–9313. [Google Scholar] [CrossRef] [Green Version]
- Ayo, S.H.; Radnik, R.; Garoni, J.; Troyer, D.A.; Kreisberg, J.I. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am. J. Physiol. Ren. Physiol. 1991, 261, F571–F577. [Google Scholar] [CrossRef]
- Babaei-Jadidi, R.; Karachalias, N.; Ahmed, N.; Battah, S.; Thornalley, P.J. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 2003, 52, 2110–2120. [Google Scholar] [CrossRef] [Green Version]
- Kohda, Y.; Shirakawa, H.; Yamane, K.; Otsuka, K.; Kono, T.; Terasaki, F.; Tanaka, T. Prevention of incipient diabetic cardiomyopathy by high-dose thiamine. J. Toxicol. Sci. 2008, 33, 459–472. [Google Scholar] [CrossRef] [Green Version]
- González-Ortiz, M.; Martínez-Abundis, E.; Robles-Cervantes, J.A.; Ramírez-Ramírez, V.; Ramos-Zavala, M.G. Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naïve patients with type 2 diabetes. Eur. J. Nutr. 2011, 50, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Al-Attas, O.; Al-Daghri, N.; Alokail, M.; Abd-Alrahman, S.; Vinodson, B.; Sabico, S. Metabolic benefits of six-month thiamine supplementation in patients with and without diabetes mellitus type 2. Clin. Med. Insights Endocrinol. Diabetes 2014, 7, CMED. S13573. [Google Scholar] [CrossRef] [Green Version]
- La Selva, M.; Beltramo, E.; Pagnozzi, F.; Bena, E.; Molinatti, P.; Molinatti, G.M.; Porta, M. Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia 1996, 39, 1263–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avena, R.; Arora, S.; Carmody, B.J.; Cosby, K.; Sidawy, A.N. Thiamine (vitamin B1) protects against glucose-and insulin-mediated proliferation of human infragenicular arterial smooth muscle cells. Ann. Vasc. Surg. 2000, 14, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Lidor, A.; Abularrage, C.J.; Weiswasser, J.M.; Nylen, E.; Kellicut, D.; Sidawy, A.N. Thiamine (vitamin B1) improves endothelium-dependent vasodilatation in the presence of hyperglycemia. Ann. Vasc. Surg. 2006, 20, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Stirban, A.; Nandrean, S.; Kirana, S.; Götting, C.; Veresiu, I.A.; Tschoepe, D. Benfotiamine counteracts smoking-induced vascular dysfunction in healthy smokers. Int. J. Vasc. Med. 2012, 2012, 968761. [Google Scholar] [CrossRef] [Green Version]
- Avignon, A.; Hokayem, M.; Bisbal, C.; Lambert, K. Dietary antioxidants: Do they have a role to play in the ongoing fight against abnormal glucose metabolism? Nutrition 2012, 28, 715–721. [Google Scholar] [CrossRef]
- Palmieri, V.O.; Grattagliano, I.; Portincasa, P.; Palasciano, G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J. Nutr. 2006, 136, 3022–3026. [Google Scholar] [CrossRef]
- Mazur-Bialy, A.I.; Pocheć, E. Riboflavin reduces pro-inflammatory activation of adipocyte-macrophage co-culture. Potential application of vitamin B2 enrichment for attenuation of insulin resistance and metabolic syndrome development. Molecules 2016, 21, 1724. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, K.; Alam, M.M.; Iqbal, Z.; Naseem, I. Therapeutic effect of vitamin B3 on hyperglycemia, oxidative stress and DNA damage in alloxan induced diabetic rat model. Biomed. Pharmacother. 2018, 105, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Bialy, A.I.; Pocheć, E. Vitamin B2 deficiency enhances the pro-inflammatory activity of adipocyte, consequences for insulin resistance and metabolic syndrome development. Life Sci. 2017, 178, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, K.; Qais, F.A.; Ahmad, I.; Naseem, I. Inhibitory effect of vitamin B3 against glycation and reactive oxygen species production in HSA: An in vitro approach. Arch. Biochem. Biophys. 2017, 627, 21–29. [Google Scholar] [CrossRef]
- Adiels, M.; Chapman, M.J.; Robillard, P.; Krempf, M.; Laville, M.; Borén, J.; Group, N.S. Niacin action in the atherogenic mixed dyslipidemia of metabolic syndrome: Insights from metabolic biomarker profiling and network analysis. J. Clin. Lipidol. 2018, 12, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.; Gaudreau, P.; Cherki, M.; Wagner, R.; Tessier, D.M.; Fulop, T.; Shatenstein, B. Antioxidant-rich food intakes and their association with blood total antioxidant status and vitamin C and E levels in community-dwelling seniors from the Quebec longitudinal study NuAge. Exp. Gerontol. 2011, 46, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M. Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J. Med Sci. 1972, 26, 269. [Google Scholar]
- Usharani, P.; Mateen, A.; Naidu, M.; Raju, Y.; Chandra, N. Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus. Drugs R D 2008, 9, 243–250. [Google Scholar] [CrossRef]
- Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012, 35, 2121–2127. [Google Scholar] [CrossRef] [Green Version]
- Wickenberg, J.; Ingemansson, S.L.; Hlebowicz, J. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutr. J. 2010, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Alwi, I.; Santoso, T.; Suyono, S.; Sutrisna, B.; Suyatna, F.D.; Kresno, S.B.; Ernie, S. The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Med. Indones. 2008, 40, 201–210. [Google Scholar]
- Lan, C.; Chen, X.; Zhang, Y.; Wang, W.; Wang, W.E.; Liu, Y.; Cai, Y.; Ren, H.; Zheng, S.; Zhou, L. Curcumin prevents strokes in stroke-prone spontaneously hypertensive rats by improving vascular endothelial function. BMC Cardiovasc. Disord. 2018, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ran, Y.; Huang, S.; Wen, S.; Zhang, W.; Liu, X.; Ji, Z.; Geng, X.; Ji, X.; Du, H. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front. Aging Neurosci. 2017, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Min, S.H.; Lee, J.H.; Kim, L.K.; Lee, D.-H.; Lee, J.-E.; Kim, K.M.; Lee, S.; Park, K.-C.; Lee, Y.J. Components of metabolic syndrome in Korean adults: A hospital-based cohort at Seoul National University Bundang Hospital. J. Obes. Metab. Syndr. 2019, 28, 118. [Google Scholar] [CrossRef]
- Huh, J.H.; Lee, J.H.; Moon, J.S.; Sung, K.C.; Kim, J.Y.; Kang, D.R. Metabolic syndrome severity score in Korean adults: Analysis of the 2010–2015 Korea National Health and Nutrition Examination Survey. J. Korean Med Sci. 2019, 34. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Seok, K.-J.; Ryu, J.-Y.; Jung, W.-S.; Park, J.-B.; Shin, K.-H.; Jang, S.-J. Association between heavy metal exposure and prevalence of metabolic syndrome in adults of South Korea. Korean J. Fam. Pract. 2017, 7, 172–178. [Google Scholar] [CrossRef]
- The Lancet. COVID-19: A new lens for non-communicable diseases. Lancet 2020, 396, 649. [Google Scholar] [CrossRef]
Variables | No. | Metabolic Syndrome | ORs 95%CI | p-Value | |
---|---|---|---|---|---|
Yes | No | ||||
Sex (%) | 60,256 | ||||
Male | 27,429 | 8239 (38.1) | 19,190 (49.7) | 1 (refer) | |
Female | 32,827 | 13,373 (61.9) | 19,454 (50.3) | 1.60 (1.55–1.66) | <0.001 |
Age (year) † | 60,256 | 39.6 ± 28.0 | 41.6 ± 19.1 | <0.001 | |
Age group (%) | |||||
<29 | 19,626 | 8353 (38.7) | 11,273 (29.2) | 1 (refer) | |
30–39 | 8332 | 1219 (5.6) | 7113 (18.4) | 0.23 (0.22–0.25) | <0.001 |
40–49 | 8656 | 1946 (9.0) | 6710 (17.4) | 0.39 (0.37–0.41) | <0.001 |
50–59 | 8554 | 2861 (13.2) | 5693 (14.7) | 0.68 (0.64–0.72) | <0.001 |
>60 | 15,088 | 7233 (33.5) | 7855 (20.3) | 1.24 (1.19–1.30) | <0.001 |
Marital status (%) | 60,126 | ||||
Married | 39,286 | 12,929 (60.0) | 26,357 (68.3) | 1 (refer) | |
Living alone | 20,840 | 8611 (40.0) | 12,229 (31.7) | 1.44 (1.39–1.49) | <0.001 |
Residential areas (%) | 60,256 | ||||
Urban | 48,396 | 16,919 (78.3) | 31,477 (81.4) | 1 (refer) | |
Rural | 11,860 | 4693 (21.7) | 7167 (18.6) | 1.22 (1.17–1.27) | <0.001 |
Occupation (%) | 44,687 | ||||
Managers, professional | 5358 | 621 (5.6) | 4737 (14.1) | 1 (refer) | |
Office worker, clerical workers | 3790 | 497 (4.5) | 3293 (9.8) | 1.15 (1.01–1.31) | 0.029 |
Service workers, sales workers | 5407 | 1217 (11.0) | 4190 (12.5) | 2.22 (1.99–2.46) | <0.001 |
Agriculture, forestry, and fishing workers | 2848 | 900 (8.1) | 1948 (5.8) | 3.52 (3.14–3.95) | <0.001 |
Craft, plant, and machine operators and assemblers | 4029 | 677 (6.1) | 3352 (10.0) | 1.54 (1.37–1.73) | <0.001 |
Elementary occupations | 3730 | 1111 (10.1) | 2619 (7.7) | 3.24 (2.90–3.61) | <0.001 |
Unemployed | 19,525 | 6036 (54.6) | 13,489 (40.1) | 3.41 (3.12–3.73) | <0.001 |
Education level (%) | 55,326 | ||||
≤Middle school | 27,702 | 13,669 (76.4) | 14,033 (37.5) | 1 (refer) | |
High school | 14,342 | 2689 (15.0) | 11,653 (31.1) | 0.24 (0.23–0.25) | <0.001 |
≥College | 13,282 | 1544 (8.6) | 11,738 (21.4) | 0.14 (0.13–0.14) | <0.001 |
Monthly household income (%) § | 59,628 | ||||
<2000 | 16,917 | 7264 (34.0) | 9653 (25.2) | 1 (refer) | |
≥2000 and <4000 | 19,423 | 6922 (32.4) | 12,501 (32.7) | 0.74 (0.71–0.77) | <0.001 |
≥4000 and <6000 | 13,065 | 4176 (19.6) | 8889 (23.2) | 0.62 (0.60–0.65) | <0.001 |
≥6000 | 10,223 | 2982 (14.0) | 7241 (18.9) | 0.55 (0.52–0.58) | <0.001 |
BMI group (%) | 56,009 | ||||
<18.5 | 8945 | 5057 (29.0) | 3888 (10.1) | 5.71 (5.43–6.01) | <0.001 |
≥18.5 and <25 | 31,942 | 5925 (33.9) | 26,017 (67.5) | 1 (refer) | |
≥25 and <30 | 13,096 | 5337 (30.6) | 7759 (20.1) | 3.02 (2.89–3.16) | <0.001 |
≥30 | 2026 | 1137 (6.5) | 889 (2.3) | 5.62 (5.12–6.16) | <0.001 |
Curry consumption (%) | 10,874 | ||||
Rarely or never | 5812 | 1587 (61.9) | 4225 (50.8) | 1 (refer) | |
Often and occasionally | 5062 | 977 (38.1) | 4085 (49.2) | 0.64 (0.58–0.70) | <0.001 |
Green vegetable consumption (%) | 10,874 | ||||
Rarely or never | 5838 | 1419 (55.3) | 4419 (53.2) | 1 (refer) | |
Often and occasionally | 5036 | 1145 (44.7) | 3891 (46.8) | 0.92 (0.84–1.00) | 0.055 |
Other vegetable consumption (%) | 10,914 | ||||
Rarely or never | 7468 | 1809 (70.2) | 5659 (67.9) | 1 (refer) | |
Often and occasionally | 3446 | 769 (29.8) | 2677 (32.1) | 0.90 (0.82–0.99) | 0.029 |
Fruit (%) | 10,916 | ||||
Rarely or never | 6691 | 1726 (66.9) | 4965 (59.5) | 1 (refer) | |
Often and occasionally | 4225 | 852 (33.1) | 3373 (30.5) | 0.73 (0.66–0.80) | <0.001 |
Cotinine verified smoker (%) | 60,256 | ||||
No | 16,780 | 4468 (20.7) | 12,312 (31.9) | 1 (refer) | |
Yes | 43,476 | 17,144 (79.3) | 26,332 (68.1) | 1.79 (1.73–1.89) | <0.001 |
Smoking status (%) | 42,803 | ||||
Non-/ex-smoker | 32,992 | 9413 (84.5) | 23,579 (74.5) | 1 (refer) | |
Current smoker | 9811 | 1728 (15.5) | 8083 (25.5) | 0.54 (0.51–0.57) | <0.001 |
Drinking status (%) | 47,435 | ||||
Often | 15,884 | 4814 (42.8) | 11,070 (30.6) | 1 (refer) | |
Occasionally | 22,403 | 4511 (40.1) | 17,892 (49.4) | 0.58 (0.55–0.61) | <0.001 |
Never or rarely | 9148 | 1915 (17.0) | 7233 (20.0) | 0.61 (0.57–0.65) | <0.001 |
Physical activity (%) | 60,256 | ||||
Not regular | 51,088 | 19,677 (91.1) | 31,411 (81.3) | 1 (refer) | |
Regular | 9168 | 1935 (8.9) | 7233 (18.7) | 0.43 (0.40–0.45) | <0.001 |
Family history of CVDs (%) | 60,256 | ||||
No | 51,088 | 4337 (50.0) | 17,727 (60.2) | 1 (refer) | |
Yes | 9168 | 4331 (50.0) | 11,703 (39.8) | 1.51 (1.44–1.59) | <0.001 |
Family history of diabetes (%) | 37,720 | ||||
No | 30,335 | 6375 (75.5) | 23,960 (81.8) | 1 (refer) | |
Yes | 7385 | 2071 (24.5) | 5314 (18.2) | 1.46 (1.38–1.55) | <0.001 |
Family history of hyperlipidemia (%) | 36,414 | ||||
No | 34,145 | 7525 (94.2) | 26,620 (93.6) | 1 (refer) | |
Yes | 2269 | 461 (5.8) | 1808 (6.4) | 0.90 (0.81–1.00) | 0.055 |
Comorbidities ¶ | |||||
Type 2 diabetes mellitus | 3793 | 2525 (13.9) | 1268 (3.3) | 4.67 (4.35–5.01) | <0.001 |
Hypertension | 9837 | 5927 (32.6) | 3910 (10.3) | 4.21 (4.03–4.41) | <0.001 |
Dyslipidemia | 5532 | 3332 (32.8) | 2200 (6.0) | 7.59 (7.15–8.06) | <0.001 |
Stroke | 906 | 486 (2.7) | 420 (1.12) | 2.45 (2.15–2.80) | <0.001 |
MI or angina | 1130 | 565 (3.4) | 565 (1.6) | 2.21 (1.96–2.48) | <0.001 |
MI | 393 | 178 (1.0) | 215 (0.6) | 1.73 (1.42–2.12) | <0.001 |
Angina | 810 | 421 (2.3) | 389 (1.0) | 2.29 (1.99–2.63) | <0.001 |
Asthma | 1965 | 804 (4.5) | 1161 (3.1) | 1.47 (1.34–1.61) | <0.001 |
Thyroid disease | 1607 | 585 (3.3) | 1022 (2.7) | 1.20 (1.08–1.33) | 0.001 |
Osteoarthritis | 4984 | 2706 (15.1) | 2278 (6.1) | 2.74 (2.58–2.91) | <0.001 |
Rheumatoid arthritis | 880 | 378 (2.1) | 502 (1.3) | 1.58 (1.38–1.81) | <0.001 |
Arthritis | 5628 | 2948 (17.5) | 2680 (7.3) | 2.68 (2.53–2.83) | <0.001 |
Kidney failure | 178 | 89 (0.5) | 89 (0.2) | 2.09 (1.56–2.81) | <0.001 |
Depression | 1785 | 706 (3.9) | 1079 (2.9) | 1.38 (1.25–1.52) | <0.001 |
Waist circumference (cm) † | 56,935 | 77.6 ± 10.5 | 74.2 ± 19.0 | -- | <0.001 |
Total cholesterol (mg/dL) † | 47,054 | 195.9 ± 40.9 | 183.8 ± 35.6 | -- | <0.001 |
LDL-C (mg/dL) † | 10,339 | 117.4 ± 36.3 | 111.3 ± 31.9 | -- | <0.001 |
Triglyceride (mg/dL) | 47,054 | 194.7 ± 136.4 | 110.9 ± 87.7 | -- | <0.001 |
HDL-C (mg/dL) † | 47,054 | 44.3 ± 9.8 | 51.6 ± 12.0 | -- | <0.001 |
HbA1c (%) † | 33,118 | 6.4 ± 1.2 | 5.6 ± 0.7 | -- | <0.001 |
Fasting glucose (mg/dL) † | 46,984 | 113.7 ± 32.0 | 93.8 ± 16.6 | -- | <0.001 |
Energy intake (Kcal) † | 53,701 | 1680.9 ± 797.4 | 2026.6 ± 880.2 | -- | <0.001 |
Hemoglobin (g/dL) † | 46,846 | 13.7 ± 1.5 | 14.0 ± 1.6 | -- | <0.001 |
ALT (U/L) † | 47,054 | 24.9 ± 17.9 | 19.7 ± 17.7 | -- | <0.001 |
AST (U/L) † | 47,054 | 24.8 ± 12.9 | 21.3 ± 13.1 | -- | <0.001 |
Systolic blood pressure (mmHg) † | 50,220 | 130.3 ± 17.4 | 114.4 ± 15.2 | -- | <0.001 |
Diastolic blood pressure (mmHg) | 50,220 | 78.8 ± 11.4 | 73.6 ± 10.4 | -- | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duc, H.N.; Oh, H.; Kim, M.-S. Effects of Antioxidant Vitamins, Curry Consumption, and Heavy Metal Levels on Metabolic Syndrome with Comorbidities: A Korean Community-Based Cross-Sectional Study. Antioxidants 2021, 10, 808. https://doi.org/10.3390/antiox10050808
Duc HN, Oh H, Kim M-S. Effects of Antioxidant Vitamins, Curry Consumption, and Heavy Metal Levels on Metabolic Syndrome with Comorbidities: A Korean Community-Based Cross-Sectional Study. Antioxidants. 2021; 10(5):808. https://doi.org/10.3390/antiox10050808
Chicago/Turabian StyleDuc, Hai Nguyen, Hojin Oh, and Min-Sun Kim. 2021. "Effects of Antioxidant Vitamins, Curry Consumption, and Heavy Metal Levels on Metabolic Syndrome with Comorbidities: A Korean Community-Based Cross-Sectional Study" Antioxidants 10, no. 5: 808. https://doi.org/10.3390/antiox10050808
APA StyleDuc, H. N., Oh, H., & Kim, M. -S. (2021). Effects of Antioxidant Vitamins, Curry Consumption, and Heavy Metal Levels on Metabolic Syndrome with Comorbidities: A Korean Community-Based Cross-Sectional Study. Antioxidants, 10(5), 808. https://doi.org/10.3390/antiox10050808