Amaranthus hypochondriacus L. as a Sustainable Source of Nutrients and Bioactive Compounds for Animal Feeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Plant Material
2.2. Solvents and Chemicals
2.3. Chemical Analysis
2.4. Fatty Acids Analysis and Nutritional Indices
+ (Ʃn3-PUFA/Ʃn6-PUFA)],
(C14:0 + C16:0)
2.5. Total Phenolic and Antioxidant Activity Analyses
2.6. Statistical Evaluation
3. Results
3.1. Productive Traits
3.2. Chemical Composition
3.3. Fatty Acids, Total Phenolic Contents, and Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cristaudo, A.; Gresta, F.; Luciani, F.; Restuccia, A. Effects of after-harvest period and environmental factors on seed dormancy of Amaranthus species. Weed Res. 2007, 47, 327–334. [Google Scholar] [CrossRef]
- Cristaudo, A.; Gresta, F.; Catara, S.; Mingo, A. Assessment of daily heat pulse regimes on the germination of six Amaranthus species. Weed Res. 2014, 54, 366–376. [Google Scholar] [CrossRef]
- Budin, J.T.; Breene, W.M.; Putnam, D.H. Some compositional properties of seeds and oils of eight Amaranthus species. J. Am. Oil Chem. Soc. 1996, 73, 475–481. [Google Scholar] [CrossRef]
- Sánchez-López, F.; Robles-Olvera, V.J.; Hidalgo-Morales, M.; Tsopmo, A. Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. J. Cereal Sci. 2020, 95, 103075–103081. [Google Scholar] [CrossRef]
- El Gendy, A.N.G.; Tavarini, S.; Conte, G.; Pistelli, L.; Hendawy, S.F.; Omer, E.A.; Angelini, L.G. Yield and qualitative characterisation of seeds of Amaranthus hypochondriacus L. and Amaranthus cruentus l. grown in central Italy. Ital. J. Agron. 2018, 13, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Marta, H.; Suryadi, E.; Ruswandi, D. Chemical Composition and Genetics of Indonesian Maize Hybrids. Am. J. Food Technol. 2017, 12, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Palavecino, P.M.; Penci, M.C.; Calderón-Domínguez, G.; Ribotta, P.D. Chemical composition and physical properties of sorghum flour prepared from different sorghum hybrids grown in Argentina. Starch-Staerke 2016, 68, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Iordanescu, I.P.; Popa, O.; Babeanu, N.; Nita, S.; Paraschiv, I.; Dobre, N.; Ionica, I. Physico-Chemical Characterization of Amaranth Extracts from Romanian Vegetal Sources with Antioxidant and Antiinflammatory Activities. Rev. Chim. 2015, 66, 634–636. [Google Scholar]
- Tang, Y.; Tsao, R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. Mol. Nutr. Food Res. 2017, 61, 1600767–1600782. [Google Scholar] [CrossRef]
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant Activity and Phenolic Composition of Amaranth (Amaranthus caudatus) during Plant Growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Conforti, F.; Statti, G.; Loizzo, M.R.; Sacchetti, G.; Poli, F.; Menichini, F. In vitro antioxidant effect and inhibition of α-amylase of two varieties of Amaranthus caudatus seeds. Biol. Pharm. Bull. 2005, 28, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Nsimba, R.Y.; Kikuzaki, H.; Konishi, Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Meineri, G.; Gai, F.; Longato, E.; Amarowicz, R. Antioxidative activity and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Nat. Prod. Res. 2017, 31, 2178–2182. [Google Scholar] [CrossRef]
- Asao, M.; Watanabe, K. Functional and bioactive properties of quinoa and amaranth. Food Sci. Technol. Res. 2010, 16, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Ogrodowskad, D.; Czaplicki, S.; Zadernowsli, R.; Mattila, P.; Hellström, J.; Naczk, M. Phenolic acids in seeds and products obtained from Amaranthus cruentus. J. Food Nutr. Res. 2012, 51, 96–101. [Google Scholar]
- Ou, S.; Kwok, K.-Ch. Ferulic acid: Pharmaceutical functions, preparation and applications in food. J. Sci. Food Agric. 2004, 84, 1261–1269. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U. Fenolokwasy jako bioaktywne składniki żywności (Phenolic acids as bioactive food components). Żywność Nauka Technologia Jakość 2004, 41, 29–40. [Google Scholar]
- Chitindingu, K.; Ndhlala, A.R.; Chapano, C.; Benhura, M.A.; Muchuweti, M. Phenolic compound content, profiles and antioxidant activities of Amaranthus hybridus (pigweed), Brachiaria brizantha (upright brachiaria) and Penicum maximum (guinea grass). J. Food Biochem. 2007, 31, 206–216. [Google Scholar] [CrossRef]
- Alegbejo, J. Nutritional Value and Utilization of Amaranthus (Amaranthus spp.)—A Review. Bayero J. Pure Appl. Sci. 2014, 6, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Seguin, P.; Mustafa, A.F.; Donnelly, D.J.; Gélinas, B. Chemical composition and ruminal nutrient degradability of fresh and ensiled amaranth forage. J. Sci. Food Agric. 2013, 93, 3730–3736. [Google Scholar] [CrossRef] [PubMed]
- Molina, E.; Redondo, G.P.; Rojas, M.R.; Quintero, M.K.; Bracho, B.; Urdaneta, S.A. Effects of diets with Amaranthus dubius Mart. ex Thell on performance and digestibility of growing rabbits. World Rabbit Sci. 2015, 23, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Sokól, J.L.; Bobel, B.K.; Fabijanska, M.; Bekta, M. Preliminary results on the influence of amaranthus seeds on carcass and meat quality of fatteners. J. Anim. Feed Sci. 2001, 10, 203–208. [Google Scholar] [CrossRef]
- Kabuage, L.W.; Mbugua, P.N.; Mitaru, B.N.; Ngatia, T.A. Effect of Steam Pelleting and Inclusion of Molasses in Amaranth Diets on Broiler Chicken Performance, Carcass Composition and Histopathology of Some Internal Organs; AGRIPA, FAO electronic publishing; Polytechnic of Berlin: Berlin, Germany, 2002; pp. 1–10. Available online: http://www.fao.org/docrep/ARTICLE/AGRIPPA/550_EN.HTM (accessed on 28 May 2021).
- Saunders, R.M.; Becker, R. Amaranthus: A Potential Food and Feed Resource. Adv. Cereal Sci. Technol. 1984, 6, 357–396. [Google Scholar]
- Schnetzler, K.A.; Breene, W.M. Food uses and amaranth product research: A comprehensive review. In Amaranth Biology, Chemistry, and Technology; Peredes-López, O., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 155–184. [Google Scholar]
- Punita, A.; Chaturvedi, A. Effect of feeding crude red palm oil (Elaeis guineensis) and grain amaranth (Amaranthus paniculatus) to hens on total lipids, cholesterol, PUFA levels and acceptability of eggs. Plant Foods Hum. Nutr. 2000, 55, 147–157. [Google Scholar] [CrossRef]
- Roučková, J.; Trčková, M.; Herzig, I. The use of amaranth grain in diets for broiler chickens and its effect on performance and selected biochemical indicators. Czech J. Anim. Sci. 2004, 49, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Zralý, Z.; Písaříková, B.; Hudcová, H.; Trčková, M.; Herzig, I. Effect of feeding amaranth on growth efficiency and health of market pigs. Acta Vet. Brno 2004, 73, 437–444. [Google Scholar] [CrossRef]
- Písaříková, B.; Zralý, Z.; Kráčmar, S.; Trčková, M.; Herzig, I. Nutritional value of amaranth (genus Amaranthus L.) grain in diets for broiler chickens. Czech J. Anim. Sci. 2005, 50, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Peiretti, P.G. Amaranth in animal nutrition: A review. Livestock Res. Rural Dev. 2018, 30, 1–20. [Google Scholar]
- Gresta, F.; Meineri, G.; Oteri, M.; Santonoceto, C.; Lo Presti, V.; Costale, A.; Chiofalo, B. Productive and qualitative traits of amaranthus cruentus l.: An unconventional healthy ingredient in animal feed. Animals 2020, 10, 1428. [Google Scholar] [CrossRef] [PubMed]
- Skwaryło-Bednarz, B.; Stępniak, P.M.; Jamiołkowska, A.; Kopacki, M.; Krzepiłko, A.; Klikocka, H. Amaranth seeds as a source of nutrints and bioactive substances in human diet. Acta Sci. Pol. Hortorum Cultus 2020, 19, 153–164. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Akin-Idowu, P.E.; Ademoyegun, O.T.; Olagunju, Y.O.; Aduloju, A.O.; Adebo, U.G. Phytochemical Content and Antioxidant Activity of Five Grain Amaranth Species. Am. J. Food Sci. Technol. 2017, 5, 249–255. [Google Scholar]
- de la Rosa, A.B.; Fomsgaard, I.S.; Laursen, B.; Mortensen, A.G.; Olvera-Martínez, L.; Silva-Sánchez, C.; Mendoza-Herrera, A.; González-Castañeda, J.; De León-Rodríguez, A. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J. Cereal Sci. 2009, 49, 117–121. [Google Scholar] [CrossRef]
- Jalč, D.; Baran, M.; Siroka, P. Use of grain amaranth (Amaranthus hypochondriacus) for feed and its effect on rumen fermentation in vitro. Czech J. Anim. Sci. 1999, 44, 163–167. [Google Scholar]
- Ravindran, V.; Hood, R.L.; Gill, R.J.; Kneale, C.R.; Bryden, W.L. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Anim. Feed Sci. Technol. 1996, 63, 323–331. [Google Scholar] [CrossRef]
- Waldroup, P.W.; Hellwig, H.M.; Longer, D.E.; Endres, C.S. The utilization of grain amaranth by broiler chickens. Poult. Sci. J. 1985, 64, 759–762. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Lehmann, J.W.; Peterson, D.M. Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. J. Nutr. 1996, 126, 1972–1978. [Google Scholar] [PubMed]
- European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance). Off. J. Eur. Union 2009, 52, 12–15. [Google Scholar]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance). Off. J. Eur. Union 2009, 52, 37–39. [Google Scholar]
- Christie, W.W. Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. In Advances in Lipid Methodology-Two; Christie, W.W., Ed.; Oily Press: Dundee, Scotland, UK, 1993; pp. 69–111. [Google Scholar]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–192. [Google Scholar] [CrossRef]
- Luciano, G.; Pauselli, M.; Servili, M.; Mourvaki, E.; Serra, A.; Monahan, F.J.; Lanza, M.; Priolo, A.; Zinnai, A.; Mele, M. Dietary olive cake reduces the oxidation of lipids, including cholesterol, in lamb meat enriched in polyunsaturated fatty acids. Meat Sci. 2013, 93, 703–714. [Google Scholar] [CrossRef]
- López-Mejía, O.A.; López-Malo, A.; Palou, E. Antioxidant capacity of extracts from amaranth (Amaranthus Hypochondriacus L.) seeds or leaves. Ind. Crops Prod. 2014, 53, 55–59. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free-radical method to evaluated antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Onofri, A. Routine statistical analyses of field experiments by using an excel extension. In Proceedings of the 6th National Conference Italian Biometric Society: La Statistica nelle Scienze della vita e Dell’ambiente, Pisa, Italy, 20–22 June 2007; pp. 93–99. [Google Scholar]
- Pulvento, C.; Sellami, M.H.; Lavini, A. Yield and quality of Amaranthus hypochondriacus grain amaranth under drought and salinity at various phenological stages in southern Italy. J. Sci. Food Agric. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gimplinger, D.M.; Dobos, G.; Schönlechner, R.; Kaul, H.P. Yield and quality of grain amaranth (Amaranthus sp.) in Eastern Austria. Plant Soil Environ. 2007, 53, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Rutkowska, J. Amaranthus—roślina przyjazna człowiekowi [Amaranthus—A plant friendly to man]. Przegląd piekarski i cukierniczy 2006, 1, 6–10. [Google Scholar]
- Ogrodowska, D.; Zadernowski, R.; Czaplicki, S.; Derewiaka, D.; Wronowska, B. Amaranth Seeds and Products—The Source of Bioactive Compounds. Pol. J. Food Nutr. Sci. 2014, 64, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Gamel, T.H.; Linssen, J.P.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A. Effect of seed treatments on the chemical composition and properties of two amaranth species: Starch and protein. J. Sci. Food Agric. 2005, 85, 319–327. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Paredes-López, O. Amaranth—Sustainable crop for the 21st century: Food Properties and nutraceuticals for improving human health. In Sustainable Protein Sources, 1st ed.; Nadathur, S., Wanasundara, J.P., Scanlin, L., Eds.; Elsevier Inc.: Aalborg, Denmark, 2017; pp. 239–256. [Google Scholar]
- Pedersen, B.; Kalinowski, L.S.; Eggum, B.O. The nutritive value of amaranth grain (Amaranthus caudatus). Plant Food Hum. Nutr. 1987, 36, 309–324. [Google Scholar] [CrossRef]
- Segura-Nieto, M.; Barba de la Rosa, A.P.; Paredes-López, O. Biochemistry of amaranth proteins. In Amaranth biology, Chemistry, and Technology; Paredes-Lopez, O., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 75–106. [Google Scholar]
- Grobelnik Mlakar, S.; Turinek, M.; Jakop, M.; Bavec, M.; Bavec, F. Nutrition value and use of grain amaranth: Potential future application in bread making. Agricultura 2009, 6, 43–53. [Google Scholar]
- Petkova, Z.Y.; Antova, G.A.; Angelova-Romova, M.I.; Vaseva, I.C. A comparative study on chemical and lipid composition of amaranth seeds with different origin. Bulg. Chem. Commun. 2019, 51, 262–267. [Google Scholar]
- Kubelková, P.; Jalč, D.; Homolka, P.; Čermák, B. Effect of dietary supplementation with treated amaranth seeds on fermentation parameters in an artificial rumen. Czech J. Anim. Sci. 2013, 58, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, M.A.; Ramírez, R.; Martínez, A.; Bressani, R. Evaluation of different amounts of amaranth meal (vegetative parts) to replace lucerne leaf meal in diets for growing rabbits. Arch. Latinoam. Nutr. 1987, 37, 174–185. [Google Scholar] [PubMed]
- Bautista, E.; Barrueta, H.D.E. Bledo (Amaranthus spp.) como ingrediente en dietas para conejos en crecimiento y engorde. Revista Científica UNET 2000, 12, 1–17. [Google Scholar]
- Reddy, K.J.; Reddy, M.B. Preliminary studies on Amaranthus (Amaranthus hypochondriacus) seed as a component of rabbit rations. Livestock Adviser. 1993, 18, 27–31. [Google Scholar]
- Bamikole, M.A.; Ezenwa, I.; Adewumi, M.K.; Omojola, A.B.; Adetimirin, V.O.; Arigbede, O.M.; Orisadeyi, S.A. Alternative feed resources for formulating concentrate diets of rabbits. 1. Unthreshed grain amaranth seedhead. World Rabbit Sci. 2000, 8, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Sánchez-Urdaneta, A. Effect of the inclusion of Amaranthus dubius in diets on carcass characteristics and meat quality of fattening rabbits. J. Appl. Anim. Res. 2018, 46, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Peiretti, P.G.; Meineri, G.; Longato, E.; Tassone, S. Chemical composition, in vitro digestibility and fatty acid profile of Amaranthus caudatus herbage during its growth cycle. Anim. Nutr. Feed Technol. 2018, 18, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Januszewska-Jóźwiak, K.; Synowiecki, J. Charakte- rystyka i przydatność składników szarłatu w biotechno- logii żywności [Characteristics and suitability of amaranth components in food biotechnology]. Biotechnologia 2008, 3, 89–102. [Google Scholar]
- He, H.; Cai, Y.; Sun, M.; Corke, H. Extraction and Purification of Squalene from Amaranthus Grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef]
- Písaříková, B.; Kráčmar, S.; Herzig, I. Amino acid contents and biological value of protein in various amaranth species. Czech J. Anim. Sci. 2005, 50, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Zralý, Z.; Písaříková, B.; Trčková, M.; Herzig, I.; Jůzl, M.; Simeonovova, J. Effect of lupine and amaranth on growth efficiency, health, and carcass characteristics and meat quality of market pigs. Acta Vet. Brno 2006, 75, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Egesel, C.O.; Kahrıman, F.; Gül, M.K. Discrimination of maize inbreds for kernel quality traits and fatty acid composition by a multivariate technique. Acta Sci. Agron. 2011, 33, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Kan, A. Characterization of the Fatty Acid and Mineral Compositions of Selected Cereal Cultivars from Turkey. Rec. Nat. Prod. 2015, 9, 124–134. [Google Scholar]
- Chiofalo, B.; Di Rosa, A.R.; Lo Presti, V.; Chiofalo, V.; Liotta, L. Effect of supplementation of herd diet with olive cake on the composition profile of milk and on the composition, quality and sensory profile of cheeses made therefrom. Animals 2020, 10, 977. [Google Scholar] [CrossRef] [PubMed]
- Chiofalo, V.; Liotta, L.; Lo Presti, V.; Gresta, F.; Di Rosa, A.; Chiofalo, B. Effect of dietary olive cake supplementation on performance, carcass characteristics and meat quality of beef cattle. Animals 2020, 10, 1176. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Corke, H. Oil and Squalene in Amaranthus Grain and Leaf. J. Agric. Food Chem. 2003, 51, 7913–7920. [Google Scholar] [CrossRef] [PubMed]
- Jahaniaval, F.; Kakuda, Y.; Marcone, M.F. Fatty acid and triacylglycerol compositions of seed oils of five Amaranthus accessions and their comparison to other oils. J. Am. Oil Chem. Soc. 2000, 77, 847–852. [Google Scholar] [CrossRef]
- Dietschy, J.M. Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. J. Nutr. 1998, 128, 444S–448S. [Google Scholar] [CrossRef] [Green Version]
- Raiciu, A.D.; Popescu, M.; Ivopol, G.C.; Bordei, N.; Alexandru, G.; Crisan, I.; Manea, S.; Dima, S.O. Therapeutic applications of vegetable oils and GC-MS evaluation of ω-3, ω-6 and ω-9 amounts in six oleaginous plants. Rev. Chim. 2016, 67, 2449–2453. [Google Scholar]
- Kabiri, N.; Asgary, S.; Madani, H.; Mahzouni, P. Effects of Amaranthus caudatus L. extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. J. Med. Plant Res. 2010, 4, 355–364. [Google Scholar]
- Kabiri, N.; Asgary, S.; Setorki, M. Lipid lowering by hydroalcoholic extracts of Amaranthus caudatus L. induces regression of rabbits atherosclerotic lesions. Lipids Health Dis. 2011, 10, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Plate, A.Y.A.; Arêas, J.A.G. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chem. 2002, 76, 1–6. [Google Scholar] [CrossRef]
- Króliczewska, B.; Zawadzki, W.; Bartkowiak, A.; Skiba, T. The level of selected blood indicators of laying hens fed with addition of amaranth grain. Electron. J. Pol. Agric. Univ. 2008, 11, 18–22. [Google Scholar]
- Camatari, F.O.S.; Lopes, K.H.; Valentim, B.; Xavier, J.A.; da Costa, J.G.; Santana, A.E.G.; Goulart, M.O.F. Antioxidant Potential of Flours from Cereals, Tubers, Beans and Seeds Chemical Profile of Curcuma longa Flour. J. Nutr. Food Sci. 2016, 6, 1–8. [Google Scholar]
- Czerwinski, J.; Bartnikowska, E.; Leontowicz, H.; Lange, E.; Leontowicz, M.; Katrich, E. Oat (Avensa sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. J. Nutr. Biochem. 2004, 15, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.; Deemer, E. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Dong, J.-W.; Cai, L.; Xing, Y.; Yu, J.; Ding, Z.-T. Re-evaluation of ABTS•+ Assay for Total Antioxidant Capacity of Natural Products. Nat. Prod. Commun. 2015, 10, 1934578X1501001239. [Google Scholar] [CrossRef] [Green Version]
- Longato, E.; Meineri, G.; Peiretti, P.G. The effect of Amaranthus caudatus supplementation to diets containing linseed oil on oxidative status, blood serum metabolites, growth performance and meat quality characteristics in broilers. Anim. Sci. Pap. Rep. 2017, 35, 71–86. [Google Scholar]
Accession | Origin | Seed Weight per Plant (g) | 1000 Seed Weight (g) |
---|---|---|---|
PI 477915 | India | 28.0 b | 0.85 a |
PI 558499 | USA, Nebraska | 43.3 a | 0.77 ab |
PI 568125 | USA, Iowa | 27.4 b | 0.84 a |
PI 572256 | USA, Pennsylvania | 43.7 a | 0.68 b |
Accession | Origin | Moisture | Crude Protein | Oil | Crude Fiber | Ash |
---|---|---|---|---|---|---|
PI 477915 | India | 10.40 | 18.30 | 5.39 b | 4.84 | 3.36 ab |
PI 558499 | USA, Nebraska | 10.20 | 17.60 | 7.23 a | 5.42 | 3.53 a |
PI 568125 | USA, Iowa | 10.30 | 17.30 | 6.00 ab | 5.85 | 3.54 a |
PI 572256 | USA, Pennsylvania | 10.20 | 17.70 | 6.87 a | 5.77 | 3.26 b |
Average | 10.3 | 17.73 | 6.37 | 5.47 | 3.42 |
Accession | Origin | C14:0 | C16:0 | C16:1 | C17:0 | C18:0 | C18:1n9 | C18:1n7 | C18:2n6 | C18:3n3 | C20:0 | C22:0 | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PI 477915 | India | 0.75 b | 27.00 b | 0.23 | 0.41 b | 5.89 b | 26.40 b | 1.42 | 34.00 a | 0.62 a | 0.85 b | 0.42 b | 1.96 b |
PI 558499 | USA, Nebraska | 0.67 c | 25.30 c | 0.25 | 0.41 b | 5.03 d | 29.20 a | 1.41 | 34.30 a | 0.50 bc | 0.75 b | 0.36 c | 1.77 bc |
PI 568125 | USA, Iowa | 0.59 d | 26.20 bc | 0.29 | 0.36 c | 5.38 c | 28.40 ab | 1.43 | 33.80 a | 0.54 b | 0.82 b | 0.40 b | 1.70 c |
PI 572256 | USA, Pennsylvania | 0.83 a | 29.00 a | 0.44 | 0.51 a | 6.39 a | 26.60 b | 1.43 | 30.70 b | 0.44 c | 1.03 a | 0.49 a | 2.20 a |
Average | 0.71 | 26.88 | 0.30 | 0.42 | 5.67 | 27.65 | 1.42 | 33.20 | 0.53 | 0.86 | 0.42 | 1.91 |
Accession | Origin | SFA | MUFA | PUFA | SFA/UFA | n3 | n6 | AI | TI | H/H | PI |
---|---|---|---|---|---|---|---|---|---|---|---|
PI 477915 | India | 35.40 b | 28.10 | 34.60 a | 0.56 b | 0.62 a | 34.00 a | 0.48 b | 1.02 b | 2.20 b | 35.20 a |
PI 558499 | USA, Nebraska | 32.50 c | 30.90 | 34.80 a | 0.50 c | 0.50 bc | 34.30 a | 0.43 c | 0.91 c | 2.47 a | 35.30 a |
PI 568125 | USA, Iowa | 33.80 bc | 30.10 | 34.40 a | 0.52 bc | 0.54 b | 33.80 a | 0.44 bc | 0.96 bc | 2.34 ab | 34.90 a |
PI 572256 | USA, Pennsylvania | 38.20 a | 28.50 | 31.10 b | 0.64 a | 0.44 c | 30.70 b | 0.54 a | 1.17 a | 1.94 c | 31.60 b |
Average | 35.00 | 29.40 | 33.73 | 0.56 | 0.53 | 33.20 | 0.47 | 1.02 | 2.24 | 34.25 |
Accession | Origin | TPC | DPPH• | ABTS•+ |
---|---|---|---|---|
PI 477915 | India | 0.31 b | 0.42 c | 1.84 b |
PI 558499 | USA, Nebraska | 0.40 a | 0.45 b | 2.22 b |
PI 568125 | USA, Iowa | 0.24 c | 0.54 a | 1.75 b |
PI 572256 | USA, Pennsylvania | 0.30 b | 0.34 d | 3.08 a |
Average | 0.31 | 0.44 | 2.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oteri, M.; Gresta, F.; Costale, A.; Lo Presti, V.; Meineri, G.; Chiofalo, B. Amaranthus hypochondriacus L. as a Sustainable Source of Nutrients and Bioactive Compounds for Animal Feeding. Antioxidants 2021, 10, 876. https://doi.org/10.3390/antiox10060876
Oteri M, Gresta F, Costale A, Lo Presti V, Meineri G, Chiofalo B. Amaranthus hypochondriacus L. as a Sustainable Source of Nutrients and Bioactive Compounds for Animal Feeding. Antioxidants. 2021; 10(6):876. https://doi.org/10.3390/antiox10060876
Chicago/Turabian StyleOteri, Marianna, Fabio Gresta, Annalisa Costale, Vittorio Lo Presti, Giorgia Meineri, and Biagina Chiofalo. 2021. "Amaranthus hypochondriacus L. as a Sustainable Source of Nutrients and Bioactive Compounds for Animal Feeding" Antioxidants 10, no. 6: 876. https://doi.org/10.3390/antiox10060876
APA StyleOteri, M., Gresta, F., Costale, A., Lo Presti, V., Meineri, G., & Chiofalo, B. (2021). Amaranthus hypochondriacus L. as a Sustainable Source of Nutrients and Bioactive Compounds for Animal Feeding. Antioxidants, 10(6), 876. https://doi.org/10.3390/antiox10060876