Impact of Sugar Type Addition and Fermentation Temperature on Pomegranate Alcoholic Beverage Production and Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pomegranate Juice, Yeast Strain, and Types of Added Sugars
2.2. Fermentation and Sugar Adjustment of Pomegranate Juice
2.3. Determination of Reducing Sugars, Ethanol, and Glycerol Content
2.4. pH, Volatile Acidity, and Total Acidity
2.5. Total Flavonoids Content, Total Phenolics Content, Free Radical-Scavenging Activity and Total Monomeric Anthocyanin Content
2.6. HS-SPME GC/MS Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics
3.2. Antioxidant Activity and Phenolic Compounds
3.3. Volatile Composition
3.3.1. Esters
3.3.2. Fatty Acids
3.3.3. Alcohols
3.3.4. Chemometrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Białek, A.; Jelińska, M.; Białek, M.; Lepionka, T.; Czerwonka, M.; Czauderna, M. The effect of diet supplementation with pomegranate and bitter melon on lipidomic profile of serum and cancerous tissues of rats with mammary tumours. Antioxidants 2020, 9, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandylis, P.; Kokkinomagoulos, E. Food applications and potential health benefits of pomegranate and its derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapa, S.F.; Magliocca, G.; Pepe, G.; Amodio, G.; Autore, G.; Campiglia, P.; Marzocco, S. Protective Effect of Pomegranate on Oxidative Stress and Inflammatory Response Induced by 5-Fluorouracil in Human Keratinocytes. Antioxidants 2021, 10, 203. [Google Scholar] [CrossRef]
- Daoutidou, M.; Plessas, S.; Alexopoulos, A.; Mantzourani, I. Assessment of antimicrobial activity of pomegranate, cranberry, and black chokeberry extracts against foodborne pathogens. Foods 2021, 10, 486. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Castillo, J.; Ros, G.; Nieto, G. Antioxidant and antimicrobial activity of rosemary, pomegranate and olive extracts in fish patties. Antioxidants 2019, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Challenges for the production of probiotic fruit juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.I.; Galanis, A.; Plessas, S. Production of a novel functional fruit beverage consisting of cornelian cherry juice and probiotic bacteria. Antioxidants 2018, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Melgarejo, P.; Calín-Sánchez, Á.; Vázquez-Araújo, L.; Hernández, F.; Martínez, J.J.; Legua, P.; Carbonell-Barrachina, Á.A. Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction. J. Food Sci. 2011, 76, S114–S120. [Google Scholar] [CrossRef]
- Raisi, A.; Aroujalian, A.; Kaghazchi, T. Multicomponent pervaporation process for volatile aroma compounds recovery from pomegranate juice. J. Membr. Sci. 2008, 322, 339–348. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Nikolaou, A.; Kourkoutas, Y.; Kandylis, P. Evaluation of yeast strains for pomegranate alcoholic beverage production: Effect on physicochemical characteristics, antioxidant activity, and aroma compounds. Microorganisms 2020, 8, 1583. [Google Scholar] [CrossRef]
- Lan, Y.; Wu, J.; Wang, X.; Sun, X.; Hackman, R.M.; Li, Z.; Feng, X. Evaluation of antioxidant capacity and flavor profile change of pomegranate wine during fermentation and aging process. Food Chem. 2017, 232, 777–787. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, D.; Chen, X.; Kilmartin, P.; Quek, S.Y. The influence of vinification methods and cultivars on the volatile and phenolic profiles of fermented alcoholic beverages from Cranberry. Antioxidants 2019, 8, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gumienna, M.; Szwengiel, A.; Górna, B. Bioactive components of pomegranate fruit and their transformation by fermentation processes. Eur. Food Res. Technol. 2016, 242, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Ruta, L.L.; Farcasanu, I.C. Anthocyanins and anthocyanin-derived products in yeast-fermented beverages. Antioxidants 2019, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Rios-Corripio, G.; Guerrero-Beltrán, J.Á. Antioxidant and physicochemical characteristics of unfermented and fermented pomegranate (Punica granatum L.) beverages. J. Food Sci. Technol. 2019, 56, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Nikolaou, A.; Galanis, A.; Kanellaki, M.; Tassou, C.; Akrida-Demertzi, K.; Kourkoutas, Y. Assessment of free and immobilized kefir culture in simultaneous alcoholic and malolactic cider fermentations. LWT Food Sci. Technol. 2017, 76, 67–78. [Google Scholar] [CrossRef]
- OIV. International Organisation of Vine and Wine, Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2021; Volume 1, Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 4 May 2021).
- Nikolaou, A.; Tsakiris, A.; Kanellaki, M.; Bezirtzoglou, E.; Akrida-Demertzi, K.; Kourkoutas, Y. Wine production using free and immobilized kefir culture on natural supports. Food Chem. 2019, 272, 39–48. [Google Scholar] [CrossRef]
- Fleet, G.H.; Heard, G.M. Yeast-Growth during Fermentation. In Wine, Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic: Lausanne, Switzerland, 1993; pp. 27–54. [Google Scholar]
- Sepúlveda, E.; Sáenz, C.; Peña, Á.; Robert, P.; Bartolomé, B.; Gómez-Cordovés, C. Influence of the genotype on the anthocyanin composition, antioxidant capacity and color of Chilean pomegranate (Punica granatum L.) juices. Chil. J. Agric. Res. 2010, 70, 50–57. [Google Scholar] [CrossRef]
- Zarei, M.; Azizi, M.; Bashir-Sadr, Z. Evaluation of physicochemical characteristics of pomegranate (Punica granatum L.) fruit during ripening. Fruits 2011, 66, 121–129. [Google Scholar] [CrossRef] [Green Version]
- El Kar, C.; Ferchichi, A.; Attia, F.; Bouajila, J. Pomegranate (Punica granatum) juices: Chemical composition, micronutrient cations, and antioxidant capacity. J. Food Sci. 2011, 76, C795–C800. [Google Scholar] [CrossRef]
- Li, X.; Wasila, H.; Liu, L.; Yuan, T.; Gao, Z.; Zhao, B.; Ahmad, I. Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis. Food Chem. 2015, 175, 575–584. [Google Scholar] [CrossRef]
- Lamçe, F.; Gozhdari, K.; Kongoli, R.; Meta, B.; Kyçyk, O. Evaluation of the content of polyphenols and flavonoids during the fermentation of white wines (cv. Pulëz and Shesh i bardhë) with and without skins. Albanian J. Agric. Sci. 2018, 17, 564–571. [Google Scholar]
- Czyzowska, A.; Pogorzelski, E. Changes to polyphenols in the process of production of must and wines from blackcurrants and cherries. Part I. Total polyphenols and phenolic acids. Eur. Food Res. Technol. 2002, 214, 148–154. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabagias, V.K.; Badeka, A.V. Possible complementary packaging label in honey based on the correlations of antioxidant activity, total phenolic content, and effective acidity, in light of the F.O.P. index using mathematical modelling. Eur. Food Res. Technol. 2020, 246, 1307–1316. [Google Scholar] [CrossRef]
- Starowicz, M.; Ostaszyk, A.; Zieliński, H. The Relationship between the browning index, total phenolics, color, and antioxidant activity of Polish-originated honey samples. Foods 2021, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Ginjom, I.; D’Arcy, B.; Caffin, N.; Gidley, M. Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process. Food Chem. 2011, 125, 823–834. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Erim, F.B. Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chem. 2017, 221, 496–507. [Google Scholar] [CrossRef]
- Burca-Busaga, C.G.; Betoret, N.; Seguí, L.; Betoret, E.; Barrera, C. Survival of Lactobacillus salivarius CECT 4063 and stability of antioxidant compounds in dried apple snacks as affected by the water activity, the addition of trehalose and high pressure homogenization. Microorganisms 2020, 8, 1095. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Marrella, M.; Hadj Saadoun, J.; Bernini, V.; Godani, F.; Dameno, F.; Neviani, E.; Lazzi, C. Development of lactic acid-fermented tomato products. Microorganisms 2020, 8, 1192. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Dubey, A.K. Isolation and characterization of a new endophytic actinobacterium Streptomyces californicus strain ADR1 as a promising source of anti-bacterial, anti-biofilm and antioxidant metabolites. Microorganisms 2020, 8, 929. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Jafarpour, D. Fermentation of bergamot juice with Lactobacillus plantarum strains in pure and mixed fermentations: Chemical composition, antioxidant activity and sensorial properties. LWT 2020, 131, 109803. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, X.; Bi, X.; Su, F.; Liang, Z.; Luo, M.; Fu, D.; Xing, Y.; Che, Z. Physicochemical properties and bioactive compounds of fermented pomegranate juice as affected by high-pressure processing and thermal treatment. Int. J. Food Prop. 2019, 22, 1250–1269. [Google Scholar] [CrossRef] [Green Version]
- Rios-Corripio, G.; Welti-Chanes, J.; Rodríguez-Martínez, V.; Guerrero-Beltrán, J.Á. Influence of high hydrostatic pressure processing on physicochemical characteristics of a fermented pomegranate (Punica granatum L.) beverage. Innov. Food Sci. Emerg. Technol. 2020, 59, 102249. [Google Scholar] [CrossRef]
- Zeng, H.; Shuai, Y.; Zeng, X.; Xin, B.; Huang, M.; Li, B.; Qiao, J.; Wang, Y.; Qiu, X.; Wang, C. Evaluation of health-related composition and bioactivity of five fruit juices following Lactobacillus plantarum fermentation and simulated digestion. Int. J. Food Sci. Technol. 2021, 56, 648–660. [Google Scholar] [CrossRef]
- Pontonio, E.; Montemurro, M.; Pinto, D.; Marzani, B.; Trani, A.; Ferrara, G.; Mazzeo, A.; Gobbetti, M.; Rizzello, C.G. Lactic acid fermentation of pomegranate juice as a tool to improve antioxidant activity. Front. Microbiol. 2019, 10, 1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akalin, A.C.; Bayram, M.; Anlı, R.E. Antioxidant phenolic compounds of pomegranate wines produced by different maceration methods. J. Inst. Brew. 2018, 124, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Ghiselli, A.; Nardini, M.; Baldi, A.; Scaccini, C. Antioxidant activity of different phenolic fractions separated from an Italian red wine. J. Agric. Food Chem. 1998, 46, 361–367. [Google Scholar] [CrossRef]
- Mateus, N.; de Freitas, V. Evolution and stability of anthocyanin-derived pigments during port wine aging. J. Agric. Food Chem. 2001, 49, 5217–5222. [Google Scholar] [CrossRef]
- Mena, P.; Gironés-Vilaplana, A.; Martí, N.; García-Viguera, C. Pomegranate varietal wines: Phytochemical composition and quality parameters. Food Chem. 2012, 133, 108–115. [Google Scholar] [CrossRef]
- Vázquez-Araújo, L.; Chambers, E., IV; Adhikari, K.; Carbonell-Barrachina, Á.A. Sensory and physicochemical characterization of juices made with pomegranate and blueberries, blackberries, or raspberries. J. Food Sci. 2010, 75, S398–S404. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.C.; Stein-Chisholm, R.E. HS-GC–MS volatile compounds recovered in freshly pressed ‘Wonderful’ cultivar and commercial pomegranate juices. Food Chem. 2016, 190, 643–656. [Google Scholar] [CrossRef]
- Andreu-Sevilla, A.J.; Mena, P.; Martí, N.; Viguera, C.G.; Carbonell-Barrachina, Á.A. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Res. Int. 2013, 54, 246–254. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Obando-Ulloa, J.M. Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles. Food Chem. 2017, 229, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145. [Google Scholar] [CrossRef] [PubMed]
- Caleb, O.J.; Opara, U.L.; Mahajan, P.V.; Manley, M.; Mokwena, L.; Tredoux, A.G. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally processed pomegranate arils (cvs. ‘Acco’ and ‘Herskawitz’). Postharvest Biol. Technol. 2013, 79, 54–61. [Google Scholar] [CrossRef]
- Beaulieu, J.; Grimm, C.; Lloyd, S.; Stein, R. Characterizing endogenous and oxidative low molecular weight flavor/aroma compounds in fresh squeezed/blended pomegranate juice. In Proceedings of the 2010 ASHS Annual Conference, Palm Desert, CA, USA, 31 July–5 August 2010; p. oral 4551. Available online: https://ashs.confex.com/ashs/2010/webprogram/Paper4551.html (accessed on 26 May 2021).
- Whiting, G.C. Organic acid metabolism of yeasts during fermentation of alcoholic beverages—A review. J. Inst. Brew. 1976, 82, 84–92. [Google Scholar] [CrossRef]
- Etievant, X.P. Wine. In Volatile Compounds in Foods and Beverages, 1st ed.; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–533. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications, 1st ed.; Academic Press: San Diego, CA, USA, 1994; pp. 184–187. [Google Scholar]
- Kandylis, P.; Mantzari, A.; Koutinas, A.A.; Kookos, I.K. Modelling of low temperature wine-making, using immobilized cells. Food Chem. 2012, 133, 1341–1348. [Google Scholar] [CrossRef]
- Nikolaou, A.; Nelios, G.; Kanellaki, M.; Kourkoutas, Y. Freeze-dried immobilized kefir culture in cider-making. J. Sci. Food Agric. 2020, 100, 3319–3327. [Google Scholar] [CrossRef]
- Nikolaou, A.; Sgouros, G.; Mitropoulou, G.; Santarmaki, V.; Kourkoutas, Y. Freeze-dried immobilized kefir culture in low alcohol winemaking. Foods 2020, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.S. Analysis of volatile compounds in the root peel, stem peel, and fruit peel of pomegranate (Punica granatum) by TD GC/MS. Int. J. Biosci. Biotechnol. 2014, 6, 169–181. [Google Scholar] [CrossRef]
- Tsakiris, A.; Bekatorou, A.; Psarianos, C.; Koutinas, A.A.; Marchant, R.; Banat, I.M. Immobilization of yeast on dried raisin berries for use in dry white wine-making. Food Chem. 2004, 87, 11–15. [Google Scholar] [CrossRef]
- Tripathi, J.; Chatterjee, S.; Gamre, S.; Chattopadhyay, S.; Variyar, P.S.; Sharma, A. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.). LWT Food Sci. Technol. 2014, 59, 461–466. [Google Scholar] [CrossRef]
- Charles, M.; Martin, B.; Ginies, C.; Etievant, P.; Coste, G.; Guichard, E. Potent aroma compounds of two red wine vinegars. J. Agric. Food Chem. 2000, 48, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Günata, Z. Aroma components of cv. Muscat of Bornova wines and influence of skin contact treatment. Food Chem. 2006, 94, 319–326. [Google Scholar] [CrossRef]
- Güler, Z.; Gül, E. Volatile organic compounds in the aril juices and seeds from selected five pomegranate (Punica granatum L.) cultivars. Int. J. Food Prop. 2017, 20, 281–293. [Google Scholar] [CrossRef]
- Vazquez-Araujo, L.; Chambers IV, E.; Adhikari, K.; Carbonell-Barrachina, A.A. Physico-chemical and sensory properties of pomegranate juices with pomegranate albedo and carpellar membranes homogenate. LWT Food Sci. Technol. 2011, 44, 2119–2125. [Google Scholar] [CrossRef]
PAB | Reducing Sugars (g D-glucose L−1) | Ethanol (% v/v) | Glycerol (g L−1) | pH | Volatile Acidity (g Acetic Acid L−1) | Titratable Acidity (g Citric Acid L−1) |
---|---|---|---|---|---|---|
UPJ | 112.8 ± 1.2 | 3.12 ± 0.01 | 0.1 ± 0.1 | 16.0 ± 0.1 | ||
Fermentation temperature 15 °C | ||||||
S | 5.0 ± 0.1 b | 9.6 ± 1.5 | 5.4 ± 0.9 | 3.09 ± 0.01 ab | 0.9 ± 0.1 ab | 16.8 ± 0.3 a |
CPJ | 5.7 ± 0.1 c | 9.3 ± 1.1 | 5.6 ± 0.7 | 3.03 ± 0.02 a | 0.8 ± 0.1 a | 23.2 ± 0.4 b |
CGJ | 8.4 ± 0.1 e | 7.9 ± 0.4 | 4.8 ± 0.1 | 3.17 ± 0.02 bc | 0.9 ± 0.1 ab | 17.2 ± 0.1 a |
H | 7.4 ± 0.3 d | 10.0 ± 0.4 | 5.8 ± 0.1 | 3.06 ± 0.01 a | 1.2 ± 0.1 b | 16.8 ± 0.2 a |
Fermentation temperature 25 °C | ||||||
S | 4.1 ± 0.1 a | 9.8 ± 0.2 | 5.6 ± 0.3 | 3.18 ± 0.01 c | 0.9 ± 0.1 ab | 16.7 ± 0.5 a |
CPJ | 4.9 ± 0.1 b | 9.4 ± 0.1 | 6.1 ± 0.1 | 3.17 ± 0.02 bc | 0.8 ± 0.1 a | 23.8 ± 0.2 b |
CGJ | 7.5 ± 0.1 d | 8.9 ± 0.5 | 6.0 ± 0.4 | 3.29 ± 0.04 d | 0.9 ± 0.1 ab | 17.6 ± 0.2 a |
H | 7.3 ± 0.1 d | 9.8 ± 0.4 | 5.7 ± 0.1 | 3.10 ± 0.01 abc | 0.9 ± 0.1 ab | 17.5 ± 0.3 a |
Significance of effect | ||||||
temperature | *** | ns | ns | *** | * | * |
type of sugar | *** | ns | ns | *** | ns | ns |
PAB | TFC (mg QE L−1) | TPC (mg GAE L−1) | FRSA (mM TRE) | TMAC (mg Cy3GE L−1) |
---|---|---|---|---|
UPJ | 530.1 ± 7.3 d | 2478.3 ± 20.5 e | 27.1 ± 0.1 e | 149.0 ± 0.1 i |
Fermentation temperature 15 °C | ||||
S | 272.6 ± 20.4 a | 1318.8 ± 44.3 b | 13.8 ± 0.1 a | 106.0 ± 0.1 f |
CPJ | 537.9 ± 11.7 d | 2302.8 ± 14.8 d | 19.3 ± 0.1 d | 144.0 ± 0.1 h |
CGJ | 765.3 ± 8.8 f | 1801.0 ± 83.6 c | 14.2 ± 0.2 ab | 93.4 ± 0.1 b |
H | 364.4 ± 4.4 bc | 1338.5 ± 44.3 b | 14.1 ± 0.1 ab | 102.5 ± 0.1 d |
Fermentation temperature 25 °C | ||||
S | 332.4 ± 24.8 b | 915.4 ± 64.0 a | 14.2 ± 0.2 ab | 104.5 ± 0.1 e |
CPJ | 680.8 ± 5.8 e | 1668.2 ± 9.8 c | 19.8 ± 0.2 d | 131.5 ± 0.1 g |
CGJ | 886.3 ± 21.9 g | 1407.4 ± 64.0 b | 15.1 ± 0.4 c | 85.7 ± 0.1 a |
H | 392.1 ± 14.6 c | 866.2 ± 113.2 a | 14.6 ± 0.2 bc | 96.2 ± 0.1 c |
Significance of effect | ||||
temperature | *** | *** | *** | *** |
type of sugar | *** | *** | *** | *** |
Compounds | PABs With Added Sugar | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
S | CPJ | CGJ | H | Temp | Sugar Type | |||||
15 °C | 25 °C | 15 °C | 25 °C | 15 °C | 25 °C | 15 °C | 25 °C | |||
Esters | ||||||||||
ethyl acetate | 5.19 ± 0.83 | 4.09 ± 0.02 | 6.40 ± 0.56 | 3.75 ± 0.64 | 3.55 ± 3.04 | 3.09 ± 0.13 | 4.95 ± 2.05 | 3.81 ± 1.85 | ||
ethyl propanoate | 0.05 ± 0.07 | Nd | 0.15 ± 0.07 | 0.10 ± 0.00 | 0.05 ± 0.07 | Nd | 0.10 ± 0.00 | Nd | * | * |
ethyl butyrate | 0.35 ± 0.21 | 0.20 ± 0.14 | 0.50 ± 0.14 | 0.30 ± 0.00 | 0.25 ± 0.07 | Nd | 0.36 ± 0.06 | Nd | ** | * |
3-methylbutyl acetate | 1.52 ± 0.26 | 2.76 ± 0.79 | 2.40 ± 1.55 | 2.90 ± 0.00 | 0.81 ± 0.13 | 1.23 ± 0.24 | 1.65 ± 0.35 | 1.45 ± 0.21 | * | |
2-methylbutyl acetate | 0.06 ± 0.08 | 0.14 ± 0.20 | 0.17 ± 0.10 | 0.10 ± 0.14 | 0.04 ± 0.04 | Nd | 0.07 ± 0.10 | Nd | ||
ethyl hexanoate | 2.46 ± 1.33 | 2.65 ± 0.35 | 2.49 ± 1.45 | 2.00 ± 0.28 | 1.10 ± 0.00 | 0.99 ± 0.15 | 2.63 ± 0.04 | 1.45 ± 0.78 | ||
ethyl octanoate | 4.44 ± 4.63 | 2.30 ± 0.29 | 3.53 ± 0.23 | 1.87 ± 1.24 | 1.11 ± 0.60 | 1.22 ± 0.59 | 2.49 ± 0.26 | 2.23 ± 1.71 | ||
ethyl phenylacetate | Nd | Nd | Nd | 0.15 ± 0.07 | Nd | Nd | Nd | Nd | ||
2-phenylethyl acetate | 0.76 ± 0.91 | 0.95 ± 0.21 | 0.50 ± 0.42 | 1.05 ± 0.64 | 0.35 ± 0.21 | 1.05 ± 0.19 | 0.40 ± 0.00 | 1.35 ± 0.49 | * | |
ethyl decanoate | 1.10 ± 1.13 | 0.10 ± 0.14 | 1.20 ± 0.57 | 0.70 ± 0.71 | 0.30 ± 0.28 | 0.10 ± 0.14 | 0.25 ± 0.07 | 0.45 ± 0.64 | ||
ethyl dodecanoate | 1.10 ± 1.27 | Nd | 0.80 ± 0.42 | 0.35 ± 0.35 | Nd | Nd | Nd | Nd | ||
ethyl tetradecanoate | Nd | Nd | 0.15 ± 0.07 | Nd | Nd | Nd | Nd | Nd | ||
ethyl hexadecanoate | 4.00 ± 4.81 | 0.55 ± 0.35 | 1.65 ± 1.48 | 1.95 ± 2.05 | 0.25 ± 0.21 | 0.35 ± 0.21 | 0.45 ± 0.07 | 2.30 ± 1.27 | ||
Total esters | 21.02 ± 3.34 | 13.74 ± 0.75 | 19.95 ± 0.01 | 15.22 ± 5.84 | 7.80 ± 1.97 | 8.03 ± 1.96 | 13.34 ± 2.59 | 13.04 ± 3.26 | ** | |
Fatty acids | ||||||||||
octanoic acid | 1.70 ± 1.53 | 0.57 ± 0.38 | 1.94 ± 0.21 | 3.76 ± 2.51 | 2.31 ± 0.52 | 2.08 ± 0.96 | 2.57 ± 2.17 | 0.95 ± 0.07 | ||
decanoic acid | Nd | Nd | Nd | 1.30 ± 1.27 | 0.10 ± 0.14 | Nd | 0.30 ± 0.28 | Nd | ||
Total fatty acids | 1.70 ± 1.53 | 0.57 ± 0.38 | 1.94 ± 0.21 | 5.06 ± 3.78 | 2.41 ± 0.38 | 2.08 ± 0.96 | 2.87 ± 2.45 | 0.95 ± 0.07 | ||
Alcohols | ||||||||||
2-methyl-1-propanol | 0.25 ± 0.21 | 0.51 ± 0.15 | 1.01 ± 0.98 | 0.25 ± 0.21 | 0.38 ± 0.32 | 0.53 ± 0.04 | 0.50 ± 0.14 | 0.30 ± 0.28 | ||
3-methyl-1-butanol | 18.00 ± 1.94 | 17.51 ± 1.68 | 24.22 ± 5.06 | 16.71 ± 4.38 | 18.22 ± 15.10 | 17.55 ± 1.10 | 19.69 ± 5.71 | 14.52 ± 2.83 | ||
2-methyl-1-butanol | 5.96 ± 1.20 | 6.21 ± 0.15 | 5.10 ± 0.01 | 4.57 ± 1.04 | 5.96 ± 4.72 | 6.65 ± 1.27 | 7.14 ± 1.48 | 5.09 ± 0.83 | ||
2,3-butanediol | 0.45 ± 0.64 | Nd | 0.75 ± 1.06 | 0.30 ± 0.42 | 0.90 ± 1.27 | 1.08 ± 0.96 | 0.42 ± 0.59 | Nd | ||
(Z)-3-hexen-1-ol | 0.05 ± 0.07 | Nd | Nd | 0.05 ± 0.06 | Nd | Nd | Nd | Nd | ||
1-hexanol | 0.05 ± 0.07 | Nd | Nd | 0.05 ± 0.06 | Nd | Nd | Nd | Nd | ||
2-phenylethanol (phenylethyl alcohol) | 4.80 ± 4.95 | 2.40 ± 0.42 | 2.00 ± 0.01 | 5.30 ± 3.25 | 3.55 ± 2.90 | 8.50 ± 3.11 | 2.75 ± 1.06 | 9.85 ± 6.58 | ||
Total alcohols | 29.56 ± 3.22 | 26.62 ± 1.81 | 33.08 ± 7.12 | 27.21 ± 1.82 | 29.01 ± 9.07 | 34.31 ± 6.48 | 30.49 ± 2.72 | 29.76 ± 2.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinomagoulos, E.; Nikolaou, A.; Kourkoutas, Y.; Biliaderis, C.G.; Kandylis, P. Impact of Sugar Type Addition and Fermentation Temperature on Pomegranate Alcoholic Beverage Production and Characteristics. Antioxidants 2021, 10, 889. https://doi.org/10.3390/antiox10060889
Kokkinomagoulos E, Nikolaou A, Kourkoutas Y, Biliaderis CG, Kandylis P. Impact of Sugar Type Addition and Fermentation Temperature on Pomegranate Alcoholic Beverage Production and Characteristics. Antioxidants. 2021; 10(6):889. https://doi.org/10.3390/antiox10060889
Chicago/Turabian StyleKokkinomagoulos, Evangelos, Anastasios Nikolaou, Yiannis Kourkoutas, Costas G. Biliaderis, and Panagiotis Kandylis. 2021. "Impact of Sugar Type Addition and Fermentation Temperature on Pomegranate Alcoholic Beverage Production and Characteristics" Antioxidants 10, no. 6: 889. https://doi.org/10.3390/antiox10060889
APA StyleKokkinomagoulos, E., Nikolaou, A., Kourkoutas, Y., Biliaderis, C. G., & Kandylis, P. (2021). Impact of Sugar Type Addition and Fermentation Temperature on Pomegranate Alcoholic Beverage Production and Characteristics. Antioxidants, 10(6), 889. https://doi.org/10.3390/antiox10060889