Neuroprotective Effects of Coreopsis lanceolata Flower Extract against Oxidative Stress-Induced Apoptosis in Neuronal Cells and Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Antibodies, and Instruments
2.2. Preparation of Plant Materials
2.3. Analysis of Antioxidant Components
2.4. HPLC Analysis of Antioxidant Compounds
2.4.1. Sample Preparation for HPLC
2.4.2. HPLC Analysis of Phenolic Compounds
2.5. Antioxidant Assay
2.5.1. ABTS+ Radical Scavenging Assay
2.5.2. DPPH Radical Scavenging Assay
2.6. Cell Culture
2.7. Cell Viability Assay
2.8. Generation of Intracellular ROS
2.9. Animals and Treatments
2.10. Preparation of Protein Samples
2.11. Western Blot Immunoassay
2.12. Statistical Analysis
3. Results
3.1. Phenolic Compounds Contents of CLF1 and CLF2 Identified by HPLC
3.2. Antioxidant Components and Activities of CLF1 and CLF2
3.3. Effects of CLF1 and CLF2 on H2O2-Induced ROS Generation in PC12 Cells
3.4. Effects of CLF1 on Oxidative Stress-Related Proteins in PC12 Cells
3.5. Effects of CLF1 on the Mitochondrial Apoptotic Pathway in H2O2-Treated PC12 Cells
3.6. Effects of CLF1 on Oxidative Stress-Related Proteins In Vivo
3.7. Effects of CLF1 on the Apoptotic Pathway In Vivo
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis 3-ethylbenzothiazolin-6-sulphonic acid |
AA | Ascorbic acid |
Bax | B-cell lymphoma 2-associated X protein |
CAT | Catalase |
DPPH | 2,2-Diphenyl-1-picryllydrazyl |
DCFH-DA | Dichloro-dihydro-fluorescein diacetate |
H2O2 | Hydrogen peroxide |
MPP+ | 1-Methyl-4-phenylpyridinium ion |
PAs | Phenolic acids |
ROS | Reactive oxygen species |
SOD2 | Mn superoxide dismutase 2 |
TPC | Total phenol contents |
TFC | Total flavonoid contents |
References
- Sutachan, J.J.; Casas, Z.; Albarracin, S.L.; Stab, B.R.; Samudio, I.; Gonzalez, J.; Morales, L.; Barreto, G.E. Cellular and molecular mechanisms of antioxidants in Parkinson’s disease. Nutr. Neurosci. 2012, 15, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Matteo, V.; Esposito, E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr. Drug Targets-CNS Neurol. Disord. 2003, 2, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ighodaro, O.; Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.-H.; Oh, H.-J.; Lee, D.-S.; In, S.-J.; Seo, K.-H.; Jung, J.-W.; Cha, B.-J.; Lee, D.Y.; Baek, N.-I. Pharmacological activity and quantitative analysis of flavonoids isolated from the flowers of Begonia semperflorens Link et Otto. Appl. Biol. Chem. 2019, 62, 1–8. [Google Scholar] [CrossRef]
- Xiong, L.; Mao, S.; Lu, B.; Yang, J.; Zhou, F.; Hu, Y.; Jiang, Y.; Shen, C.; Zhao, Y. Osmanthus fragrans flower extract and acteoside protect against d-galactose-induced aging in an ICR mouse model. J. Med. Food 2016, 19, 54–61. [Google Scholar] [CrossRef]
- Zeng, J.J.; Zhou, B.; Wang, N. Comparing the reproductive biological characteristics of the alien invasive Coreopsis lanceolata to those of the non-invasive alien congener Coreopsis tinctoria. Plant Species Biol. 2021, 1–11. [Google Scholar] [CrossRef]
- Kim, B.-R.; Paudel, S.B.; Nam, J.-W.; Jin, C.H.; Lee, I.-S.; Han, A.-R. Constituents of Coreopsis lanceolate Flower and Their Dipeptidyl Peptidase IV Inhibitory Effects. Molecules 2020, 25, 4370. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.Y.; JeSeung, J.; Sarangerel, O.; ByungHun, U.; Won, N.C.; Woo, K.S. Chalcones from the flowers of Coreopsis lanceolata L. Pharm. Soc. Korea 2012, 271. [Google Scholar]
- Kim, H.-G.; Oh, H.-J.; Ko, J.-H.; Song, H.S.; Lee, Y.-G.; Kang, S.C.; Lee, D.Y.; Baek, N.-I. Lanceoleins A–G, hydroxychalcones, from the flowers of Coreopsis lanceolata and their chemopreventive effects against human colon cancer cells. Bioorg. Chem. 2019, 85, 274–281. [Google Scholar] [CrossRef]
- Kim, H.-G.; Jung, Y.S.; Oh, S.M.; Oh, H.-J.; Ko, J.-H.; Kim, D.-O.; Kang, S.C.; Lee, Y.-G.; Lee, D.Y.; Baek, N.-I. Coreolanceolins A–E, New Flavanones from the Flowers of Coreopsis lanceolate, and Their Antioxidant and Anti-Inflammatory Effects. Antioxidants 2020, 9, 539. [Google Scholar] [CrossRef]
- Shao, D.; Zheng, D.; Hu, R.; Chen, W.; Chen, D.; Zhuo, X. Chemical constituents from Coreopsis lanceolata. Zhongcaoyao 2013, 44, 1558–1561. [Google Scholar]
- Kimura, Y.; Hiraoka, K.; Kawano, T.; Fujioka, S.; Shimada, A. Nematicidal activities of acetylene compounds from Coreopsis lanceolata L. Z. Für Nat. C 2008, 63, 843–847. [Google Scholar] [CrossRef]
- Pardede, A.; Mashita, K.; Ninomiya, M.; Tanaka, K.; Koketsu, M. Flavonoid profile and antileukemic activity of Coreopsis lanceolata flowers. Bioorganic Med. Chem. Lett. 2016, 26, 2784–2787. [Google Scholar] [CrossRef]
- Shang, Y.F.; Oidovsambuu, S.; Jeon, J.-S.; Nho, C.W.; Um, B.-H. Chalcones from the flowers of Coreopsis lanceolata and their in vitro antioxidative activity. Planta Med. 2013, 79, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folin, O.; Denis, W. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 1912, 12, 239–243. [Google Scholar] [CrossRef]
- Kim, M.Y.; Jang, G.Y.; Lee, S.H.; Kim, K.M.; Lee, J.; Jeong, H.S. Preparation of black soybean (Glycine max L.) extract with enhanced levels of phenolic compound and estrogenic activity using high hydrostatic pressure and pre-germination. High Press. Res. 2018, 38, 177–192. [Google Scholar] [CrossRef]
- Pourmorad, F.; Hosseinimehr, S.; Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 2006, 5, 1–10. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Qiu, Y.; Ai, P.-F.; Song, J.-J.; Liu, C.; Li, Z.-W. Total flavonoid extract from Abelmoschus manihot (L.) medic flowers attenuates d-galactose-induced oxidative stress in mouse liver through the Nrf2 pathway. J. Med. Food 2017, 20, 557–567. [Google Scholar] [CrossRef]
- Huang, W.; Mao, S.; Zhang, L.; Lu, B.; Zheng, L.; Zhou, F.; Zhao, Y.; Li, M. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion–dialysis process combined with cellular assays. J. Sci. Food Agric. 2017, 97, 4760–4769. [Google Scholar] [CrossRef]
- Vila, M.; Przedborski, S. Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 2003, 4, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, H.-U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ge, Y.; Wang, Y.; Lin, C.-T.; Li, J.; Liu, X.; Zang, T.; Xu, J.; Liu, J.; Luo, G. A fused selenium-containing protein with both GPx and SOD activities. Biochem. Biophys. Res. Commun. 2007, 358, 873–878. [Google Scholar] [CrossRef] [PubMed]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Garcia-Alonso, F.J.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Lu, B.; Xu, B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021, 340, 127940. [Google Scholar] [CrossRef]
- He, J.; Yin, T.; Chen, Y.; Cai, L.; Tai, Z.; Li, Z.; Liu, C.; Wang, Y.; Ding, Z. Phenolic compounds and antioxidant activities of edible flowers of Pyrus pashia. J. Funct. Foods 2015, 17, 371–379. [Google Scholar] [CrossRef]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Radical chemistry of flavonoid antioxidants. In Antioxidants in Therapy and Preventive Medicine; Springer: Berlin/Heidelberg, Germany, 1990; pp. 165–170. [Google Scholar]
- Deng, Y.; Lu, S. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- Reichling, J.; Thron, U. Comparative study on the production and accumulation of unusual phenylpropanoids in plants and in vitro cultures of Coreopsis tinctoria and C. lanceolata. Pharm. Weekbl. 1989, 11, 83–86. [Google Scholar] [CrossRef]
- Seo, S.; Lee, H.; Choi, M. The anti-inflammatory actions and dermal bioactive effects of Coreopsis lanceolata extracts. J. Kor. Soc. Cosmetolo 2018, 24, 472–481. [Google Scholar]
- Yasuko, K.; Tomohiro, N.; Sei-Itsu, M.; Ai-Na, L.; Yasuo, F.; Takashi, T. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1984, 792, 92–97. [Google Scholar] [CrossRef]
- Okada, Y.; Okita, M.; Murai, Y.; Okano, Y.; Nomura, M. Isolation and identification of flavonoids from Coreopsis lanceolata L. petals. Nat. Prod. Res. 2014, 28, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yuan, X.; Wang, Z.; Gao, Q.; Yang, J. Profiles and neuroprotective effects of Lycium ruthenicum polyphenols against oxidative stress-induced cytotoxicity in PC12 cells. J. Food Biochem. 2020, 44, e13112. [Google Scholar] [CrossRef]
- Jeong, C.-H.; Jeong, H.R.; Choi, G.N.; Kim, D.-O.; Lee, U.; Heo, H.J. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf. Chin. Med. 2011, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Park, J.-Y.; Kim, D.H.; Kim, H.D.; Ji, Y.-J.; Seo, K.H. Erigeron annuus protects PC12 neuronal cells from oxidative stress induced by ROS-mediated apoptosis. Evid. Based Complement. Altern. Med. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.D.; Alvarez, L.A.; Zhang, X.; Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015, 6, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Finucane, D.M.; Bossy-Wetzel, E.; Waterhouse, N.J.; Cotter, T.G.; Green, D.R. Bax-induced caspase activation and apoptosis via cytochromec release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 1999, 274, 2225–2233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boatright, K.M.; Salvesen, G.S. Mechanisms of caspase activation. Curr. Opin. Cell Biol. 2003, 15, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Przedborski, S.; Vila, M. MPTP: A review of its mechanisms of neurotoxicity. Clin. Neurosci. Res. 2001, 1, 407–418. [Google Scholar] [CrossRef]
- Eberhardt, O.; Schulz, J.B. Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson’s disease. Toxicol. Lett. 2003, 139, 135–151. [Google Scholar] [CrossRef]
- Li, H.; Park, G.; Bae, N.; Kim, J.; Oh, M.S.; Yang, H.O. Anti-apoptotic effect of modified Chunsimyeolda-tang, a traditional Korean herbal formula, on MPTP-induced neuronal cell death in a Parkinson’s disease mouse model. J. Ethnopharmacol. 2015, 176, 336–344. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Shi, X.-R.; Lv, W.-W.; Zhou, X.-L.; Sun, Y.-D.; Li, B.-Y.; Hu, X.-L. Neuroprotective Effects of Lindleyin on Hydrogen Peroxide-Induced Cell Injury and MPTP-Induced Parkinson’s Disease in C57BL/6 Mice. Evid. Based Complement. Altern. Med. 2020, 2020, 2938432. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D.; Corona, G.; Spencer, J.P.E. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch. Biochem. Biophys. 2010, 501, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; et al. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Grabska-Kobylecka, I.; Kaczmarek-Bak, J.; Figlus, M.; Prymont-Przyminska, A.; Zwolinska, A.; Sarniak, A.; Wlodarczyk, A.; Glabinski, A.; Nowak, D. The presence of caffeic acid in cerebrospinal fluid: Evidence that dietary polyphenols can cross the blood-brain barrier in humans. Nutrients 2020, 2, 1531. [Google Scholar] [CrossRef] [PubMed]
Phenolics | Contents (mg/g extract d.b.) | |
---|---|---|
CLF1 | CLF2 | |
Gallic acid | 8.45 ± 0.00 | 8.794 ± 0.00 |
Homogentisic acid | 5.62 ± 0.04 | 4.57 ± 0.19 |
Chlorogenic acid | 15.44 ± 0.03 | 6.07 ± 0.134 |
(+)-Catechin | 7.80 ± 0.05 | 4.79 ± 0.04 |
Caffeic acid | 43.29 ± 0.10 | 28.45 ± 0.263 |
p-Coumaric acid | 0.56 ± 0.01 | N.D. |
Ferulic acid | 1.25 ± 0.01 | 4.50 ± 0.22 |
Naringin | 4.04 ± 0.16 | 1.65 ± 0.362 |
Quercetin | 3.58 ± 0.01 | 10.46 ± 0.128 |
Cinnamic acid | 18.31 ± 0.64 | 25.05 ± 0.081 |
Sample | Total Polyphenol (mg GAE/g) | Total Flavonoid (mg GAE/g) | ABTS+ (IC50, μg/mL) | DPPH (IC50, μg/mL) | Yields (%) |
---|---|---|---|---|---|
CLF1 | 13.7 ± 0.2 a | 14.8 ± 1.5 b | 24.5 ± 0.4 b | 111.8 ± 4.5 b | 25.89 ± 0.3 b |
CLF2 | 13.0 ± 0.1 b | 18.1 ± 1.3 a | 39.9 ± 1.4 b | 183.3 ± 1.7 a | 16.63 ± 0.2 a |
AA | - | - | 5.9 ± 0.1 c | 4.7 ± 0.3 c | - |
Factors | ABTS | DPPH | Chlorogenic | Quercetin | Caffeic Acid | Cinnamic Acid | ROS |
---|---|---|---|---|---|---|---|
ABTS | 1.000 | 0.932 ** | −0.994 ** | −0.994 ** | −0.996 ** | −0.976 ** | 0.925 ** |
DPPH | 1.000 | −0.893 * | −0890 * | −0.900 * | −0.855 * | 0.888 * | |
Chlorogenic acid | 1.000 | 1.000 ** | 1.000 ** | 0.979 ** | −0.914 * | ||
Quercetin | 1.000 | 1.000 ** | 0.983 ** | −0.906 * | |||
Caffeic acid | 1.000 | 0.981 ** | −0.913 * | ||||
Cinnamic acid | 1.000 | −0.842 * | |||||
ROS | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.D.; Lee, J.Y.; Park, J.-Y.; Kim, D.H.; Kang, M.H.; Seong, H.-A.; Seo, K.H.; Ji, Y.-J. Neuroprotective Effects of Coreopsis lanceolata Flower Extract against Oxidative Stress-Induced Apoptosis in Neuronal Cells and Mice. Antioxidants 2021, 10, 951. https://doi.org/10.3390/antiox10060951
Kim HD, Lee JY, Park J-Y, Kim DH, Kang MH, Seong H-A, Seo KH, Ji Y-J. Neuroprotective Effects of Coreopsis lanceolata Flower Extract against Oxidative Stress-Induced Apoptosis in Neuronal Cells and Mice. Antioxidants. 2021; 10(6):951. https://doi.org/10.3390/antiox10060951
Chicago/Turabian StyleKim, Hyung Don, Ji Yeon Lee, Jeong-Yong Park, Dong Hwi Kim, Min Hye Kang, Hyun-A Seong, Kyung Hye Seo, and Yun-Jeong Ji. 2021. "Neuroprotective Effects of Coreopsis lanceolata Flower Extract against Oxidative Stress-Induced Apoptosis in Neuronal Cells and Mice" Antioxidants 10, no. 6: 951. https://doi.org/10.3390/antiox10060951
APA StyleKim, H. D., Lee, J. Y., Park, J. -Y., Kim, D. H., Kang, M. H., Seong, H. -A., Seo, K. H., & Ji, Y. -J. (2021). Neuroprotective Effects of Coreopsis lanceolata Flower Extract against Oxidative Stress-Induced Apoptosis in Neuronal Cells and Mice. Antioxidants, 10(6), 951. https://doi.org/10.3390/antiox10060951