Gene Therapy for Systemic or Organ Specific Delivery of Manganese Superoxide Dismutase
Abstract
:1. Introduction
1.1. The Logic of Utilizing Radioprotective Gene Therapy in Radiation Oncology
1.2. Cell Cultures Experiments Identify the Importance of Mitochondrial Targeting
2. Plasmid Liposome Vector Transfer of MnSOD for Gene Therapy
2.1. Strategies for Plasmid Liposome Construction
2.2. Intraesophageal Delivery of MnSOD-Plasmid Liposomes
2.3. MnSOD-Plasmid Liposome Gene Therapy of the Oral Cavity and Oropharynx
2.4. Systemic Intravenous Administration of MnSOD-Plasmid Liposomes
2.5. Time Course of Administration of MnSOD-Plasmid Liposomes as Radioprotective Gene Therapy
2.6. A Compensatory Mechanism for Response of Tissues to MnSOD-PL Gene Therapy
2.7. Challenges Regarding the Effectiveness of MnSOD-Plasmid Liposome Gene Therapy Compared to Other Radiation Protection Strategies
3. Development of MnSOD Mimetics
4. Conclusions and Future Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Greenberger, J.S.; Epperly, M.W.; Gretton, J.; Jefferson, M.; Nie, S.; Bernarding, M.; Kagan, V.; Guo, H.L. Radioprotective gene therapy. Curr. Gene Ther. 2003, 3, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Greenberger, J.S.; Epperly, M.W. Radioprotective antioxidant gene therapy: Potential mechanisms of action. Gene Ther. Mol. Biol. 2004, 8, 31–44. [Google Scholar]
- Greenberger, J.S.; Epperly, M.W. Pleiotrophic Stem Cell and Tissue Effects of Ionizing Irradiation Protection by MnSOD-Plasmid Liposome Gene Therapy. In Progress in Gene Therapy; Columbus, F., Ed.; Nova Science Publications: Hauppauge, NY, USA, 2005; pp. 110–118. [Google Scholar]
- Stone, H.B.; Coleman, C.N.; Moulder, J.E.; Ang, K.K.; Anscher, M.S.; Barcellos-Hoff, M.H.; Dynan, W.S.; Fike, J.R.; Grdina, D.J.; Greenberger, J.S.; et al. Models for evaluating agents intended for the prophylaxis, mitigation, and treatment of radiation injuries, Report of an NCI Workshop, 3–4 December 2003. Radiat. Res. 2004, 162, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Zinder, J.D.; Thomas, C.R.; Hahn, S.M.; Hoffmann, A.L.; Troost, E.G.C.; Lambin, P. Increasing the Therapeutic Ratio of Stereotactic Ablative Radiotherapy by Individualized Isotoxic Dose Prescription. JNCI J. Natl. Cancer Inst. 2016, 108, djv305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protopapa, M.; Kouloulias, V.; Kougioumtzopoulou, A.; Liakouli, Z.; Papadimitriou, C.; Zygogianni, A. Novel treatment planning approaches to enhance the therapeutic ratio: Targeting the molecular mechanisms of radiation therapy. Clin. Transl. Oncol. 2020, 22, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.S.; Lasley, F.D.; Das, I.J.; Mendonca, M.S.; Dynlacht, J.R. Therapeutic Ratio. In Basic Radiotherapy Physics and Biology, 2nd ed.; Springer: Basel, Switzerland, 2014; pp. 277–282. [Google Scholar]
- Molkentine, J.M.; Molkentine, D.P.; Bridges, K.A.; Xie, T.; Yang, L.; Sheth, A. Targeting DNA damage response in head and neck cancers through abrogation of cell cycle checkpoints. Int. J. Radiat. Biol. 2020, 25, 1–8. [Google Scholar] [CrossRef]
- Greenberger, J.S.; Berhane, H.; Shinde, A.; Rhieu, B.H.; Bernard, M.; Wipf, P.; Skoda, E.M.; Epperly, M.W. Can radiosensitivity associated with defects in DNA repair be overcome by mitochondrial-targeted antioxidant radioprotectors? Front. Radiat. Oncol. 2014, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.-Y.; Hu, C.; Xiao, Y.; Zhang, H.; Paulus, R.; Ellsworth, S.; Schild, S.E.; Bogart, J.; Dobelbower, M.C.; Kavadi, V.S.; et al. Higher radiation dose to the immune cells correlates with worse tumor control and overall survival in patients with stage III NSCLC: A secondary analysis of RTOG0617. Clin. Cancer Res. 2020, submitted. [Google Scholar]
- Travis, E.L.; Peters, L.J.; McNeill, J.; Thames, H.D., Jr.; Karolis, C. Effect of dose-rate on total body irradiation: Lethality and pathologic findings. Radiother. Oncol. 1985, 4, 341–351. [Google Scholar] [CrossRef]
- Epperly, M.W.; Bray, J.A.; Kraeger, S.; Zwacka, R.; Engelhardt, J.; Travis, E.; Greenberger, J.S. Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy. Gene Ther. 1998, 5, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Epperly, M.W.; Bray, J.A.; Krager, S.; Berry, L.A.; Gooding, W.; Engelhardt, J.F.; Zwacka, R.; Travis, E.L.; Greenberger, J.S. Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int. J. Radiat. Oncol. Phys. 1999, 43, 169–181. [Google Scholar] [CrossRef]
- Epperly, M.W.; Sikora, C.; Defilippi, S.; Gretton, J.; Zhan, Q.; Kufe, D.W.; Greenberger, J.S. Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat. Res. 2002, 157, 568–577. [Google Scholar] [CrossRef]
- Epperly, M.W.; Gretton, J.E.; Bernarding, M.; Nie, S.; Rasul, B.; Greenberger, J.S. Mitochondrial localization of copper/zinc superoxide dismutase (Cu/ZnSOD) confers radioprotective functions in vitro and in vivo. Radiat Res. 2003, 160, 568–578. [Google Scholar] [CrossRef]
- Herzog, E.L.; Chai, L.; Krause, D.S. Plasticity of marrow-derived stem cells. Blood 2003, 102, 3483–3493. [Google Scholar] [CrossRef] [PubMed]
- Elkind, M.M.; Sutton, H. Radiation response of mammalian cells grown in culture. I. Repair of x-ray damage in surviving Chinese hamster cells. Radiat. Res. 1960, 13, 556–593. [Google Scholar] [CrossRef]
- Kalash, R.; Epperly, M.W.; Goff, J.; Dixon, T.; Sprachman, M.M.; Zhang, X.; Shields, D.; Cao, S.; Wipf, P.; Franicola, D.; et al. Amelioration of irradiation pulmonary fibrosis by a water-soluble bi-functional sulfoxide radiation mitigator (MMS350). Radiat. Res. 2013, 180, 474–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Yan, T.; Yang, J.Q.; Oberley, T.D.; Oberley, L.W. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res. 2000, 60, 3927–3939. [Google Scholar]
- Epperly, M.W.; Melendez, A.; Zhang, X.; Franicola, D.; Smith, T.; Greenberger, B.A.; Komanduri, P.; Greenberger, J.S. Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo. Radiat. Res. 2009, 171, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Zwacka, R.M.; Dudus, L.; Epperly, M.W.; Greenberger, J.S.; Engelhardt, J.F. Redox gene therapy protects human IB-3 lung epithelial cells against ionizing radiation-induced apoptosis. Hum. Gene Ther. 1998, 9, 1381–1386. [Google Scholar] [CrossRef]
- Epperly, M.W.; Sikora, C.A.; Defilippi, S.; Gretton, J.E.; Greenberger, J.S. Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am. J. Resp. Mol. Cell Biol. 2003, 29, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Stickle, R.L.; Epperly, M.W.; Klein, E.; Bray, J.A.; Greenberger, J.S. Prevention of irradiation-induced esophagitis by plasmid/liposome delivery of the human manganese superoxide dismutase (MnSOD) transgene. Radiat. Oncol. Investig. Clin. Basic Res. 1999, 7, 204–217. [Google Scholar] [CrossRef]
- Carpenter, M.; Epperly, M.W.; Agarwal, A.; Nie, S.; Hricisak, L.; Niu, Y.; Greenberger, J.S. Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes (MnSOD-PL) protects the murine lung from irradiation damage. Gene Ther. 2005, 12, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Epperly, M.W.; Sikora, C.A.; DeFilippi, S.J.; Gretton, J.E.; Bar-Sagi, D.; Carlos, T.; Guo, H.L.; Greenberger, J.S. Pulmonary irradiation-induced expression of VCAM-1 and ICAM-1 is decreased by MnSOD-PL gene therapy. Biol. Blood Bone Marrow Transpl. 2002, 8, 175–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorbunov, N.V.; Morris, J.E.; Greenberger, J.S.; Thrall, B.D. Establishment of a novel clonal murine bone marrow stromal cell line for assessment of p53 responses to genotoxic stress. Toxicology 2002, 179, 257–266. [Google Scholar] [CrossRef]
- Epperly, M.W.; Epstein, C.J.; Travis, E.L.; Greenberger, J.S. Decreased pulmonary radiation resistance of manganese superoxide dismutase (MnSOD)-deficient mice is corrected by human manganese Superoxide dismutase-plasmid/liposome (SOD2-PL) intratracheal gene therapy. Radiat. Res. 2000, 154, 365–374. [Google Scholar] [CrossRef]
- Greenberger, J.S.; Sakakeeny, M.A.; Humphries, K.C.; Eaves, C.G.; Eckner, R.J. Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc. Natl. Acad. Sci. USA 1983, 80, 2931–2935. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Epperly, M.W.; Kay, M.A.; Chen, Z.-Y.; Smith, T.; Franicola, D.; Greenberger, B.A.; Komanduri, P.; Greenberger, J.S. Radioprotection in vitro and in vivo by minicircle plasmid carrying the human manganese superoxide dismutase transgene. Hum. Gene Ther. 2008, 19, 820–826. [Google Scholar] [CrossRef]
- Epperly, M.W.; Guo, H.L.; Bernarding, M.; Gretton, J.; Jefferson, M.; Greenberger, J.S. Delayed intratracheal injection of manganese superoxide dismutase (MnSOD)-plasmid/liposomes provides suboptimal protection against irradiation-induced pulmonary injury compared to treatment before irradiation. Gene Ther. Mol. Biol. 2003, 7, 61–68. [Google Scholar]
- Bernard, M.E.; Glaser, S.M.; Gill, B.S.; Beriwal, S.; Heron, D.E.; Luketich, J.D.; Friedland, D.M.; Socinski, M.A.; Greenberger, J.S. Results of a single institution experience with dose-escalated chemoradiation for locally advanced unresectable non-small cell lung cancer. Front. Radiat. Oncol. 2017, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Epperly, M.W.; Gretton, J.A.; DeFilippi, S.J.; Sikora, C.A.; Liggitt, D.; Koe, G.; Greenberger, J.S. Modulation of radiation-induced cytokine elevation associated with esophagitis and esophageal stricture by manganese superoxide dismutase-plasmid/liposome (SOD-PL) gene therapy. Radiat. Res. 2001, 155, 2–14. [Google Scholar] [CrossRef]
- Tarhini, A.A.; Belani, C.; Luketich, J.D.; Ramalingam, S.S.; Argiris, A.; Gooding, W.; Petro, D.; Kane, K.; Liggitt, D.; Championsmith, T.; et al. A phase I study of concurrent chemotherapy (Paclitaxel and Carboplatin) and thoracic radiotherapy with swallowed manganese superoxide dismutase (MnSOD) plasmid liposome (PL) protection in patients with locally advanced stage III non-small cell lung cancer. Hum. Gene Ther. 2011, 22, 336–343. [Google Scholar] [CrossRef]
- Epperly, M.W.; Kagan, V.E.; Sikora, C.A.; Gretton, J.E.; Defilippi, S.J.; Bar-Sagi, D.; Greenberger, J.S. Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) administration protects mice from esophagitis associated with fractionated irradiation. Int J. Cancer Radiat. Oncol. Investig. 2001, 96, 221–233. [Google Scholar] [CrossRef]
- Epperly, M.W.; Defilippi, S.; Sikora, C.; Gretton, J.; Greenberger, J.S. Radioprotection of lung and esophagus by overexpression of the human manganese superoxide dismutase transgene. Mil. Med. 2002, 167, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Epperly, M.W.; Carpenter, M.; Agarwal, A.; Mitra, P.; Nie, S.; Greenberger, J.S. Intra-oral manganese superoxide dismutase plasmid liposome radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo 2004, 18, 401–410. [Google Scholar]
- Epperly, M.W.; Wegner, R.; Kanai, A.J.; Kagan, V.; Greenberger, E.E.; Nie, S.; Greenberger, J.S. Effects of MnSOD-Plasmid Liposome gene therapy on antioxidant levels in the irradiated murine oral cavity orthotopic tumors. Radiat. Res. 2007, 167, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Berhane, H.; Shinde, A.; Kalash, R.; Xu, K.; Epperly, M.W.; Goff, J.; Franicola, D.; Zhang, X.; Dixon, T.; Shields, D.; et al. Amelioration of irradiation induced oral cavity mucositis and distant bone marrow suppression in Fancd2-/- (FVB/N) mice by intraoral JP4-039/F15. Radiat. Res. 2014, 182, 35–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinde, A.; Berhane, H.; Rhieu, B.H.; Kalash, R.; Xu, K.; Goff, J.; Epperly, M.W.; Franicola, D.; Zhang, X.; Dixon, T.; et al. Intraoral mitochondrial-targeted GS-Nitroxide, JP4-039, radioprotects normal tissue in tumor-bearing radiosensitive Fancd2-/- (C57Bl/6) mice. Radiat. Res. 2016, 185, 134–150. [Google Scholar] [CrossRef] [Green Version]
- Willis, J.; Epperly, M.W.; Fisher, R.; Zhang, X.; Shields, D.; Hou, W.; Wang, H.; Li, S.; Wipf, P.; Parmar, K.; et al. Amelioration of head and neck irradiation-induced mucositis and distant marrow suppression in Fanca-/- and Fancg-/- mice by intraoral administration of GS-nitroxide (JP4-039). Radiat. Res. 2018, 189, 560–578. [Google Scholar] [CrossRef]
- Epperly, M.W.; Travis, E.L.; Whitsett, J.A.; Epstein, C.J.; Greenberger, J.S. Overexpression of manganese superoxide dismutase (MnSOD) in whole lung or alveolar type II (AT-II) cells of MnSOD transgenic mice does not provide intrinsic lung irradiation protection. Radiat. Oncol. Investig. 2001, 96, 11–21. [Google Scholar] [CrossRef]
- Rwigema, J.-C.M.; Beck, B.; Wang, W.; Doemling, A.; Epperly, M.W.; Shields, D.; Franicola, D.; Dixon, T.; Frantz, M.-C.; Wipf, P.; et al. Two strategies for the development of mitochondrial-targeted small molecule radiation damage mitigators. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 860–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frantz, M.-C.; Skoda, E.M.; Sacher, J.R.; Epperly, M.W.; Goff, J.P.; Greenberger, J.S.; Wipf, P. Synthesis of analogs of the radiation mitigator JP4-039 and visualization of BODIPY derivatives in mitochondria. Org. Biomol. Chem. 2013, 11, 4147–4153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, M.; Joseph, S.; Albert, A.; Thomas, T.V.; Nittala, M.R.; Woods, W.C.; Vijayakumar, S.; Packianathan, S. Use of Amifostine for Cytoprotection during Radiation Therapy: A Review. Oncology 2020, 98, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Stoyanovsky, D.; Belikova, N.A.; Tyurina, Y.Y.; Zhao, Q.; Tungekar, M.A.; Kapralova, V.; Huang, Z.; Mintz, A.; Greenberger, J.S.; et al. A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat. Res. 2009, 172, 706–714. [Google Scholar] [CrossRef]
- Brand, R.; Epperly, M.W.; Stottlemyer, J.M.; Skoda, E.; Gao, X.; Li, S.; Huq, S.; Wipf, P.; Kagan, V.E.; Greenberger, J.S.; et al. A topical mitochondria-targeted redox cycling nitroxide mitigates oxidative stress induced skin damage. J. Investig. Dermatol. 2017, 137, 576–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greenberger, J.S.; Mukherjee, A.; Epperly, M.W. Gene Therapy for Systemic or Organ Specific Delivery of Manganese Superoxide Dismutase. Antioxidants 2021, 10, 1057. https://doi.org/10.3390/antiox10071057
Greenberger JS, Mukherjee A, Epperly MW. Gene Therapy for Systemic or Organ Specific Delivery of Manganese Superoxide Dismutase. Antioxidants. 2021; 10(7):1057. https://doi.org/10.3390/antiox10071057
Chicago/Turabian StyleGreenberger, Joel S., Amitava Mukherjee, and Michael W. Epperly. 2021. "Gene Therapy for Systemic or Organ Specific Delivery of Manganese Superoxide Dismutase" Antioxidants 10, no. 7: 1057. https://doi.org/10.3390/antiox10071057
APA StyleGreenberger, J. S., Mukherjee, A., & Epperly, M. W. (2021). Gene Therapy for Systemic or Organ Specific Delivery of Manganese Superoxide Dismutase. Antioxidants, 10(7), 1057. https://doi.org/10.3390/antiox10071057