Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases
Abstract
:1. Introduction
2. Methodology
3. Para-Coumaric Acid (p-CA)
3.1. Alleviation of Oxidative Stress
3.2. Mitigation of Inflammation
3.3. Role in Cancer
3.4. Role in Diabetes
3.5. Role in Dermatology
4. Mechanism of Action
4.1. Antioxidative Mechanism
4.2. Anti-Inflammatory Mechanism
4.3. Anti-Cancer Mechanism
4.4. Anti-Diabetic Mechanism
4.5. Anti-Melanogenic Activation and Mechanism of Action
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res. 2019, 10, 494–504. [Google Scholar]
- Hussein, R.A.; El-Anssary, A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herb. Med. 2019, 1, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; El-Said, A.M.A.; Khalifa, S.A.M.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.-K.; Verpoorte, R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef]
- Herrmann, K.M.; Weaver, L.M. The shikimate pathway. Annu. Rev. Plant. Biol. 1999, 50, 473–503. [Google Scholar] [CrossRef] [PubMed]
- Kort, R.; Vonk, H.; Xu, X.; Hoff, W.D.; Crielaard, W.; Hellingwerf, K.J. Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein. FEBS Lett. 1996, 382, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Tanase, C.; Coșarcă, S.; Muntean, D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef] [Green Version]
- Alamed, J.; Chaiyasit, W.; McClements, D.; Decker, E.A. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 2009, 57, 2969–2976. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Ferreira, I.C.; Baptista, P.; Santos-Buelga, C. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 2009, 47, 1076–1079. [Google Scholar] [CrossRef]
- Krishna, N.A.V.; Nadeem, M.D.; Saradhi, M.P.; Mahendran, B.; Bharathi, S. Cumulative activity of the p-coumaric acid and syringaldehyde for antimicrobial activity of different microbial strains. Euro J. Exp. Biol. 2014, 4, 40–43. [Google Scholar]
- Hole, A.S.; Grimmer, S.; Jensen, M.R.; Sahlstrøm, S. Synergistic and suppressive effects of dietary phenolic acids and other phytochemicals from cereal extracts on nuclear factor kappa B activity. Food Chem. 2012, 133, 969–977. [Google Scholar] [CrossRef]
- Sun, R.C.; Sun, X.F.; Zhang, S.H. Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maizestems, oil palm frond fiber, and fast-growing poplar wood. J. Agric. Food Chem. 2001, 49, 5122–5129. [Google Scholar] [CrossRef]
- Xu, F.; Sun, R.C.; Sun, J.X.; Liu, C.F.; He, H.B.; Fan, J.S. Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal. Chim. Acta 2005, 552, 207–217. [Google Scholar] [CrossRef]
- Navaneethan, D.; Rasool, M.K. An experimental study to investigate the impact of p-coumaric acid, a common dietary polyphenol, on cadmium chloride-induced renal toxicity. Food Funct. 2014, 5, 2438–2445. [Google Scholar] [CrossRef]
- Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of antioxidant protection by p-coumaric acid on low-density lipoproteincholesterol oxidation. Am. J. Physiol. Cell Physiol. 2000, 279, C954–C960. [Google Scholar] [CrossRef] [Green Version]
- Luceri, C.; Giannini, L.; Lodovici, M.; Antonucci, E.; Abbate, R.; Masini, E.; Dolara, P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr. 2007, 97, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakrashi, A.; Pakrasi, P. Antifertility efficacy of the plant Aristolochia indica Linn on mouse. Contraception 1979, 20, 49–54. [Google Scholar] [CrossRef]
- Chowdhury, M.; Kabir, S.N.; Pal, A.K.; Pakrashi, A. Modulation of luteinizing hormone receptors: Effect of an inhibitor of prolactin secretion, p-coumaric acid. J. Endocrinol. 1983, 98, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Pakrashi, A.; Kabir, S.; Ray, H. 3-(4-Hydroxy phenyl)-2-propenoic acid—A reproductive inhibitor in male rat. Contraception 1981, 23, 677–686. [Google Scholar] [CrossRef]
- Nishi, K.; Ramakrishnan, S.; Gunasekaran, V.P.; Parkash, K.; Ramakrishnan, A.; Vijayakumar, N.; Ganeshan, M. Protective effects of p-coumaric acid on ethanol induced male reproductive toxicity. Life Sci. 2018, 209, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Oyeleye, S.I.; Adefegha, S.A.; Dada, F.A.; Okeke, B.M.; Oboh, G. Effect of p-coumaric acid on the erectogenic enzyme activities and non-protein thiol level in thepenile tissue of normal and doxorubicin-induced oxidative stress male rat. Andrologia 2019, 51, e13281. [Google Scholar] [CrossRef] [PubMed]
- Kesari, K.K.; Dhasmana, A.; Shandilya, S.; Prabhakar, N.; Shaukat, A.; Dou, J.; Rosenholm, J.M.; Vuorinen, T.; Ruokolainen, J. Plant-derived natural biomolecule picein attenuates menadione induced oxidative stress on neuro blastoma cell mitochondria. Antioxidants 2020, 9, 552. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control. 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, R.; Miranda, A.; Vergara, L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin. Chim. Acta 2011, 412, 410–424. [Google Scholar] [CrossRef]
- Teixeira, J.C.S.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Ferguson, L.R.; Zhu, S.-T.; Harris, P.J. Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol. Nutr. Food Res. 2005, 49, 585–593. [Google Scholar] [CrossRef]
- Gani, A.; Wani, S.M.; Masoodi, F.A.; Hameed, G. Whole-grain cereal bioactive compounds and their health benefits: A review. J. Food Process. Technol. 2012, 3, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.J.; Prince, P.S.M. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Food Chem. Toxicol. 2013, 60, 348–354. [Google Scholar] [CrossRef]
- Lee, S.J.; Mun, G.I.; An, S.M.; Boo, Y.C. Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid. BMB Rep. 2009, 42, 561–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seok, J.K.; Kwak, J.Y.; Seo, H.H.; Suh, H.J.; Boo, Y.C. Effects of Bambusae caulis in Taeniam extract on the UVB-induced cell death, oxidative stress and matrix metalloproteinase 1 expression in keratinocytes. J. Soc. Cosmet. Sci. Korea 2015, 41, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Zheng, T.-T.; Liang, Y.; Duan, L.-F.; Zhang, Y.-D.; Wang, L.-J.; He, G.-M.; Xiao, H.-T. p-Coumaric acid protects human lens epithelial cells against oxidative stress-induced apoptosis by MAPK signaling. Oxidative Med. Cell. Longev. 2018, 2018, 8549052. [Google Scholar] [CrossRef] [Green Version]
- Guglielmi, F.; Luceri, C.; Giovannelli, L.; Dolara, P.; Lodovici, M. Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. Br. J. Nutr. 2003, 89, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Garrait, G.; Jarrige, J.F.; Blanquet, S.; Beyssac, E.; Cardot, J.M.; Alric, M. Gastrointestinal absorption and urinary excretion of trans-cinnamic and p-coumaric acids in rats. J. Agric. Food Chem. 2006, 54, 2944–2950. [Google Scholar] [CrossRef]
- Žilić, S.; Šukalović, V.H.-T.; Dodig, D.; Maksimović, V.; Maksimović, M.; Basić, Z. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J. Cereal Sci. 2011, 54, 417–424. [Google Scholar] [CrossRef]
- Shen, Y.; Song, X.; Li, L.; Sun, J.; Jaiswal, Y.; Huang, J.; Guan, Y. Protective effects of p-coumaric acid against oxidant and hy-perlipidemia-an in vitro and in vivo evaluation. Biomed. Pharmacother. 2019, 111, 579–587. [Google Scholar] [CrossRef]
- Sakamula, R.; Thong-asa, W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis. 2018, 33, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, F.N.E.; Albayrak, M.; Çalik, M.; Bayir, Y.; Gülçin, I. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines 2017, 5, 18. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Huang, H.-T.; Huang, S.-Y.; Lin, Z.-H.; Shen, C.-C.; Tsai, W.-J.; Kuo, Y.-H. Antioxidant and anti-inflammatory phenolic glycosides from Clematis tashiroi. J. Nat. Prod. 2015, 78, 1586–1592. [Google Scholar] [CrossRef]
- Pragasam, S.J.; Venkatesan, V.; Rasool, M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 2013, 36, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, J.; Liu, C.; Zeng, X.; Zhao, X.L.A.J. Anti-inflammatory effects of p-coumaric acid in LPS-stimulated RAW264.7 cells: Involvement of NF-κB and MAPKs pathways. J. Med. Chem. 2016, 6, 327–330. [Google Scholar] [CrossRef]
- Sabitha, R.; Nishi, K.; Gunasekaran, V.P.; Annamalai, G.; Agilan, B.; Ganeshan, M. p-Coumaric acid ameliorates ethanol–induced kidney injury by inhibiting inflammatory cytokine production and NF–κB signaling in rats. Asian Pac. J. Trop. Med. 2019, 9, 188. [Google Scholar]
- Urfalioğlu, A.; Yazar, F.M.; Bilal, B.; Tolun, F.İ.; Öksüz, H.; Boran, Ö.F.; Gözen, Ö. The effect of p-coumaric acid and ellagic acid on the liver and lungs in a rat model of sepsis. Asian Biomed. 2017, 11, 217–225. [Google Scholar]
- Janicke, B.; Onning, G.; Oredsson, S.M. Differential effects of ferulic acid and p-coumaric acid on S phase distribution and length of S phase in the human colonic cell line Caco-2. J. Agric. Food Chem. 2005, 53, 6658–6665. [Google Scholar] [CrossRef] [PubMed]
- Bouzaiene, N.N.; Jaziri, S.K.; Kovacic, H.; Chekir-Ghedira, L.; Ghedira, K.; Luis, J. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur. J. Pharmacol. 2015, 766, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Shailasree, S.; Venkataramana, M.; Niranjana, S.R.; Prakash, H.S. Cytotoxic effect of p-coumaric acid on inducing apoptosis and autophagy. Mol. Neurobiol. 2015, 51, 119–130. [Google Scholar] [CrossRef]
- Min, S.J.; Lim, J.Y.; Kim, H.R.; Kim, S.J.; Kim, Y. Sasaquel paertensis leaf extract inhibits colon cancer by regulating cancer cell stemness in vitro and in vivo. Int. J. Mol. Sci. 2015, 16, 9976–9997. [Google Scholar] [CrossRef] [Green Version]
- Radwan, M.M.; Badawy, A.; Zayed, R.; Hassanin, H.; El Sohly, M.A.; Ahmed, S.A. Cytotoxic flavone glycosides from Sola-num elaeagnifolium. Med. Chem. Res. 2015, 24, 1326–1330. [Google Scholar] [CrossRef]
- Kong, C.-S.; Jeong, C.-H.; Choi, J.-S.; Kim, K.-J.; Jeong, J.-W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res. 2012, 27, 317–323. [Google Scholar] [CrossRef]
- Amalan, V.; Vijayakumar, N.; Ramakrishnan, A. p-Coumaric acid regulates blood glucose and antioxidant levels in strep-tozotocin induced diabetic rats. J. Chem. Pharm. Res. 2015, 7, 831–839. [Google Scholar]
- Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 2016, 84, 230–236. [Google Scholar] [CrossRef]
- Zabad, O.M.; Samra, Y.A.; Eissa, L.A. p-Coumaric acid alleviates experimental diabetic nephropathy through modulation of toll like receptor-4 in rats. Life Sci. 2019, 238, 116965. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Sookkongwaree, K.; Roengsumran, S.; Petsom, A.; Ngamrojnavanich, N.; Chavasiri, W.; Deesamer, S.; Yibchok-Anun, S. Structure–activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition. Bioorg. Med. Chem. Lett. 2004, 14, 2893–2896. [Google Scholar] [CrossRef]
- Yoon, S.-A.; Kang, S.-I.; Shin, H.-S.; Kang, S.-W.; Kim, J.-H.; Ko, H.-C.; Kim, S.-J. p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun. 2013, 432, 553–557. [Google Scholar] [CrossRef]
- Lima, L.C.; Buss, G.D.; Ishii-Iwamoto, E.L.; Salgueiro-Pagadigorria, C.; Comar, J.F.; Bracht, A.; Constantin, J. Metabolic effects of p-coumaric acid in the perfused rat liver. J. Biochem. Mol. Toxic. 2006, 20, 18–26. [Google Scholar] [CrossRef]
- An, S.M.; Lee, S.I.; Choi, S.W.; Moon, S.W.; Boo, Y.C. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by α-melanocyte stimulating hormone. Br. J. Dermatol. 2008, 159, 292–299. [Google Scholar] [CrossRef]
- An, S.M.; Koh, J.-S.; Boo, Y.C. p -Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother. Res. 2010, 24, 1175–1180. [Google Scholar] [CrossRef]
- Boo, Y.C. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants 2019, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.-Y.; Ishiguro, K.; Kubo, I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother. Res. 1999, 13, 371–375. [Google Scholar] [CrossRef]
- An, S.M.; Lee, S.J.; Koh, J.S.; Park, K.; Boo, Y.C. Effects of plant extract-containing creams on UV radiation-induced inflammatory responses in mice. J. Soc. Cosmet. Sci. Korea 2010, 36, 271–280. [Google Scholar]
- Song, K.; An, S.M.; Kim, M.; Koh, J.-S.; Boo, Y.C. Comparison of the antimelanogenic effects of p-coumaric acid and its methyl ester and their skin permeabilities. J. Dermatol. Sci. 2011, 63, 17–22. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [Green Version]
- Kheiry, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V. Does p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity? Avicenna J. Phytomed. 2020, 10, 50–57. [Google Scholar]
- Zhu, H.; Liang, Q.-H.; Xiong, X.-G.; Wang, Y.; Zhang, Z.-H.; Sun, M.-J.; Lu, X.; Wu, D. Anti-inflammatory effects of p-coumaric acid, a natural compound of Oldenlandiadiffusa, on arthritis model rats. Evid. Based Complement. Altern. Med. 2018, 5198594. [Google Scholar] [CrossRef] [Green Version]
- Jaganathan, S.K.; Supriyanto, E.; Mandal, M. Events associated with apoptotic effect of p-coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol. 2013, 19, 7726–7734. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Free radicals: Health implications and their mitigation by herbals. Br. J. Med. Med. Res. 2015, 7, 438–457. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Hansen, J.M.; Go, Y.-M.; Jones, D.P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Sikora, E.; Scapagnini, G.; Barbagallo, M. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing 2010, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Sesti, G. Phathophysiology of insulin resistance. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, G.; Min, C.-K.; Jeon, Y.; Bashyal, R.; Poudel, S.B.; Kook, S.; Lee, J. Oral supplementation with p -coumaric acid protects mice against diabetes-associated spontaneous destruction of periodontal tissue. J. Periodontal Res. 2019, 54, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.; Yousef, A.I.; El-Twab, S.M.A.; Reheim, E.S.A.; Ashour, M.B. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab. Brain Dis. 2017, 32, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Leto, D.; Saltiel, A. Regulation of glucose transport by insulin: Traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 2012, 13, 383–396. [Google Scholar] [CrossRef]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Slominski, A.; Tobin, D.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef] [PubMed]
- Gilchrest, B.A.; Eller, M.S. DNA photodamage stimulates melanogenesis and other photoprotective responses. J. Investig. Dermatol. Symp. Proc. 1999, 4, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Borron, J.C.; Sanchez, M.C.O. Biosynthesis of melanin. In Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions; Borovansky, J., Riley, P.A., Eds.; Wiley-VCH: Weinheim, Germany, 2011; p. 88. ISBN 9783527328925. [Google Scholar]
- De Smet, P.A.G.M. The role of plant-derived drugs and herbal medicines in healthcare. Drugs 1997, 54, 801–840. [Google Scholar] [CrossRef]
- Boz, H. p-Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 2015, 50, 2323–2328. [Google Scholar] [CrossRef]
Experimental Model | Dose | Results | Calculated Human Dose [62] | Reference(s) |
---|---|---|---|---|
Rat | 100 mg/kg body weight | Protective effects on diabetic neuropathy (DN) through anti-inflammatory activity | 16.22 mg/kg body weight | [52] |
Mouse | 100 mg/kg body weight | Anti-hyperlipidemic activity by reducing lipid aggregation in liver tissue in high fat diet | 8.11 mg/kg body weight | [36] |
Rat | 100 mg/kg body weight | Reduction of oxidative stress on penile tissue induced by doxorubicin (DOX); mitigation of adverse effects of erectogenic enzymes and acting as an aphrodisiac agent in the treatment of erectile dysfunction (ED) in the male | 16.22 mg/kg body weight | [21] |
Rat | 100 mg/kg body weight | Protective effects against lipopolysaccharides (LPS)-induced lung inflammation | 16.22 mg/kg body weight | [63] |
Rat | 100 mg/kg body weight | Protective effects on rheumatoid arthritis (RA) by suppression of inflammatory cytokines | 16.22 mg/kg body weight | [64] |
Rat | 50, 100 and 200 mg/kg body weight | Reduction of stress on testicular tissue induced by ethanol and improvement of reproductive health in the male | 8.11, 16.22 and 32.43 mg/kg body weight | [20] |
Mouse | 100 mg/kg body weight | Neuroprotective effects by reducing ischemia reperfusion (IR)-induced brain oxidative stress | 8.11 mg/kg body weight | [37] |
Rat | 100 mg/kg body weight | p-CA reduced the neurotoxicity in cisplantin-induced animals through its antioxidant property | 16.22 mg/kg body weight | [38] |
Rat | 100 mg/kg body weight | Acting as an anti-diabetic agent, p-CA lowers the action of gluconeogenic enzymes and enhances the expression of glucose transporter 2 (GLUT 2) in pancreatic beta cells | 16.22 mg/kg body weight | [51] |
Rat | 100 mg/kg body weight | Protective effects against cadmium chloride-induced renal toxicity through its antioxidant property and metal chelating activity | 16.22 mg/kg body weight | [14] |
Rat | 8 mg/kg body weight | Minimizes the effect of isoproterenol on myocardium by maintaining lysosomal lipid peroxidation level | 1.3 mg/kg body weight | [29] |
Rat | 100 mg/kg body weight | Mitigates the effects of gout via anti-inflammatory activity against monosodium urate (MSU) crystals-induced inflammation | 16.22 mg/kg body weight | [40] |
Rat | 50 and 100 mg/kg body weight | Protective effects on sepsis through antioxidant and anti-inflammatory property | 8.11 and 16.22 mg/kg body weight | [43] |
Rat | 50 mg/kg body weight | Reduction of basal DNA damage in rat colonic mucosa cells by increasing antioxidant enzyme levels | 8.11 mg/kg body weight | [33] |
Experimental Model | Dose | Results | Reference(s) |
---|---|---|---|
Bovine aorticendothelial cells (BAEC) | 20, 40, 80 and 160 mM | Antioxidant property in endothelial cells exposed to high glucose | [30] |
Human keratinocyte cell line (HaCaT) | 0.018, 0.06 and 0.18 mM | As an anti-photoaging agent, p-CA reduces the expression of UV induced stratifin in keratinocytes | [31] |
Rat pheochromocytoma cell linePC12 | 0.30mM | Protective effects on PC12 cells against 2,2′-Azobis(2-amidinopropane), dihydrochloride (AAPH) induced oxidative stress; p-CA reduced the level of malondialdehyde (MDA) and lactate dehydrogenase (LDA) production in AAPH induced PC12 cells and acted as antioxidant and anti-hyperlipidemic agents | [36] |
Murine macrophage cell lineRAW264.7 | 0.06, 0.30 and 0.60 mM | Inhibition of pro-inflammatory cytokine production by blocking NF-kB and MAPK pathways; protective effects against LPS induced RAW264.7 cells | [41] |
A549 cells | 20 mM | p-CA shows protective effects on LPS induced lung inflammation in rat and A549 cells | [63] |
Human colonic cell line Coca-2 | 1.5 mM | Inhibition of cell proliferation by affecting cell cycle | [44] |
Mouse neuroblastoma cell lineN2a | 0.15 mM | Acts as an anti-cancer agent in N2a neuroblastoma cells by inducing apoptosis | [47] |
Rat endothelial ECV304 cells | 0.5, 1, 2.5 and 5mM | Inhibition of angiogenesis and tumor growth at 5 mM dose | [49] |
Colon cancer lines HCT-15 and HT-29 | 1.4 mM (HCT-15) and 1.6 mM (HT-29) | p-CA acts as anti-cancer agent by inducing mitochondrial mediated apoptosis | [65] |
Lung cancer cell lines A549, NCI-H1299 and HCC827 | 0.06, 0.12, 0.24, 0.36, 0.48 and 0.61 mM | p-CA conjugates induced apoptosis by upregulation of caspase-3, caspase-9, bax, bad and downregulation of Bcl-2 | [3] |
Rat liver | 0.05, 0.1, 0.2, 0.25 and 0.3 mM | Inhibition of gluconeogenesis from lactate and alanine, thus lowering blood glucose level | [55] |
L6 skeletal muscle cells | 0.1 mM | Modulation of AMPK, increase of glucose uptake, enhancement of fatty acid beta oxidation, and prevention of type-2 diabetes | [54] |
Murine melanoma cell line B16/F10 and human melanocytes | 0.1 mM | Inhibition of cellular melanogenesis in both B16/F10 and human melanocytes by attenuating a-MSH and tyrosinase expression | [56] |
Ex vivo mouse model | 0.1 mM | Inhibition of tyrosinase enzyme; inhibition of melanin biosynthesis | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roychoudhury, S.; Sinha, B.; Choudhury, B.P.; Jha, N.K.; Palit, P.; Kundu, S.; Mandal, S.C.; Kolesarova, A.; Yousef, M.I.; Ruokolainen, J.; et al. Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases. Antioxidants 2021, 10, 1205. https://doi.org/10.3390/antiox10081205
Roychoudhury S, Sinha B, Choudhury BP, Jha NK, Palit P, Kundu S, Mandal SC, Kolesarova A, Yousef MI, Ruokolainen J, et al. Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases. Antioxidants. 2021; 10(8):1205. https://doi.org/10.3390/antiox10081205
Chicago/Turabian StyleRoychoudhury, Shubhadeep, Barnali Sinha, Birupakshya Paul Choudhury, Niraj Kumar Jha, Partha Palit, Surekha Kundu, Subhash C. Mandal, Adriana Kolesarova, Mokhtar Ibrahim Yousef, Janne Ruokolainen, and et al. 2021. "Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases" Antioxidants 10, no. 8: 1205. https://doi.org/10.3390/antiox10081205
APA StyleRoychoudhury, S., Sinha, B., Choudhury, B. P., Jha, N. K., Palit, P., Kundu, S., Mandal, S. C., Kolesarova, A., Yousef, M. I., Ruokolainen, J., Slama, P., & Kesari, K. K. (2021). Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases. Antioxidants, 10(8), 1205. https://doi.org/10.3390/antiox10081205