Increased Inflammatory Markers Detected in Nasal Lavage Correlate with Paranasal Sinus Abnormalities at MRI in Adolescent Patients with Cystic Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection and Measurement of Inflammatory Parameters
2.3. MRI and Image Assessment
2.4. Lung Function Test
2.5. Data Analysis
3. Results
3.1. Inflammation Measured in Nasal Lavage
3.2. Influence of Microbiological Colonization in the Iinflammatory Response
3.3. Sinus Abnormalities Detected by MRI
3.4. Inflammatory Parameters and MRI Scores
3.5. Influence of Sinonasal CF Disease on Lung Function
4. Discussion
4.1. Inflammation and Infection of the Upper Airways
4.2. Inflammation and Structural Abnormalities in the MRI
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- Mall, M.A.; Hartl, D. CFTR: Cystic fibrosis and beyond. Eur. Respir. J. 2014, 44, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Gentzsch, M.; Mall, M.A. Ion channel modulators in cystic fibrosis. Chest 2018, 154, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, B.; Richardson, M.A. Impact of sinusitis in cystic fibrosis. J. Allergy Clin. Immunol. 1992, 90, 547–552. [Google Scholar] [CrossRef]
- Boucher, R.C. Airway surface dehydration in cystic fibrosis: Pathogenesis and therapy. Annu. Rev. Med. 2007, 58, 157–170. [Google Scholar] [CrossRef]
- Sommerburg, O.; Wielpütz, M.O.; Trame, J.-P.; Wuennemann, F.; Optazaite, E.; Stahl, M.; Puderbach, M.U.; Kopp-Schneider, A.; Fritzsching, E.; Kauczor, H.-U.; et al. Magnetic resonance imaging detects chronic rhinosinusitis in infants and preschool children with cystic fibrosis. Ann. Am. Thorac. Soc. 2020, 17, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Chaaban, M.R.; Kejner, A.; Rowe, S.M.; Woodworth, B.A. Cystic fibrosis chronic rhinosinusitis: A comprehensive review. Am. J. Rhinol. Allergy 2013, 27, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Gysin, C.; Alothman, G.A.; Papsin, B.C. Sinonasal disease in cystic fibrosis: Clinical characteristics, diagnosis, and management. Pediatr. Pulmonol. 2000, 30, 481–489. [Google Scholar] [CrossRef]
- Van Crombruggen, K.; Zhang, N.; Gevaert, P.; Tomassen, P.; Bachert, C. Pathogenesis of chronic rhinosinusitis: Inflammation. J. Allergy Clin. Immunol. 2011, 128, 728–732. [Google Scholar] [CrossRef]
- Hulka, G.F. Head and neck manifestations of cystic fibrosis and ciliary dyskinesia. Otolaryngol. Clin. N. Am. 2000, 33, 1333–1341. [Google Scholar] [CrossRef]
- Ciofu, O.; Johansen, H.K.; Aanaes, K.; Wassermann, T.; Alhede, M.; von Buchwald, C.; Hoiby, N. P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs. J. Cyst. Fibros. 2013, 12, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Hansen, S.K.; Rau, M.H.; Johansen, H.K.; Ciofu, O.; Jelsbak, L.; Yang, L.; Folkesson, A.; Jarmer, H.Ø.; Aanaes, K.; von Buchwald, C.; et al. Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME J. 2011, 6, 31–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainz, J.G.; Naehrlich, L.; Schien, M.; Kading, M.; Schiller, I.; Mayr, S.; Schneider, G.; Wiedemann, B.; Wiehlmann, L.; Cramer, N.; et al. Concordant genotype of upper and lower airways P. aeruginosa and S. aureus isolates in cystic fibrosis. Thorax 2009, 64, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Muhlebach, M.S.; Miller, M.B.; Moore, C.; Wedd, J.P.; Drake, A.F.; Leigh, M.W. Are lower airway or throat cultures predictive of sinus bacteriology in cystic fibrosis? Pediatr. Pulmonol. 2006, 41, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Møller, M.E.; Alanin, M.C.; Grønhøj, C.; Aanœs, K.; Høiby, N.; von Buchwald, C. Sinus bacteriology in patients with cystic fibrosis or primary ciliary dyskinesia: A systematic review. Am. J. Rhinol. Allergy 2017, 31, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roby, B.B.; McNamara, J.; Finkelstein, M.; Sidman, J. Sinus surgery in cystic fibrosis patients: Comparison of sinus and lower airway cultures. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 1365–1369. [Google Scholar] [CrossRef]
- Courtney, J.; Ennis, M.; Elborn, J. Cytokines and inflammatory mediators in cystic fibrosis. J. Cyst. Fibros. 2004, 3, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babior, B.M. The respiratory burst of phagocytes. J. Clin. Investig. 1984, 73, 599–601. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.K.; Kelly, F.J. Role of free radicals in the pathogenesis of cystic fibrosis. Thorax 1994, 49, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Day, B.J.; van Heeckeren, A.M.; Min, E.; Velsor, L.W. Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary Pseudomonas infection. Infect. Immun. 2004, 72, 2045–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleme, M.-L.; Levy, E. Cystic fibrosis-related oxidative stress and intestinal lipid disorders. Antioxid. Redox Signal. 2015, 22, 614–631. [Google Scholar] [CrossRef] [Green Version]
- Sagel, S.D.; Accurso, F.J. Monitoring inflammation in CF: Cytokines. Clin. Rev. Allergy Immunol. 2002, 23, 041–058. [Google Scholar] [CrossRef]
- Downey, D.G.; Bell, S.; Elborn, J. Neutrophils in cystic fibrosis. Thorax 2008, 64, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Suter, S.; Schaad, U.B.; Tegner, H.; Ohlsson, K.; Desgrandchamps, D.; Waldvogel, F.A. Levels of free granulocyte elastase in bronchial secretions from patients with cystic fibrosis: Effect of antimicrobial treatment against Pseudomonas aeruginosa. J. Infect. Dis. 1986, 153, 902–909. [Google Scholar] [CrossRef]
- Vogelmeier, C.; Hubbard, R.C.; Fells, G.A.; Schnebli, H.P.; Thompson, R.C.; Fritz, H.; Crystal, R.G. Anti-neutrophil elastase defense of the normal human respiratory epithelial surface provided by the secretory leukoprotease inhibitor. J. Clin. Investig. 1991, 87, 482–488. [Google Scholar] [CrossRef]
- Beiersdorf, N.; Schien, M.; Hentschel, J.; Pfister, W.; Markert, U.R.; Mainz, J.G. Soluble inflammation markers in nasal lavage from CF patients and healthy controls. J. Cyst. Fibros. 2013, 12, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Hentschel, J.; Jäger, M.; Beiersdorf, N.; Fischer, N.; Doht, F.; Michl, R.K.; Lehmann, T.; Markert, U.R.; Böer, K.; Keller, P.; et al. Dynamics of soluble and cellular inflammatory markers in nasal lavage obtained from cystic fibrosis patients during intravenous antibiotic treatment. BMC Pulm. Med. 2014, 14, 82. [Google Scholar] [CrossRef] [Green Version]
- Janhsen, W.K.; Arnold, C.; Hentschel, J.; Lehmann, T.; Pfister, W.; Baier, M.; Böer, K.; Hünniger, K.; Kurzai, O.; Hipler, U.-C.; et al. Colonization of CF patients’ upper airways with S. aureus contributes more decisively to upper airway inflammation than P. aeruginosa. Med. Microbiol. Immunol. 2016, 205, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Neely, J.G.; Harrison, G.M.; Jerger, J.F.; Greenberg, S.D.; Presberg, H. The otolaryngologic aspects of cystic fibrosis. Trans. Am. Acad. Ophthalmol. Otolaryngol. Am. Acad. Ophthalmol. Otolaryngol. 1972, 76, 313–324. [Google Scholar]
- Eggesbø, H.B.; Ringertz, S.; Haanaes, O.C.; Dølvik, S.; Erichsen, A.; Stiris, M.; Kolmannskog, F. CT and MR imaging of the paranasal sinuses in cystic fibrosis. Correlation with microbiological and histopathological results. Acta Radiol. 1999, 40, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Hogardt, M.; Kahl, B.C.; Besier, S.; Steinmann, J.; Abele-Horn, M.; Richter, E.; Jäger, G.; Smaczny, C.; Sedlacek, L. Miq 24: Atemwegsinfektionen bei Mukoviszidose. In Mikrobiologisch-Infektiologische Qualitätsstandards, 2nd ed.; Urban & Fischer: Munich, Germany, 2019. [Google Scholar]
- Gehrig, S.; Mall, M.A.; Schultz, P.D.C. Spatially resolved monitoring of neutrophil elastase activity with ratiometric fluorescent reporters. Angew. Chem. Int. Ed. 2012, 51, 6258–6261. [Google Scholar] [CrossRef]
- Frey, D.L.; Guerra, M.; Mall, M.A.; Schultz, C. Monitoring neutrophil elastase and cathepsin g activity in human sputum samples. J. Vis. Exp. 2021, 171, e62193. [Google Scholar] [CrossRef]
- Quanjer, P.; Stanojevic, S.; Cole, T.; Baur, X.; Hall, G.; Culver, B.; Enright, P.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Singer, F.; Kieninger, E.; Abbas, C.; Yammine, S.; Fuchs, O.; Proietti, E.; Regamey, N.; Casaulta, C.; Frey, U.; Latzin, P. Practicability of nitrogen multiple-breath washout measurements in a pediatric cystic fibrosis outpatient setting. Pediatr. Pulmonol. 2013, 48, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Joachim, C.; Wielpütz, M.O.; Mall, M.A. Comparison of lung clearance index determined by washout of N2 and SF6 in infants and preschool children with cystic fibrosis. J. Cyst. Fibros. 2019, 18, 399–406. [Google Scholar] [CrossRef]
- Anagnostopoulou, P.; Latzin, P.; Jensen, R.; Stahl, M.; Harper, A.; Yammine, S.; Usemann, J.; Foong, R.E.; Spycher, B.; Hall, G.; et al. Normative data for multiple breath washout outcomes in school-aged Caucasian children. Eur. Respir. J. 2019, 55, 1901302. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, J.; Müller, U.; Doht, F.; Fischer, N.; Böer, K.; Sonnemann, J.; Hipler, C.; Hünniger, K.; Kurzai, O.; Markert, U.R.; et al. Influences of nasal lavage collection-, processing- and storage methods on inflammatory marker—Evaluation of a method for non-invasive sampling of epithelial lining fluid in cystic fibrosis and other respiratory diseases. J. Immunol. Methods 2014, 404, 41–51. [Google Scholar] [CrossRef]
- Fischer, N.; Hentschel, J.; Markert, U.R.; Keller, P.; Pletz, M.; Mainz, J.G. Non-invasive assessment of upper and lower airway infection and inflammation in CF patients. Pediatr. Pulmonol. 2014, 49, 1065–1075. [Google Scholar] [CrossRef]
- Jaudszus, A.; Arnold, C.; Hentschel, J.; Hunniger, K.; Baier, M.; Mainz, J.G. Increased cytokines in cystic fibrosis patients’ upper airways during a new P. aeruginosa colonization. Pediatr. Pulmonol. 2018, 53, 881–887. [Google Scholar] [CrossRef]
- Elizur, A.; Cannon, C.L.; Ferkol, T.W. Airway inflammation in cystic fibrosis. Chest 2008, 133, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Janoff, A.; White, R.; Carp, H.; Harel, S.; Dearing, R.; Lee, D. Lung injury induced by leukocytic proteases. Am. J. Pathol. 1979, 97, 111–136. [Google Scholar]
- Johnson, D.; Travis, J. The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. J. Biol. Chem. 1979, 254, 4022–4026. [Google Scholar] [CrossRef]
- Carp, H.; Janoff, A. Potential mediator of inflammation. Phagocyte-derived oxidants suppress the elastase-inhibitory capacity of alpha 1-proteinase inhibitor In Vitro. J. Clin. Investig. 1980, 66, 987–995. [Google Scholar] [CrossRef]
- Zhang, Z.; Adappa, N.D.; Lautenbach, E.; Chiu, A.G.; Doghramji, L.J.; Cohen, N.A.; Palmer, J.N. Coagulase-negative staphylococcus culture in chronic rhinosinusitis. Int. Forum. Allergy Rhinol. 2015, 5, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Berkhout, M.C.; Klerx-Melis, F.; Fokkens, W.J.; Nuijsink, M.; Van Aalderen, W.M.C.; Heijerman, H.G.M. CT-abnormalities, bacteriology and symptoms of sinonasal disease in children with Cystic Fibrosis. J. Cyst. Fibros. 2016, 15, 816–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggesbø, H.B.; Eken, T.; Eiklid, K.; Kolmannskog, F. Hypoplasia of the sphenoid sinuses as a diagnostic tool in cystic fibrosis. Acta Radiol. 1999, 40, 479–485. [Google Scholar] [CrossRef]
- Eggesbo, H.B.; Sovik, S.; Dolvik, S.; Eiklid, K.; Kolmannskog, F. CT characterization of developmental variations of the paranasal sinuses in cystic fibrosis. Acta Radiol. 2001, 42, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Wielpütz, M.O.; von Stackelberg, O.; Stahl, M.; Jobst, B.J.; Eichinger, M.; Puderbach, M.U.; Naehrlich, L.; Barth, S.; Schneider, C.; Kopp, M.V.; et al. Multicentre standardisation of chest MRI as radiation-free outcome measure of lung disease in young children with cystic fibrosis. J. Cyst. Fibros. 2018, 17, 518–527. [Google Scholar] [CrossRef]
- Rosenow, T.; Oudraad, M.C.; Murray, C.P.; Turkovic, L.; Kuo, W.; de Bruijne, M.; Ranganathan, S.C.; Tiddens, H.A.; Stick, S.M. Fibrosis australian respiratory early surveillance team for cystic. Pragma-CF. A quantitative structural lung disease computed tomography outcome in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2015, 191, 1158–1165. [Google Scholar] [CrossRef]
- Browne, J.P.; Hopkins, C.; Slack, R.; Cano, S.J. The sino-nasal outcome test (SNOT): Can we make it more clinically meaningful? Otolaryngol. Neck Surg. 2007, 136, 736–741. [Google Scholar] [CrossRef] [PubMed]
- DeConde, A.S.; Mace, J.C.; Bodner, T.; Hwang, P.H.; Rudmik, L.; Soler, Z.M.; Smith, T.L. SNOT-22 quality of life domains differentially predict treatment modality selection in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2014, 4, 972–979. [Google Scholar] [CrossRef] [PubMed]
Clinical Parameter | Median (Range) | Mean ± SD |
---|---|---|
Age (years) | 14 (7–20) | 13.7 ± 3.3 |
Sex, female, n (%) | 10 (33.3%) | |
BMI (kg/m2) (n = 29) | 19.4 (14.6–24.1) | 19.3 ± 3.0 |
CFTR genotype | ||
F508del/F508del, n (%) | 12 (40.0%) | |
F508del/other, n (%) | 14 (46.7%) | |
Other/other, n (%) | 4 (13.3%) | |
CFTR modulator therapy, n (%) | 14 (46.7%) | |
FEV1%pred. (n = 30) | 83.7 (25.2–121.2) | 84.5 ± 19.2 |
LCI (n = 28) | 8.5 (5.5–18.0) | 10.0 ± 3.4 |
Nasal swabs (n = 29) | ||
Coagulase negative Staphylococcus, n (%) | 23 (79.3%) | |
Staphylococcus aureus, n (%) | 11 (37.9%) | |
Moraxella catarrhalis, n (%) | 2 (6.9%) | |
Corynebacterium sp., n (%) | 7 (24.1%) | |
Pseudomonas aeruginosa, n (%) | 0 (0%) | |
Haemophilus influenzae, n (%) | 0 (0%) |
Inflammatory Parameter | Median (Range) |
---|---|
Total Cells/mL | 14,500 (1750–772,500) |
Neutrophils (%) | 82.61 (0–100) |
Total protein level (µg/mL) | 155.5 (11.76–415.11) |
IL-1β (pg/mL) | 1.78 (0.10–96.64) |
IL-6 (fg/mL) | 424.4 (0.0–68,392.53) |
IL-8 (pg/mL) | 91.04 (21.19–1270.54) |
NE/A1AT complex (ng/mL) | 2.89 (0–50.58) |
NE activity (ng/mL) | 0 (0–0.04) |
SLPI (ng/mL) | 192,337.48 (14.60–2,217,601.86) |
TIMP-1 (ng/mL) | 3.93 (0.02–51.35) |
Patients with Sinonasal Pathologies, n (%) | CRS-MRI Score Median (Range) | |
---|---|---|
CRS-MRI sum score | 30.5 (9–44) | |
Maxillary sinus | 13 (3–18) | |
Wall deformation | 28 (93.3%) | 2 (0–4) |
Mucopyoceles | 26 (86.7%) | 1 (0–4) |
Mucosal swelling | 29 (96.7%) | 3 (0–4) |
Effusion | 2 (6.7%) | 0 (0–2) |
Polyps | 17 (56.7%) | 1 (0–3) |
Sphenoidal sinus | 8.5 (0–12) | |
Mucopyoceles | 21 (70%) | 2 (0–4) |
Mucosal swelling | 30 (100%) | 3 (0–3) |
Effusion | 0 (0%) | 0 (0) |
Polyps | 0 (0%) | 0 (0) |
Ethmoidal sinus | 8.5 (6–12) | |
Mucopyoceles | 18 (60%) | 2 (0–4) |
Mucosal swelling | 30 (100%) | 4 (2–4) |
Effusion | 0 (0%) | 0 (0) |
Polyps | 0 (0%) | 0 (0) |
Mastoid cells | 0 (0–5) | |
Mucopyoceles | 0 (0%) | 0 (0) |
Mucosal swelling | 3 (10%) | 0 (0–2) |
Effusion | 1 (3.3%) | 0 (0–2) |
Polyps | 0 (0%) | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, J.; Wünnemann, F.; Salomon, J.; Boutin, S.; Frey, D.L.; Albrecht, T.; Joachim, C.; Eichinger, M.; Mall, M.A.; Wielpütz, M.O.; et al. Increased Inflammatory Markers Detected in Nasal Lavage Correlate with Paranasal Sinus Abnormalities at MRI in Adolescent Patients with Cystic Fibrosis. Antioxidants 2021, 10, 1412. https://doi.org/10.3390/antiox10091412
Chung J, Wünnemann F, Salomon J, Boutin S, Frey DL, Albrecht T, Joachim C, Eichinger M, Mall MA, Wielpütz MO, et al. Increased Inflammatory Markers Detected in Nasal Lavage Correlate with Paranasal Sinus Abnormalities at MRI in Adolescent Patients with Cystic Fibrosis. Antioxidants. 2021; 10(9):1412. https://doi.org/10.3390/antiox10091412
Chicago/Turabian StyleChung, Jaehi, Felix Wünnemann, Johanna Salomon, Sébastien Boutin, Dario L. Frey, Tobias Albrecht, Cornelia Joachim, Monika Eichinger, Marcus A. Mall, Mark O. Wielpütz, and et al. 2021. "Increased Inflammatory Markers Detected in Nasal Lavage Correlate with Paranasal Sinus Abnormalities at MRI in Adolescent Patients with Cystic Fibrosis" Antioxidants 10, no. 9: 1412. https://doi.org/10.3390/antiox10091412
APA StyleChung, J., Wünnemann, F., Salomon, J., Boutin, S., Frey, D. L., Albrecht, T., Joachim, C., Eichinger, M., Mall, M. A., Wielpütz, M. O., & Sommerburg, O. (2021). Increased Inflammatory Markers Detected in Nasal Lavage Correlate with Paranasal Sinus Abnormalities at MRI in Adolescent Patients with Cystic Fibrosis. Antioxidants, 10(9), 1412. https://doi.org/10.3390/antiox10091412