Effect of γ-aminobutyric Acid on Phenolics Metabolism in Barley Seedlings under Low NaCl Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Cultivation Condition and Treatments
2.3. Determination of GABA Content, GAD, and GABA-T Activity
2.4. Determination of Basic Physiological Index
2.5. Determination of Total Phenolics and Flavonoids Contents
2.6. Quantification of Phenolic Acids and Flavonoids
2.7. Determination of Key Enzymes Activities in Phenolics Synthesis
2.8. Determination of ABTS and DPPH Radical Scavenging Activities
2.9. mRNA Levels Analysis
2.10. Western Blot
2.11. Statistical Analysis
3. Results
3.1. GABA Metabolism of Barley Seedlings
3.2. Physiological Indicators of Barley Seedlings
3.3. The Contents and Antioxidant Capacities of Total Phenolics and Flavonoids in Barley Seedlings
3.4. The Composition and Contents of Phenolics Acids and Flavonoids in Barley Seedlings
3.5. The Enzyme Activity and Gene Expression Related to Phenolics Synthesis in Barley Seedlings
3.6. The Protein Expression of PAL, C4H, and 4CL in Barley Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xian, Y.; Zhan, L.; Song, G. Advances in research on nutrition and health functions of barley seedling powder. Chin. Food Nutr. 2016, 11, 73–76. [Google Scholar]
- Ji, J.; Shi, Z.; Xie, T.; Zhang, X.; Chen, W.; Du, C.; Sun, J.; Yue, J.; Zhao, X.; Jiang, Z. Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl2 stresses. Ecotoxicol. Environ. Saf. 2020, 193, 110322–110334. [Google Scholar] [CrossRef]
- Gilliham, M.; Tyerman, S.D. Linking metabolism to membrane signaling: The GABA-malate connection. Trends Plant Sci. 2016, 21, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, C.; Duan, Y.; Lin, Q. MAPK mediates NO/cGMP-induced GABA accumulation in soybean sprouts. LWT 2019, 100, 253–262. [Google Scholar] [CrossRef]
- Stevenson, J.D. Endogenous dopamine modulates corticopallidal influences via GABA. Neurosci. Behav. Physiol. 2003, 33, 839–844. [Google Scholar]
- Ramputh, A.I.; Bown, A.W. Rapid [γ]-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 1996, 111, 1349–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, R.R.; Cherry, J.H.; Rhodes, D. Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiol. 1990, 94, 796–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liz, G.-Q.; Vuorinen, A.L.; Heikki, K.; Baoru, Y. Impact of cultivar, growth temperature and developmental stage on phenolic compounds and ascorbic acid in purple and yellow potato tubers. Food Chem. 2020, 326, 126966–126979. [Google Scholar]
- Dietz, K.J. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 2003, 132, 272–281. [Google Scholar]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Shadle, G.L.; Varsha, W.S.; Korth, K.L.; Fang, C.; Chris, L.; Dixon, R.A. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochem 2003, 64, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Ivana Generali, M.; Ivica, L.; Sonja Smole, M.; Helena, A.; Danijela, S. Abiotic factors during a one-year vegetation period affect sage phenolic metabolites, antioxidants and antimicrobials. Ind. Crop. Prod. 2019, 141, 111741–111748. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, P.; Zhou, T.; Chen, Z.J.; Yang, R.Q. NaCl stress on physio-biochemical metabolism and antioxidant capacity in germinated hulless barley (Hordeum vulgare L.). J. Sci. Food Agric. 2019, 99, 1755–1764. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, P.; Chen, Z.; Gu, Z.; Yang, R. GABA enhances physio-biochemical metabolism and antioxidant capacity of germinated hulless barley under NaCl stress. Plant Physiol. 2018, 231, 192–201. [Google Scholar] [CrossRef]
- Zarei, A.; Chiu, G.Z.; Yu, G.; Trobacher, C.P.; Shelp, B.J. Salinity-regulated expression of genes involved in GABA metabolism and signaling. Botany 2016, 95, 621–627. [Google Scholar] [CrossRef]
- Hela, M.; Jun, H.; Gruber, M.Y.; Rym, K.; Mokhtar, L.; Zeineb, O.; Abdelali, H. The impact of genotype and salinity on physiological function, secondary metabolite accumulation, and antioxidative responses in lettuce. J. Agric. Food Chem. 2010, 58, 5122–5130. [Google Scholar]
- Ji, J.; Yue, J.; Xie, T.; Chen, W.; Du, C.; Chang, E.; Chen, L.; Jiang, Z.; Shi, S. Roles of γ-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar: Involving in abscisic acid and ethylene-signalling pathways. Planta 2018, 248, 675–690. [Google Scholar] [CrossRef]
- Wang, M.; Ding, Y.X.; Wang, Q.E.; Wang, P.; Han, Y.B.; Gu, Z.X.; Yang, R.Q. NaCl treatment on physio-biochemical metabolism and phenolics accumulation in barley seedlings. Food Chem. 2020, 331, 127282–127313. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Park, B.J.; Kang, H.M.; Lee, Y.T. Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract. Food Chem. 2020, 309, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, Y.; Luo, H.; Li, D.; Liu, C.; Song, J.; Zhang, Z.; Liu, C.; Niu, L. Effect of NaCl stress and supplemental CaCl2 on carotenoid accumulation in germinated yellow maize kernels. Food Chem. 2020, 309, 125779–125808. [Google Scholar] [CrossRef]
- Al-Quraan, N.A.; Al-Omari, H.A. GABA accumulation and oxidative damage responses to salt, osmotic and H2O2 treatments in two lentil (Lens culinaris Medik) accessions. Plant Biosyst. 2016, 151, 148–157. [Google Scholar]
- Islam, M.Z.; Park, B.J.; Lee, Y.T. Effect of salinity stress on bioactive compounds and antioxidant activity of wheat microgreen extract under organic cultivation conditions. Int. J. Biol. Macromol. 2019, 140, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Ma, Y.; Weng, Y.; Yang, R.Q.; Gu, Z.; Wang, P. Effects of UV-B radiation on phenolic accumulation, antioxidant activity and physiological changes in wheat (Triticum aestivum L.) seedlings. Food Biosci. 2019, 30, 100409–100417. [Google Scholar] [CrossRef]
- Khademi Astaneh, R.; Bolandnazar, S.; Zaare Nahandi, F.; Oustan, S. Effect of selenium application on phenylalanine ammonia-lyase (PAL) activity, phenol leakage and total phenolic content in garlic (Allium sativum L.) under NaCl stress. Inf. Process. Agric. 2018, 5, 339–344. [Google Scholar]
- Yan, L.; Xia, G.M.; Huang, Y.H.; Zhao, S.Y. Cinnamic acid 4-hydroxylase of Sorghum [Sorghum bicolor (L.) moench] gene Sb C4H1 restricts lignin synthesis in Arabidopsis. Plant. Physiol. 2013, 49, 1433–1441. [Google Scholar]
- Yang, R.; Wang, S.; Yin, Y.; Gu, Z. Hypoxia treatment on germinating faba bean (Vicia faba L.) seeds enhances GABA-related protection against salt stress. Chil. J. Agric. Res. 2015, 75, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Binh, N.D.T.; Ngoc, N.T.L.; Oladapo, I.J.; Son, C.H.; Thao, D.T.; Trang, D.T.X.; Ngoc, T.T.A.; Ha, N.C. Cyclodextrin glycosyltransferase-treated germinated brown rice flour improves the cytotoxic capacity of HepG2 cell and has a positive effect on type-2 diabetic mice. J. Food Biochem. 2020, 44, e13533. [Google Scholar] [CrossRef]
Gene | Primer Name | Primer Sequences (5′→3′) | Access No. |
---|---|---|---|
PAL | Sense | CACTGAATGCCGATCATACCC | AK250100.1 |
Ant-sense | CCGTTCCAACCCTTGAGACA | ||
C4H | Sense | CGTACGTGCTCTCGGAGTTC | KF927086.1 |
Ant-sense | GTCTTTCCTCCCCGTTGGAC | ||
4CL | Sense | GGTGGAGATCGCCAAGAGCC | KF442977.1 |
Ant-sense | CTCCGTCATCCCGTACCCCT | ||
Actin | Sense | TCGTGAGAAGATGACCCAGA | AK251023.1 |
Ant-sense | CCGAGTCCAGCACAATACCT |
Type | Treatments | Content (µg g−1 DW) | ||
---|---|---|---|---|
Free | Bound | Total | ||
Gallic acid | CK | 12.40 ± 0.20 e | ND | 12.40 ± 0.20 e |
N | 258.52 ± 2.95 c | ND | 258.52 ± 2.95 c | |
NG | 361.63 ± 1.04 a | ND | 361.63 ± 1.04 a | |
NM | 212.65 ± 3.38 d | ND | 212.65 ± 3.38 d | |
NMG | 281.46 ± 0.65 b | ND | 281.46 ± 0.65 b | |
Protocatechuic acid | CK | 320.70 ± 22.57 c | 5.81 ± 0.21 a | 326.50 ± 22.79 c |
N | ND | 5.37 ± 0.09 b | 5.37 ± 0.09 d | |
NG | 622.01 ± 12.53 b | 5.90 ± 0.06 a | 627.90 ± 12.58 b | |
NM | 597.17 ± 40.89 b | ND | 597.17 ± 40.89 b | |
NMG | 692.15 ± 5.09 a | ND | 692.15 ± 5.09 a | |
p-Hydroxybenzoic acid | CK | 6.10 ± 0.15 b | 3.56 ± 0.05 c | 9.66 ± 0.20 c |
N | 11.08 ± 0.48 a | 4.56 ± 0.01 b | 15.64 ± 0.47 b | |
NG | 11.42 ± 0.17 a | 5.45 ± 0.04 a | 16.87 ± 0.21 a | |
NM | 5.39 ± 0.03 c | ND | 5.39 ± 0.03 d | |
NMG | 5.83 ± 0.05 bc | ND | 5.83 ± 0.05 d | |
Vanillic acid | CK | 23.27 ± 0.12 a | 11.33 ± 0.10 c | 34.61 ± 0.02 a |
N | 9.64 ± 0.62 b | 13.04 ± 0.13 b | 22.68 ± 0.75 b | |
NG | 5.26 ± 0.50 c | 15.20 ± 0.12 a | 20.46 ± 0.37 c | |
NM | ND | 6.51 ± 0.03 d | 6.51 ± 0.40 e | |
NMG | 3.92 ± 0.19 d | 5.87 ± 0.40 e | 9.79 ± 0.22 d | |
Caffeic acid | CK | 9.75 ± 0.01 c | 13.16 ± 0.06 b | 22.90 ± 0.07 c |
N | 13.75 ± 0.02 b | 13.18 ± 0.25 b | 26.92 ± 0.27 b | |
NG | 15.20 ± 0.07 a | 104.20 ± 1.42 a | 119.40 ± 1.49 a | |
NM | 9.04 ± 0.02 d | 7.32 d | 16.36 ± 0.02 e | |
NMG | 8.54 ± 0.08 e | 10.13 ± 0.08 c | 18.67 d | |
Syringic acid | CK | 1.08 ± 0.01 c | ND | 1.08 ± 0.01 c |
N | 2.51 ± 0.02 a | ND | 2.51 ± 0.02 a | |
NG | 2.34 ± 0.04 b | ND | 2.34 ± 0.04 b | |
NM | ND | ND | ND | |
NMG | ND | ND | ND | |
p-Coumaric acid | CK | ND | 508.30 ± 0.97 b | 508.30 ± 0.97 b |
N | ND | 521.87 ± 0.42 a | 521.87 ± 0.42 a | |
NG | 2.47 ± 0.08 a | 470.17 ± 1.75 c | 472.64 ± 1.83 c | |
NM | ND | 69.02 ± 0.82d e | 69.02 ± 0.82 e | |
NMG | ND | 74.88 ± 1.00 d | 74.88 ± 1.00 d | |
Ferulic acid | CK | ND | 2463.52 ± 2.59 b | 2463.52 ± 2.59 b |
N | ND | 3129.04 ± 6.19 a | 3129.04 ± 6.19 a | |
NG | 2.48 ± 0.01 a | 3144.07 ± 9.93 a | 3146.55 ± 9.93 a | |
NM | ND | 1448.45 ± 14.51 d | 1448.45 ± 14.51 d | |
NMG | ND | 1632.20 ± 13.02 c | 1632.20 ± 13.02 c | |
Sinapinic acid | CK | 30.17 ± 0.02 c | 30.11 ± 0.17 b | 60.28 ± 0.19 c |
N | 39.03 ± 0.42 a | 34.47 ± 0.60 a | 73.50 ± 1.02 a | |
NG | 37.20 ± 0.39 b | 34.39 ± 0.17 a | 71.58 ± 0.21 b | |
NM | ND | 30.25 ± 0.09 b | 30.25 ± 0.09 d | |
NMG | ND | 28.53 ± 0.68 c | 28.53 ± 0.68 e |
Type | Treatments | Content (µg g−1 DW) | ||
---|---|---|---|---|
Free | Bound | Total | ||
Catechinic acid | CK | 22.90 ± 0.87 b | 23.43 b | 46.33 ± 0.86 b |
N | 24.17 ± 0.36 b | 24.49 ± 0.13 a | 48.66 ± 0.23 b | |
NG | 49.06 ± 1.96 a | 21.71 ± 0.32 c | 70.77 ± 2.29 a | |
NM | 19.98 ± 0.24 c | ND | 19.98 ± 0.24 c | |
NMG | 19.85 ± 0.37 c | ND | 19.85 ± 0.37 c | |
Fisetin | CK | 159.78 ± 0.33 d | 326.62 ± 10.99 c | 486.40 ± 10.67 c |
N | 166.63 ± 1.42 c | 593.28 ± 10.52 b | 759.92 ± 11.94 b | |
NG | 201.63 ± 2.61 a | 657.37 ± 6.68 a | 859.00 ± 9.29 a | |
NM | 179.71 ± 2.21 b | 196.24 ± 0.83 d | 375.95 ± 1.38 d | |
NMG | 156.69 ± 0.39 d | 203.00 ± 3.37 d | 359.69 ± 3.76 d | |
Myricetin | CK | 44.68 ± 0.69 b | 321.30 ± 0.80 b | 365.99 ± 1.50 c |
N | 44.60 ± 0.83 b | 415.11 ± 12.03 a | 459.71 ± 12.86 b | |
NG | 53.26 ± 3.47 a | 425.13 ± 3.39 a | 478.39 ± 6.85 a | |
NM | 33.83 ± 0.36 c | ND | 33.83 ± 0.36 e | |
NMG | ND | 154.85 ± 6.71 c | 154.85 ± 6.71 d | |
Quercetin | CK | ND | 496.19 ± 11.89 b | 496.19 ± 11.89 b |
N | ND | 452.24 ± 10.48 c | 452.24 ± 10.48 c | |
NG | ND | 541.64 ± 9.71 a | 541.64 ± 9.71 a | |
NM | ND | 164.75 ± 5.84 d | 164.75 ± 5.84 d | |
NMG | ND | 158.24 ± 4.78 d | 158.24 ± 4.78 d | |
Apigenin | CK | 0.057 ± 0.001 d | 0.707 ± 0.049 c | 0.764 ± 0.048 c |
N | 0.096 ± 0.002 b | 0.997 ± 0.025 b | 1.093 ± 0.027 b | |
NG | 0.110 ± 0.006 a | 1.099 ± 0.005 a | 1.209 ± 0.001 a | |
NM | 0.069 ± 0.002 c | 0.270 ± 0.009 e | 0.340 ± 0.007 d | |
NMG | ND | 0.368 ± 0.002 d | 0.368 ± 0.002 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhu, Y.; Wang, P.; Gu, Z.; Yang, R. Effect of γ-aminobutyric Acid on Phenolics Metabolism in Barley Seedlings under Low NaCl Treatment. Antioxidants 2021, 10, 1421. https://doi.org/10.3390/antiox10091421
Wang M, Zhu Y, Wang P, Gu Z, Yang R. Effect of γ-aminobutyric Acid on Phenolics Metabolism in Barley Seedlings under Low NaCl Treatment. Antioxidants. 2021; 10(9):1421. https://doi.org/10.3390/antiox10091421
Chicago/Turabian StyleWang, Mian, Yahui Zhu, Pei Wang, Zhenxin Gu, and Runqiang Yang. 2021. "Effect of γ-aminobutyric Acid on Phenolics Metabolism in Barley Seedlings under Low NaCl Treatment" Antioxidants 10, no. 9: 1421. https://doi.org/10.3390/antiox10091421
APA StyleWang, M., Zhu, Y., Wang, P., Gu, Z., & Yang, R. (2021). Effect of γ-aminobutyric Acid on Phenolics Metabolism in Barley Seedlings under Low NaCl Treatment. Antioxidants, 10(9), 1421. https://doi.org/10.3390/antiox10091421