Antioxidant Activity in Gilthead Seabream (Sparus aurata L.) Fed with Diet Supplemented with Moringa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish
2.2. Experimental Design
2.3. Diet
2.4. Sample Preparation
2.5. Assays of Free Radical Scavenging and Antioxidant Activity
2.5.1. Hydroxyl Radical Scavenging
2.5.2. Measurement of Total Antioxidant Activity by the TEAC Assay
2.5.3. Peroxidation of Phospholipid Liposomes
2.5.4. Rancimat Test for Oxidative Stability
2.5.5. Determination of Antioxidant Activity in a Linoleic Acid System
2.6. Determination of Fatty Acid Composition
2.7. Determination of Total Polyphenol Contents
2.8. Statistical Analysis
3. Results
3.1. Antioxidant Activity
3.2. Fatty Acid Composition of Gilthead Seabream
3.3. Total Phytochemical Contents of Leaves and Seed from Moringa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saleh, H.; Golian, A.; Kermanshahi, H.; Mirakzehi, M.T. Antioxidant status and thigh meat quality of broiler chickens fed diet supplemented with α-tocopherolacetate, pomegranate pomace and pomegranate pomace extract. Ital. J. Anim. Sci. 2017, 17, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Abm, R.B.; Mun, H.S.; Yang, C.J. Breast and Thigh Meat Chemical Composition and Fatty Acid Profile in Broilers Fed Diet with Dietary Fat Sources. J. Food Process. Technol. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Martín, C.; Martín, G.; García, A.; Fernández, T.; Hernández, E.; Puls, J. Potential applications of Moringa oleifera. A critical review. Pastos Forrajes 2013, 36, 150–158. [Google Scholar]
- Alhakmani, F.; Kumar, S.; Khan, S.A. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed. 2013, 3, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Zaku, S.G.; Emmanuel, S.; Tukur, A.A.; Kabir, A. Moringa oleifera: An underutilized tree in Nigeria with amazing versatility: A review. Afr. J. Food Sci. 2015, 9, 456–461. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Machado, D.I.; Núñez-Gastélum, J.; Reyes-Moreno, C.; Ramírez-Wong, B.; López-Cervantes, J. Nutritional Quality of Edible Parts of Moringa oleifera. Food Anal. Methods 2010, 3, 175–180. [Google Scholar] [CrossRef]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2006, 21, 17–25. [Google Scholar] [CrossRef]
- Singh, R.G.; Negi, P.S.; Radha, C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera see flour. J. Funct. Foods 2013, 5, 1883–1891. [Google Scholar] [CrossRef]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.T.; Espinosa, C.; García-Beltrán, J.M.; Liang Miao, L.; Ceballos, D.C.; Alsaqufi, A.S.; Esteban, M.A. Dietary supplementation of drumstick tree, Moringa oleifera, improves mucosal immune response in skin and gills of seabream, Sparus aurata, and attenuates the effect of hydrogen peroxide exposure. Fish Physiol. Biochem. 2020, 46, 981–996. [Google Scholar] [CrossRef] [PubMed]
- García-Beltran, J.M.; Mansour, A.T.; Alsaqufi, A.S.; Ali, H.M.; Esteban, M.A. Effects of aqueous and ethanolic leaf extracts from drumstick tree (Moringa oleifera) on gilthead seabream (Sparus aurata L.) leucocytes, and their cytotoxic, antitumor, bactericidal and antioxidant activities. Fish Shellf. Immunol. 2020, 106, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, M.; Sakran, T.; Badawi, Y.K.; Abdel-Hady, D.S. Influence of Moringa oleifera extract, vitamin C, and sodium bicarbonate on heat stress-induced HSP70 expression and cellular immune response in rabbits. Cell Stress Chaperones 2018, 23, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Hamed, H.S.; El-Sayed, Y.S. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). Fish Physiol. Biochem. 2019, 45, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Khalil, F.; Korni, F.M. Evaluation of Moringa oleifera leaves and their aqueous extract in improving growth, immunity and mitigating effect of stress on common carp (Cyprinus carpio) fingerlings. Turk. J. Aquat. Sci. 2017, 32, 170–177. [Google Scholar] [CrossRef]
- EU. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Off. J. Eur. Union 2010, L 276, 33–79. [Google Scholar]
- Jiménez-Monreal, A.M.; García-Diz, L.; Martínez-Tomé, M.; Mariscal, M.; Murcia, M.A. Influence of Cooking Methods on Antioxidant Activity of Vegetables. J. Food Sci. 2009, 74, H97–H103. [Google Scholar] [CrossRef]
- Murcia, M.; Jiménez-Monreal, A.; García-Diz, L.; Carmona, M.; Maggi, L.; Martínez-Tomé, M.; Delgado, M.C. Antioxidant activity of minimally processed (in modified atmospheres), dehydrated and ready-to-eat vegetables. Food Chem. Toxicol. 2009, 47, 2103–2110. [Google Scholar] [CrossRef]
- Jiménez, A.M.; Martínez-Tomé, M.; Egea, M.I.; Romojaro, F.; Murcia, M.A. Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida). Eur. Food Res. Technol. 2007, 227, 125–134. [Google Scholar] [CrossRef]
- Esteban, M.; Cordero, H.; Martínez-Tomé, M.; Jiménez-Monreal, A.; Bakhrouf, A.; Mahdhi, A. Effect of dietary supplementation of probiotics and palm fruits extracts on the antioxidant enzyme gene expression in the mucosae of gilthead seabream (Sparus aurata L.). Fish Shellfish. Immunol. 2014, 39, 532–540. [Google Scholar] [CrossRef]
- AOAC Official Method 996.06. Fat (total, saturated, and unsaturated) in foods. In AOAC Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 2010. [Google Scholar]
- AOAC Official Method 969.33. Fatty acids in oils and fats. Preparation of methyl esters. Boron trifluoride method. In Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Chavez-Santiago, J.O.; Rodríguez-Castillejos, G.C.; Montenegro, G.; Bridi, R.; Valdés-Gómez, H.; Alvarado-Reyna, S.; Castillo-Ruiz, O.; Santiago-Adame, R. Phenolic content, antioxidant and antifungal activity of jackfruit extracts (Artocarpus heterophyllus Lam.). Food Sci. Technol. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Murcia, M.A.; Egea, I.; Romojaro, F.; Parras, P.; Jiménez, A.M.; Martínez-Tomé, M. Antioxidant Evaluation in Dessert Spices Compared with Common Food Additives. Influence of Irradiation Procedure. J. Agric. Food Chem. 2004, 52, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Zavala, M.; Peón-Escalante, I.E.; Zepeda-Bautista, R.; Jiménez Arellanes, M.A. Moringa (Moringa oleifera Lam.): Potential uses in agriculture, industry and medicine. Rev. Chapingo Ser. Hortic. 2016, 2, 95–116. [Google Scholar] [CrossRef]
- Fejér, J.; Kron, I.; Pellizzeri, V.; Pluchtová, M.; Eliašová, A.; Campone, L.; Gervasi, T.; Bartolomeo, G.; Cicero, N.; Babejová, A.; et al. First Report on Evaluation of Basic Nutritional and Antioxidant Properties of Moringa oleifera L. from Caribbean Island of Saint Lucia. Plants 2019, 8, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Llorens, S.; Baeza-Ariño, R.; Nogales-Mérida, S.; Jover-Cerdá, M.; Tomás-Vidal, A. Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: Amino acid retention, digestibility, gut and liver histology. Aquaculture 2012, 338–341, 124–133. [Google Scholar] [CrossRef]
- Gopalakrishnanb, L.; Doriyaa, K.; Kumara, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Apori, S.O.; Atiah, K.; Hanyabui, E.; Byalebeka, J. Moringa oleifera seeds as a low-cost biosorbent for removing heavy metals from wastewater. STED J. 2020, 2, 45–52. [Google Scholar] [CrossRef]
- Vergara-Jiménez, M.; Almatrafi, M.A.; Fernández, M.L. Bioactive Components in Moringa oleifera Leaves Protect against Chronic Disease: A review. Antioxidants 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Lopez, L.H.C.; Luzardo-Ocampo, I.; Cuellar-Nuñez, M.L.; Campos-Vega, R.; Mendoza, S.; Loarca-Piña, G. Effect of the in vitro gastrointestinal digestion on free-phenolic compounds and mono/oligosaccharides from Moringa oleifera leaves: Bioaccessibility, intestinal permeability and antioxidant capacity. Food Res. Int. 2019, 120, 631–642. [Google Scholar] [CrossRef]
- Rocchetti, G.; Pagnossa, J.P.; Blasi, F.; Cossignani, L.; Piccoli, R.H.; Zengin, G.; Montesano, D.; Cocconcelli, P.S.; Lucini, L. Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents. Food Res. Int. 2020, 127, 108712. [Google Scholar] [CrossRef]
- Nobosse, P.; Fombang, E.N.; Mbofung, C.M.F. Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci. Nutr. 2018, 6, 2188–2198. [Google Scholar] [CrossRef]
- Sharmin, F.; Sarker, N.; Sarker, S. Effect of Using Moringa oleifera and Spirulina platensis as Feed Additives on Performance, Meat Composition and Oxidative Stability and Fatty Acid Profiles in Broiler Chicken. J. Nutr. Food Sci. 2020, 10, 772. [Google Scholar]
- Salem, M.I.; El-Sebai, A.; Elnagar, S.A.; El-Hady, A.M.A. Evaluation of lipid profile, antioxidant and immunity statuses of rabbits fed Moringa oleifera leaves. Asian-Australas. J. Anim. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.F.; Sadek, K.M.; Soliman, M.K.; Khalil, R.H.; Khafaga, A.F.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A. Moringa oleifera Leaf Extract Repairs the Oxidative Misbalance following Sub-Chronic Exposure to Sodium Fluoride in Nile Tilapia Oreochromis niloticus. Animals 2020, 10, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, J.A.; Araújo, K.L.; Epaminondas, P.S.; Souza, A.S.; Magnani, M.; Souza, A.L.; Soledade, L.E.; Queiroz, N.; Souza, A.G. Ethanolic extracts of Moringa oleifera Lam. Evaluation of its potential as an antioxidant additive for fish oil. J. Therm. Anal. Calorim. 2013, 114, 833–838. [Google Scholar] [CrossRef]
- Guardiola, F.; Bahi, A.; Jiménez-Monreal, A.; Martínez-Tomé, M.; Murcia, M.; Esteban, M. Dietary administration effects of fenugreek seeds on skin mucosal antioxidant and immunity status of gilthead seabream (Sparus aurata L.). Fish Shellfish. Immunol. 2018, 75, 357–364. [Google Scholar] [CrossRef]
- Van Doan, H.; Hoseinifar, S.H.; Dawood, M.; Chitmanat, C.; Tayyamath, K. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish Shellfish. Immunol. 2017, 70, 87–94. [Google Scholar] [CrossRef]
- Taee, H.M.; Hajimoradloo, A.; Hoseinifar, S.H.; Ahmadvand, H. Dietary Myrtle (Myrtus communis L.) improved non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (Oncorhynchus mykiss) fingerlings. Fish Shellfish. Immunol. 2017, 64, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Siddhuraju, P.; Becker, K. Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa oleífera Lam.) Leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Murillo, A.G.; Fernandez, M.L. The Relevance of Dietary Polyphenols in Cardiovascular Protection. Curr. Pharm. Des. 2017, 23, 2444–2452. [Google Scholar] [CrossRef]
- Izquierdo, M.; Montero, D.; Robaina, L.; Caballero, M.J.; Rosenlund, G.; Ginés, R. Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 2005, 250, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Benedito-Palos, L.; Navarro, J.; Kaushik, S.; Perez-Sanchez, J. Tissue-specific robustness of fatty acid signatures in cultured gilthead seabream (Sparus aurata L.) fed practical diets with a combined high replacement of fish meal and fish oil. J. Anim. Sci. 2010, 88, 1759–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lipid Peroxidation | Hydroxyl Radical Scavenging | TEAC 1 | |||
---|---|---|---|---|---|
Samples of Gilthead Seabream | % Scavenging | % Scavenging | Absorbance (A532 nm) Omit ASC 2 | 6 min | 24 h |
None (control) | 0.133 ± 0.009 b | ||||
Muscle | |||||
0% | 29.2 ± 1.6 a | 78.85 ± 1.3 a | 0.045 ± 0.004 a | 12.1 ± 0.5 b | 12.5 ± 0.4 a |
5% | 33.1 ± 2.3 ab | 83.9 ± 3.9 a | 0.093 ± 0.077 ab | 10.2 ± 0.8 a | 12.0 ± 0.6 a |
10% | 34.9 ± 1.3 b | 81.6 ± 4.6 a | 0.088 ± 0.008 ab | 11.2 ± 0.9 ab | 12.0 ± 0.6 a |
15% | 43.0 ± 0.9 c | 80.7 ± 0.2 a | 0.069 ± 0.026 ab | 12.1 ± 0.4 b | 12.5 ± 0.7 a |
Skin | |||||
0% | 70.9 ± 3.8 d | 58.5 ± 7.2 b | 0.105 ± 0.004 ab | 15.5 ± 0.0 c | 14.4 ± 0.0 b |
5% | 65.7 ± 2.5 d | 67.2 ± 7.2 b | 0.093 ± 0.038 ab | 15.0 ± 0.5 c | 14.8 ± 0.4 b |
10% | 64.0 ± 8.1 de | 61.5 ± 5.2 b | 0.107 ± 0.058 ab | 15.5 ± 0.3 c | 15.1 ± 0.8 b |
15% | 68.6 ± 2.1 d | 63.9 ± 3.3 b | 0.126 ± 0.031 b | 15.6 ± 0.1 c | 14.4 ± 0.1 b |
2 Weeks | 4 Weeks | ||||||
---|---|---|---|---|---|---|---|
Fatty Acids | Without Moringa | 10% Moringa | p | Without Moringa | 10% Moringa | p | |
SFA | |||||||
Myristic (14:0) | 0.11 ± 0.03 | 0.12 ± 0.03 | 0.24 ± 0.09 | 0.25 ± 0.10 | |||
Pentadecenoic (15:0) | 0.10 ± 0.04 | 0.01 ± 0.01 | - | 0.02 ± 0.01 | |||
Palmitic (16:0) | 0.53 ± 0.20 | 0.61 ± 0.12 | 1.14 ± 0.41 | 1.23 ± 0.60 | |||
Heptadecenoic (17:0) | 0.01 ± 0.01 | 0.02 ± 0.02 | 0.01 ± 0.01 | 0.01 ± 0.01 | |||
Stearic (18:0) | 0.10 ± 0.04 | 0.12 ± 0.03 | 0.21 ± 0.09 | 0.23 ± 0.10 | |||
Arachidic (20:0) | 0.02 ± 0.02 | 0.03 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | |||
Behenic (22:0) | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | |||
Tricosanoic (23:0) | 0.02 ± 0.01 | 0.03 ± 0.02 | 0.05 ± 0.02 | 0.05 ± 0.01 | |||
Lignoceric (24:0) | 0.08 ± 0.03 | 0.10 ± 0.04 | 0.19 ± 0.07 | 0.20 ± 0.10 | |||
MUFA | |||||||
Myristoleic (14:1n-5) | - | - | 0.01 ± 0.01 | 0.01 ± 0.01 | |||
Pentadecenoic(15:1n-5) | - | - | 0.02 ± 0.01 | - | |||
Palmitoleic (16:1n-7) | 0.16 ± 0.08 | 0.18 ± 0.08 | 0.35 ± 0.06 | 0.38 ± 0.05 | |||
Heptadecenoic (17:1n-7) | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | |||
Oleic (18:1n-9) | 1.20 ± 0.30 | 1.75 ± 0.21 | * | 2.21 ± 0.85 | 2.31 ± 0.96 | ||
Eicosenoic (20:1n-9) | 0.11 ± 0.05 | 0.14 ± 0.05 | 0.22 ± 0.11 | 0.22 ± 0.11 | |||
Erucic (22:1n-9) | 0.05 ± 0.02 | 0.07 ± 0.03 | 0.12 ± 0.03 | 0.12 ± 0.03 | |||
Nervonic (24:1n-9) | 0.02 ± 0.03 | 0.02 ± 0.01 | 0.04 ± 0.03 | 0.03 ± 0.03 | |||
PUFA | |||||||
Omega-6 | |||||||
Linoleic (18:2n-6) cis | 0.51 ± 0.10 | 0.64 ± 0.10 | * | 1.03 ± 0.45 | 1.01 ± 0.27 | ||
g-linolenic (18:3n-6) | - | - | 0.02 ± 0.01 | 0.02 ± 0.01 | |||
Eicosadienoic (20:2n-6) | 0.01 ± 0.01 | 0.02 ± 0.02 | 0.04 ± 0.03 | 0.04 ± 0.03 | |||
Arachidonic (20:4n-6) | - | - | 0.01 ± 0.01 | 0.01 ± 0.01 | |||
Docosadienoic (22:2n-6) | - | - | 0.01 ± 0.01 | 0.01 ± 0.01 | |||
Total omega-6 | 0.53 ± 0.01 | 0.66 ± 0.02 | * | 1.10 ± 0.02 | 1.08 ± 0.01 | ||
Omega-3 | |||||||
Linolenic (18:3n-3) | 0.09 ± 0.02 | 0.11 ± 0.05 | 0.21 ± 0.10 | 0.21 ± 0.10 | |||
Eicosatrienoic (20:3n-3) | 0.04 ± 0.03 | 0.04 ± 0.03 | 0.09 ± 0.02 | 0.08 ± 0.05 | |||
Docosahexaenoic (22:6n-3) | 0.16 ± 0.05 | 0.20 ± 0.06 | 0.36 ± 0.03 | 0.36 ± 0.03 | |||
Total omega-3 | 0.30 ± 0.02 | 0.36 ± 0.01 | 0.66 ± 0.02 | 0.66 ± 0.01 |
Samples Moringa | Total Polyphenols (g GAE 1/100 g DM) |
---|---|
Leave | |
Water extract | 4.03 ± 0.13 b |
Methanol extract | 4.56 ± 0.15 a |
Methanol/water extract (80/20) | 4.20 ± 0.21 ab |
Seed | |
Water extract | 0.51 ± 0.17 d |
Methanol extract | 1.18 ± 0.20 c |
Methanol/water (80/20) | 0.76 ± 0.19 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Monreal, A.M.; Guardiola, F.A.; Esteban, M.Á.; Murcia Tomás, M.A.; Martínez-Tomé, M. Antioxidant Activity in Gilthead Seabream (Sparus aurata L.) Fed with Diet Supplemented with Moringa. Antioxidants 2021, 10, 1423. https://doi.org/10.3390/antiox10091423
Jiménez-Monreal AM, Guardiola FA, Esteban MÁ, Murcia Tomás MA, Martínez-Tomé M. Antioxidant Activity in Gilthead Seabream (Sparus aurata L.) Fed with Diet Supplemented with Moringa. Antioxidants. 2021; 10(9):1423. https://doi.org/10.3390/antiox10091423
Chicago/Turabian StyleJiménez-Monreal, Antonia M., Francisco A. Guardiola, M. Ángeles Esteban, M. Antonia Murcia Tomás, and Magdalena Martínez-Tomé. 2021. "Antioxidant Activity in Gilthead Seabream (Sparus aurata L.) Fed with Diet Supplemented with Moringa" Antioxidants 10, no. 9: 1423. https://doi.org/10.3390/antiox10091423
APA StyleJiménez-Monreal, A. M., Guardiola, F. A., Esteban, M. Á., Murcia Tomás, M. A., & Martínez-Tomé, M. (2021). Antioxidant Activity in Gilthead Seabream (Sparus aurata L.) Fed with Diet Supplemented with Moringa. Antioxidants, 10(9), 1423. https://doi.org/10.3390/antiox10091423