Using High-Pressure Technology to Develop Antioxidant-Rich Extracts from Bravo de Esmolfe Apple Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apple Samples
2.2. Materials
2.3. Extractions
2.3.1. High-Pressure Extractions
2.3.2. Conventional Extractions
2.4. Phenolic Profile and Total Flavonoid Contents—HPLC Analysis
2.5. Folin–Ciocalteu Assay
2.6. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.7. Hydroxyl Radical Adverting Capacity (HORAC) Assay
2.8. Hydroxyl Radical Scavenging Capacity (HOSC) Assay
2.9. Cell-Based Assays
2.9.1. Cell Culture
2.9.2. Cytotoxicity Evaluation in Confluent Caco-2 Cells
2.9.3. Cellular Antioxidant Activity (CAA) in Confluent Caco-2 Cells
2.9.4. Cytotoxicity Evaluation in 3D Neuron–Astrocyte Aggregates
2.9.5. Inhibition of ROS Generation in 3D Neuron–Astrocyte Neurospheroids
3. Results and Discussion
3.1. Impact of Extraction Conditions on Yield and Phenolic Content of BE Residues Extracts
3.2. Antioxidant Activity of BE Residues Extracts
3.3. Antioxidant Activity in 3D Neuron–Astrocyte Neurospheroids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rocha, A.M.C.N.; Barreiro, M.G.; Morais, A.M.M.B. Modified atmosphere package for apple Bravo de Esmolfe. Food Control 2004, 15, 61–64. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Feliciano, R.P.; Antunes, C.; Ramos, A.; Serra, A.T.; Figueira, M.E.; Duarte, C.M.M.; Carvalho, A.d.; Bronze, M.R. Characterization of traditional and exotic apple varieties from Portugal. Part 1—Nutritional, phytochemical and sensory evaluation. J. Funct. Foods 2010, 2, 35–45. [Google Scholar] [CrossRef]
- Serra, A.T.; Matias, A.A.; Frade, R.F.M.; Duarte, R.O.; Feliciano, R.P.; Bronze, M.R.; Figueira, M.E.; Carvalho, A.D.; Duarte, C.M.M. Characterization of traditional and exotic apple varieties from Portugal. Part 2—Antioxidant and antiproliferative activities. J. Funct. Foods 2010, 2, 46–53. [Google Scholar] [CrossRef]
- Serra, A.T.; Rocha, J.; Sepodes, B.; Matias, A.A.; Feliciano, R.P.; De Carvalho, A.; Bronze, M.R.; Duarte, C.M.M.; Figueira, M.E. Evaluation of cardiovascular protective effect of different apple varieties—Correlation of response with composition. Food Chem. 2012, 135, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant′Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus green extraction techniques—A comparative perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Badgujar, K.C.; Dange, R.; Bhanage, B.M. Recent advances of use of the supercritical carbon dioxide for the biomass pre-treatment and extraction: A mini-review. J. Indian Chem. Soc. 2021, 98, 100018. [Google Scholar] [CrossRef]
- Porto, C.D.; Decorti, D.; Natolino, A. Water and ethanol as co-solvent in supercritical fluid extraction of proanthocyanidins from grape marc: A comparison and a proposal. J. Supercrit. Fluids 2014, 87, 1–8. [Google Scholar] [CrossRef]
- Yuan, H.; Olesik, S.V. Supercritical fluid and enhanced-fluidity liquid extraction of phenolics from river sediment. J. Chromatogr. A 1997, 764, 265–277. [Google Scholar] [CrossRef]
- Seabra, I.J.; Braga, M.E.M.; Batista, M.T.P.; Sousa, H.C. Fractioned High Pressure Extraction of Anthocyanins from Elderberry (Sambucus nigra L.) Pomace. Food Bioprocess Technol. 2010, 3, 674–683. [Google Scholar] [CrossRef] [Green Version]
- Serra, A.T.; Seabra, I.J.; Braga, M.E.M.; Bronze, M.R.; Sousa, H.C.D.; Duarte, C.M.M. Processing cherries (Prunus avium) using supercritical fluid technology. Part 1: Recovery of extract fractions rich in bioactive compounds. J. Supercrit. Fluids 2010, 55, 184–191. [Google Scholar] [CrossRef]
- Adil, I.H.; Çetin, H.I.; Yener, M.E.; Bayındırlı, A. Subcritical (carbon dioxide + ethanol ) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. J. Supercrit. Fluids 2007, 43, 55–63. [Google Scholar] [CrossRef]
- Massias, A.; Boisard, S.; Baccaunaud, M.; Calderon, F.L.; Subra-Paternault, P. Recovery of phenolics from apple peels using CO2 + ethanol extraction: Kinetics and antioxidant activity of extracts. J. Supercrit. Fluids 2015, 98, 172–182. [Google Scholar] [CrossRef]
- Serra, A.T.; Matias, A.A.; Nunes, A.V.M.; Leitão, M.C.; Brito, D.; Bronze, R.; Silva, S.; Pires, A.; Crespo, M.T.; San Romão, M.V.; et al. In vitro evaluation of olive- and grape-based natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 2008, 9, 311–319. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Flanagan, J.; Deemer, E.K.; Prior, R.L.; Huang, D. Novel Fluorometric Assay for Hydroxyl Radical Prevention Capacity Using Fluorescein as the Probe. J. Agric. Food Chem. 2002, 50, 2772–2777. [Google Scholar] [CrossRef]
- Serra, A.T.; Duarte, R.O.; Bronze, M.R.; Duarte, C.M.M. Identification of bioactive response in traditional cherries from Portugal. Food Chem. 2011, 125, 318–325. [Google Scholar] [CrossRef]
- Moore, J.; Yin, J.; Yu, L.L. Novel Fluorometric Assay for Hydroxyl Radical Scavenging Capacity (HOSC) Estimation. J. Agric. Food Chem. 2006, 54, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.T.; Poejo, J.; Matias, A.A.; Bronze, M.R.; Duarte, C.M.M. Evaluation of Opuntia spp. derived products as antiproliferative agents in human colon cancer cell line (HT29). Food Res. Int. 2013, 54, 892–901. [Google Scholar] [CrossRef]
- Serra, M.; Leite, S.B.; Brito, C.; Costa, J.; Carrondo, M.J.T.; Alves, P.M. Novel culture strategy for human stem cell proliferation and neuronal differentiation. J. Neurosci. Res. 2007, 85, 3557–3566. [Google Scholar] [CrossRef]
- Terrasso, A.P.; Silva, A.C.; Filipe, A.; Pedroso, P.; Ferreira, A.L.; Alves, P.M.; Brito, C. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds. J. Pharmacol. Toxicol. Methods 2017, 83, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Terrasso, A.P.; Pinto, C.; Serra, M.; Filipe, A.; Almeida, S.; Ferreira, A.L.; Pedroso, P.; Brito, C.; Alves, P.M. Novel scalable 3D cell based-model for in vitro neurotoxicity testing: Combining human differentiated neurospheres with gene expression and functional endpoints. J. Biotechnol. 2015, 205, 82–92. [Google Scholar] [CrossRef]
- Cano-Sancho, G.; González-Arias, C.A.; Ramos, A.J.; Sanchis, V.; Fernández-Cruz, M.L. Cytotoxicity of the mycotoxins deoxynivalenol and ochratoxin A on Caco-2 cell line in presence of resveratrol. Toxicol. In Vitro 2015, 29, 1639–1646. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.; Silva, I.; Poejo, J.; Serra, A.T.; Matias, A.A.; Simplício, A.L.; Bronze, M.R.; Duarte, C.M.M. Recovery of antioxidant and antiproliferative compounds from watercress using pressurized fluid extraction. RSC Adv. 2016, 6, 30905–30918. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef]
- Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.; Serra, A.T.; Pinto, R.; Freitas, M.; et al. Anti-inflammatory effect of rosmarinic acid and an extract of rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol. 2015, 116, 398–413. [Google Scholar] [CrossRef]
- Figueira, M.E.; Direito, R.; Rocha, J.; Serra, A.T.; Duarte, C.M.M.; Fernandes, A.; Freitas, M.; Fernandes, E.; Marques, M.C.; Bronze, M.R.; et al. Chemical characterization of a red raspberry fruit extract and evaluation of its pharmacological effects in experimental models of acute inflammation and collagen-induced arthritis. Food Funct. 2014, 5, 3241–3251. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Durling, N.E.; Catchpole, O.J.; Tallon, S.J.; Grey, J.B. Measurement and modelling of the ternary phase equilibria for high pressure carbon dioxide–ethanol–water mixtures. Fluid Phase Equilib. 2007, 252, 103–113. [Google Scholar] [CrossRef]
- Chafer, A.; Fornari, T.; Berna, A.; Stateva, R.P. Solubility of quercetin in supercritical CO2 + ethanol as a modifier: Measurements and thermodynamic modelling. J. Supercrit. Fluids 2004, 32, 89–96. [Google Scholar] [CrossRef]
- Berna, A.; Chafer, A.; Monton, J.B.; Subirats, S. High-pressure solubility data of system ethanol (1) + catechin (2) + CO2 (3). J. Supercrit. Fluids 2001, 20, 157–162. [Google Scholar] [CrossRef]
- Zuniga-Moreno, A.; Galicia-Luna, L. Compressed Liquid Densities of Carbon Dioxide + Ethanol Mixtures at Four Compositions via a Vibrating Tube Densimeter up to 363 K and 25 MPa. J. Chem. Eng. Data 2002, 47, 149–154. [Google Scholar] [CrossRef]
- Cháfer, A.; Berna, A.; Montón, J.B.; Munoz, R. High-pressure solubility data of system ethanol (1) + epicatechin (2) + CO2 (3). J. Supercrit. Fluids 2002, 24, 103–109. [Google Scholar] [CrossRef]
- Górnas, P.; Misina, I.; Olsteine, A.; Krasnova, I.; Pugajeva, I.; Lãcis, G.; Siger, A.; Michalak, M.; Soliven, A.; Seglina, D. Phenolic compounds in different fruit parts of crab apple: Dihydrochalcones as promising quality markers of industrial apple pomace by-products. Ind. Crops Prod. 2015, 74, 607–612. [Google Scholar] [CrossRef]
- Makarova, E.; Górnás, P.; Konrade, I.; Tirzite, D.; Cirule, H.; Gulbe, A.; Pugajeva, I.; Seglina, D.; Dambrova, M. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: A preliminary study. J. Sci. Food Agric. 2015, 95, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products. Processes 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.H.; Kim, Y.I.; Chung, S.K. A profile of physicochemical and antioxidant changes during fruit growth for the utilisation of unripe apples. Food Chem. 2012, 131, 106–110. [Google Scholar] [CrossRef]
- Roshani, S.; Sahahidi, S.-A.; Ghorbani-Hasansaraei, A.; Raeisi, S.N. Phytochemical content, physicochemical and microstructural properties of apple powder as affected by drying method. Lat. Am. Appl. Res. 2021, 51, 27–35. [Google Scholar]
- Radojcin, M.; Pavkov, I.; Kovacevic, D.B.; Putnik, P.; Wiktor, A.; Stamenkivic, Z.; Keselj, K.; Gere, A. Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Processes 2021, 9, 132. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Chu, L.; Wei, Y.; Wang, D.; Cai, S.; Zhou, F.; Ji, B. Relationship Between the Structures of Flavonoids and Oxygen Radical Absorbance Capacity Values: A Quantum Chemical Analysis. J. Phys. Chem. 2013, 117, 1784–1794. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which Polyphenolic Compounds Contribute to the Total Antioxidant Activities of Apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef] [PubMed]
- Kellett, M.E.; Greenspan, P.; Pegg, R.B. Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chem. 2018, 244, 359–363. [Google Scholar] [CrossRef]
- Wan, H.; Liu, D.; Yu, X.; Sun, H.; Li, Y. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants. Food Chem. 2015, 175, 601–608. [Google Scholar] [CrossRef]
- Rodríguez-Ramiro, I.; Martín, M.A.; Ramos, S.; Bravo, L.; Goya, L. Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress on Caco2 cells. Eur. J. Nutr. 2011, 50, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Noé, V.; Peñuelas, S.; Lamuela-Raventós, R.M.; Permanyer, J.; Ciudad, C.J.; Izquierdo-Pulido, M. Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J. Nutr. 2004, 134, 2509–2516. [Google Scholar] [CrossRef] [PubMed]
- Figueira, M.-E.; Oliveira, M.; Direito, R.; Rocha, J.; Alves, P.; Serra, A.-T.; Duarte, C.; Bronze, R.; Fernandes, A.; Brites, D.; et al. Protective effects of a blueberry extract in acute inflammation and collagen-induced arthritis in the rat. Biomed. Pharmacother. 2016, 83, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid. Med. Cell. Longev. 2016, 2016, 2986796. [Google Scholar] [CrossRef] [Green Version]
- Grewal, A.K.; Singh, T.G.; Sharma, D.; Sharma, V.; Singh, M.; Rahman, M.H.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.M.; et al. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed. Pharmacother. 2021, 140, 111729. [Google Scholar] [CrossRef]
- Tchantchou, F.; Chan, A.; Kifle, L.; Ortiz, D.; Shea, T.B. Apple juice concentrate prevents oxidative damage and impaired maze performance in aged mice. J. Alzheimers Dis. 2005, 8, 283–287. [Google Scholar] [CrossRef]
- Tchantchou, F.; Graves, M.; Ortiz, D.; Rogers, E.; Shea, T.B. Dietary supplementation with apple juice concentrate alleviates the compensatory increase in glutathione synthase transcription and activity that accompanies dietary- and genetically-induced oxidative stress. J. Nutr. Health Aging 2004, 8, 492–496. [Google Scholar] [PubMed]
- Rogers, E.; Mihalik, S.; Ortiz, D.; Shea, T. Apple juice prevents oxidative stress and impaired cognitive performance caused by genetic and dietary deficiencies in mice. J. Nutr. Health Aging 2004, 8, 92–97. [Google Scholar] [PubMed]
- Alvariño, R.; Alonso, E.; Alfonso, A.; Botana, L.M. Neuroprotective Effects of Apple-Derived Drinks in a Mice Model of Inflammation. Mol. Nutr. Food Res. 2020, 64, e1901017. [Google Scholar] [CrossRef] [PubMed]
Extract ID | Solvent Mixture CO2: EtOH | Yield (%) | Phytochemical Characterization (mg/g dw) | Antioxidant Activity (µmol/g dw) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPC 1 | TFC 2 | Cat 3 | CAc 4 | Ep 5 | Q3g 6 | Q4g 7 | PB2 8 | ORAC 9 | HOSC 10 | HORAC 11 | CAA 12 | |||
Fractioned High-Pressure Extraction (25 ± 0.4 MPa, 50 ± 0.1 °C) | ||||||||||||||
1st Step: Supercritical CO2 extraction (extraction time, 60 min; solid/solvent ratio, 1:47 ± 2) | ||||||||||||||
A | 100:0 | 0.9 ± 0.4 | 4.9 ± 0.7 | 0.98 ± 0.05 | 0.11 ± 0.01 | 0.16 ± 0.01 | 0.21 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.16 ± 0.01 | 65 ± 8 | 64.9 ± 6.8 | <2.5 | <0.08 |
2nd Step: Enhanced solvent extraction (pressure, 25 ± 0.4 MPa, temperature, 50 ± 0.1 °C; time, 90 min; solid/solvent ratio, 1:67 ± 3) | ||||||||||||||
B | 90:10 | 4.4 ± 0.4 | 8.8 ± 1.1 | 2.17 ± 0.11 | 0.28 ± 0.01 | 0.21 ± 0.01 | 0.29 ± 0.01 | 0.17 ± 0.01 | 0.15 ± 0.01 | 0.16 ± 0.01 | 200 ± 26 | 86 ± 8 | 14 ± 1 | 1.16 ± 0.22 |
C | 80:20 | 12.7 | 6.1 ± 0.3 | 1.54 ± 0.08 | 0.09 ± 0.01 | 0.14 ± 0.01 | 0.40 ± 0.02 | 0.11 ± 0.01 | 0.14 ± 0.01 | 0.22 ± 0.01 | 197 ± 19 | 145 ± 23 | 102 ± 3 | 1.43 ± 0.38 |
D | 60:40 | 36.1 | 7.0 ± 0.4 | 3.81 ± 0.19 | 0.14 ± 0.01 | 0.28 ± 0.01 | 0.65 ± 0.03 | 0.37 ± 0.02 | 0.23 ± 0.01 | 0.18 ± 0.01 | 285 ± 16 | 134 ± 10 | 63 ± 9 | 1.50 ± 0.24 |
E | 40:60 | 56.3 | 5.3 ± 0.4 | 1.74 ± 0.09 | 0.13 ± 0.01 | 0.23 ± 0.01 | 0.44 ± 0.02 | 0.22 ± 0.01 | 0.15 ± 0.01 | 0.18 ± 0.01 | 244 ± 10 | 202 ± 27 | 60 ± 5 | 1.07 ± 0.04 |
F | 20:80 | 66.6 | 6.1 ± 0.9 | 1.22 ± 0.06 | 0.11 ± 0.01 | 0.20 ± 0.01 | 0.33 ± 0.02 | 0.16 ± 0.01 | 0.12 ± 0.01 | 0.14 ± 0.01 | 147 ± 22 | 120 ± 18 | 33 ± 2 | 1.23 ± 0.03 |
G | 0:100 | 80.8 | 6.3 ± 0.1 | 1.58 ± 0.08 | 0.14 ± 0.01 | 0.29 ± 0.01 | 0.42 ± 0.02 | 0.20 ± 0.01 | 0.14 ± 0.01 | 0.24 ± 0.01 | 123 ± 14 | 118 ± 15 | 94 ± 2 | 1.19 ± 0.23 |
Conventional Extraction (50 ± 0.1 °C; extraction time 120 min) | ||||||||||||||
H | 0:100 | 23.9 | 3.8 ± 0.1 | 1.17 ± 0.06 | 0.02 ± 0.01 | 0.06 ± 0.01 | 0.14 ± 0.01 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.13 ± 0.01 | 117 ± 6 | 27 ± 3 | 18 ± 2 | nd |
ORAC | HOSC | HORAC | CAA | |
---|---|---|---|---|
TPC | 0.392 | −0.257 | −0.106 | 0.499 |
TFC | 0.801 | 0.190 | 0.179 | 0.553 |
Cat | 0.239 | −0.298 | −0.388 | 0.141 |
CAc | 0.426 | 0.309 | 0.398 | 0.467 |
Ep | 0.799 | 0.577 | 0.596 | 0.710 |
PB2 | 0.031 | 0.275 | 0.872 | 0.375 |
Q3g | 0.629 | 0.223 | 0.075 | 0.323 |
Q4g | 0.690 | 0.158 | 0.111 | 0.295 |
CAA | 0.731 | 0.532 | 0.657 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordalo, M.; Seabra, I.J.; Silva, A.B.; Terrasso, A.P.; Brito, C.; Serra, M.; Bronze, M.R.; Duarte, C.M.M.; Braga, M.E.M.; de Sousa, H.C.; et al. Using High-Pressure Technology to Develop Antioxidant-Rich Extracts from Bravo de Esmolfe Apple Residues. Antioxidants 2021, 10, 1469. https://doi.org/10.3390/antiox10091469
Bordalo M, Seabra IJ, Silva AB, Terrasso AP, Brito C, Serra M, Bronze MR, Duarte CMM, Braga MEM, de Sousa HC, et al. Using High-Pressure Technology to Develop Antioxidant-Rich Extracts from Bravo de Esmolfe Apple Residues. Antioxidants. 2021; 10(9):1469. https://doi.org/10.3390/antiox10091469
Chicago/Turabian StyleBordalo, Mário, Inês J. Seabra, Andreia Bento Silva, Ana Paula Terrasso, Catarina Brito, Margarida Serra, Maria R. Bronze, Catarina M. M. Duarte, Mara E. M. Braga, Hermínio C. de Sousa, and et al. 2021. "Using High-Pressure Technology to Develop Antioxidant-Rich Extracts from Bravo de Esmolfe Apple Residues" Antioxidants 10, no. 9: 1469. https://doi.org/10.3390/antiox10091469
APA StyleBordalo, M., Seabra, I. J., Silva, A. B., Terrasso, A. P., Brito, C., Serra, M., Bronze, M. R., Duarte, C. M. M., Braga, M. E. M., de Sousa, H. C., & Serra, A. T. (2021). Using High-Pressure Technology to Develop Antioxidant-Rich Extracts from Bravo de Esmolfe Apple Residues. Antioxidants, 10(9), 1469. https://doi.org/10.3390/antiox10091469