In Search of Antioxidant Peptides from Porcine Liver Hydrolysates Using Analytical and Peptidomic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Porcine Liver Hydrolysate
2.2. Free Amino Acid Profile
2.3. Antioxidant Activity
2.3.1. DPPH Radical Scavenging Activity
2.3.2. ABTS Radical Scavenging Activity
2.3.3. Ferric Reducing Antioxidant Power Assay (FRAP)
2.3.4. Oxygen Radical Absorbance Capacity Assay (ORAC)
2.4. Peptidomic Analysis
2.4.1. Identification of Peptides by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS) Analysis
2.4.2. Label-Free Relative Quantitative Analysis by Mass Spectrometry
2.5. Statistical Analysis
3. Results
3.1. Characterization of Porcine Liver Hydrolysates by Enzymatic Reaction
3.1.1. Amino Acid Composition of Porcine Liver Hydrolysates
3.1.2. Peptide Composition of Porcine Liver Hydrolysates
3.2. Antioxidant Capacity of Porcine Liver Hydrolysates
3.2.1. Antioxidant Effect of Free Amino Acids from Porcine Liver Hydrolysates
3.2.2. Peptides of Porcine Liver Hydrolysates with Antioxidant Capacity
4. Discussion
4.1. Characterization of Porcine Liver Hydrolysates by Enzymatic Reactions
4.2. Antioxidant Capacity of Porcine Liver Hydrolysates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 15, 223–250. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Aristoy, M.C.; Toldrá, F. Optimisation of a simple and reliable label-free methodology for the relative quantitation of raw pork meat proteins. Food Chem. 2015, 182, 74–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agyei, D.; Tsopmo, A.; Udenigwe, C.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem. 2018, 410, 3463–3472. [Google Scholar] [CrossRef] [PubMed]
- Saadi, S.; Saari, N.; Anwar, F.; Abdul Hamid, A.; Ghazali, H.M. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnol. Adv. 2015, 33, 80–116. [Google Scholar] [CrossRef] [PubMed]
- Maluf, J.U.; Fiorese, M.L.; Maestre, K.L.; Dos Passos, F.R.; Finkler, J.K.; Fleck, J.F.; Borba, C.E. Optimization of the porcine liver enzymatic hydrolysis conditions. J. Food Process Eng. 2020, 43, e13370. [Google Scholar] [CrossRef]
- Matsuda, Y.; Haniu, H.; Tsukahara, T.; Uemura, T.; Inoue, T.; Sako, K.I.; Kojima, J.; Mori, T.; Sato, K. Oral administration of porcine liver decomposition product for 4 weeks enhances visual memory and delayed recall in healthy adults over 40 years of age: A randomized, double-blind, placebo-controlled study. Exp. Gerontol. 2020, 141, 111064. [Google Scholar] [CrossRef] [PubMed]
- López-Pedrouso, M.; Borrajo, P.; Amarowicz, R.; Lorenzo, J.M.; Franco, D. Peptidomic analysis of antioxidant peptides from porcine liver hydrolysates using SWATH-MS. J. Proteomics 2021, 232, 104037. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, Y.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, S.; Luo, G.; Bui, X.T. Sustainable enzymatic technologies in waste animal fat and protein management. J. Environ. Manag. 2021, 284, 112040. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xing, L.; Fu, Q.; Zhou, G.H.; Zhang, W.G. A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants 2016, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Franco, D.; Lorenzo, J.M. Effect of muscle and intensity of finishing diet on meat quality of foals slaughtered at 15 months. Meat Sci. 2014, 96, 327–334. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.; Proteggenete, A.; Pannala, A.; Yang, M.; Rice-Evans, C.; et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huan, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Shilov, I.V.; Seymourt, S.L.; Patel, A.A.; Loboda, A.; Tang, W.H.; Keating, S.P.; Hunter, C.L.; Nuwaysir, L.M.; Schaeffer, D.A. The paragon algorithm, a next generation search engine that uses sequence temperature values sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol. Cell. Proteomics 2007, 6, 1638–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Matsuda, Y.; Togitani, T.; Ikemoto, N.; Terashima, M. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 2018, 245, 750–755. [Google Scholar] [CrossRef]
- Seong, P.N.; Park, K.M.; Cho, S.H.; Kang, S.M.; Kang, G.H.; Park, B.Y.; Moon, S.S.; Van Ba, H. Characterization of Edible Pork By-products by Means of Yield and Nutritional Composition. Korean J. Food Sci. Anim. Resour. 2014, 34, 434–447. [Google Scholar] [CrossRef] [Green Version]
- Storck, L.J.; Ruehlin, M.; Gaeumann, S.; Gisi, D.; Schmocker, M.; Meffert, P.J.; Imoberdorf, R.; Pless, M.; Ballmer, P.E. Effect of a leucine-rich supplement in combination with nutrition and physical exercise in advanced cancer patients: A randomized controlled intervention trial. Clin. Nutr. 2020, 39, 3637–3644. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, L.J.C. Leucine as a pharmaconutrient in health and disease. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Bian, H.; Li, P.; Sun, Z.; Sun, C.; Zhang, M.; Geng, Z.; Xu, W.; Wang, D. Optimization and physicochemical properties of nutritional protein isolate from pork liver with ultrasound-assisted alkaline extraction. Anim. Sci. J. 2018, 89, 456–466. [Google Scholar] [CrossRef]
- Gokoglu, N.; Yerlikaya, P.; Ucak, I.; Yatmaz, H.A. Effect of bromelain and papain enzymes addition on physicochemical and textural properties of squid (Loligo vulgaris). J. Food Meas. Charact. 2017, 11, 347–353. [Google Scholar] [CrossRef]
- Rossini, K.; Noreña, C.P.Z.; Cladera-Olivera, F.; Brandelli, A. Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat. LWT-Food Sci. Technol. 2009, 42, 862–867. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Martínez, J.; Nieto, G.; Ros, G. Total antioxidant capacity of meat and meat products consumed in a reference “Spanish standard diet”. Int. J. Food Sci. Technol. 2014, 49, 2610–2618. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, Q.F.; Xu, H.P.; Fang, G.F.; Wang, S.D.; Li, C.H.; Wang, Y.D.; Wang, H.; Zeng, Y.Q. Comparison and relationship between meat colour and antioxidant capacity of different pig breeds. Anim. Prod. Sci. 2018, 50, 2152–2157. [Google Scholar] [CrossRef]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Ao, J.; Li, B. Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen. Food Sci. Technol. Int. 2012, 18, 425–434. [Google Scholar] [CrossRef]
- Nurilmala, M.; Hizbullah, H.H.; Karnia, E.; Kusumaningtyas, E.; Ochiai, Y. Characterization and Antioxidant Activity of Collagen, Gelatin, and the Derived Peptides from Yellowfin Tuna (Thunnus albacares) Skin. Mar. Drugs 2020, 18, 98. [Google Scholar] [CrossRef] [Green Version]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Zhang, M.; Yao, W. Antioxidant acivity of hydrolysates and peptide fractions of porcine plasma albumin and globulin. J. Food Biochem. 2008, 32, 693–707. [Google Scholar] [CrossRef]
- Vilhjálmsdóttir, J.; Gennis, R.B.; Brzezinski, P. The electron distribution in the “activated” state of cytochrome c oxidase. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Croom, E. Metabolism of Xenobiotics of Human Environments, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 112, ISBN 9780124158139. [Google Scholar]
AA | Alcalase | Bromelain | Flavourzyme | Papain | SEM | p-Value |
---|---|---|---|---|---|---|
Essential | ||||||
His | 55.28 d | 137.76 b | 212.15 a | 89.31 c | 12.88 | <0.0001 |
Iso | 88.10 b | 66.38 c | 149.88 a | 65.11 c | 7.70 | <0.0001 |
Leu | 192.40 bc | 221.65 b | 353.05 a | 152.95 c | 17.40 | <0.0001 |
Lys | 189.90 b | 213.60 ab | 239.41 a | 74.83 c | 14.94 | <0.0001 |
Met | 93.21 b | 79.38 b | 142.68 a | 52.50 c | 7.33 | <0.0001 |
Phe | 83.01 b | 69.30 b | 189.71 a | 63.65 b | 11.40 | <0.0001 |
Thr | 1.08 d | 68.26 b | 140.46 a | 29.40 c | 11.05 | <0.0001 |
Val | 111.65 b | 79.31 c | 220.51 a | 77.80 c | 12.89 | <0.0001 |
Total EAA | 814.65 b | 935.66 b | 1647.88 a | 605.56 c | 87.86 | <0.0001 |
Non-Essential | ||||||
Arg * | 22.36 c | 81.88 b | 192.26 a | 8.71 c | 15.43 | <0.0001 |
Ala | 176.50 a | 124.43 bc | 151.41 ab | 98.75 c | 9.19 | 0.008 |
Asp | 7.21 c | 37.96 b | 98.01 a | 38.65 b | 7.22 | <0.0001 |
Cis | 153.51 b | 37.96 c | 204.36 a | 25.11 c | 16.32 | <0.0001 |
Glu | 127.08 b | 59.40 c | 234.11 a | 137.01 b | 13.90 | <0.0001 |
Gli | 130.63 b | 161.50 a | 131.13 b | 125.88 b | 4.04 | 0.01 |
Pro | 22.35 c | 229.35 a | 53.01 b | 60.55 b | 17.51 | <0.0001 |
Ser | 10.63 d | 148.00 b | 234.58 a | 93.05 c | 17.58 | <0.0001 |
Tau * | 16.25 d | 23.46 c | 31.40 b | 42.63 a | 2.19 | <0.0001 |
Tyr | 91.18 a | 64.36 b | 86.93 a | 49.80 c | 4.07 | <0.0001 |
Total NEAA | 757.73 c | 968.38 b | 1417.25 a | 680.16 c | 66.57 | <0.0001 |
Total FAA | 1572.38 bc | 1904.05 b | 3065.13 a | 1285.73 c | 153.79 | <0.0001 |
Ratio EAA/NEAA | 1.07 b | 0.96 c | 1.16 a | 0.88 d | 0.02 | <0.0001 |
Aminoacid | ABTS | DPPH | FRAP | ORAC |
---|---|---|---|---|
His | −0.654 | −0.542 | ||
Thr | −0.662 | −0.559 | ||
Asp | −0.687 | −0.893 | ||
Pro | 0.704 | 0.541 | ||
Ser | −0.770 | −0.622 | ||
Tau | −0.727 | −0.666 | −0.591 |
Peptide Sequence | Protein of Origin | Gen (Uniprot ID) | Alcalase | Bromelain | Flavourzyme | Papain | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
GVRGPNGDSGRP[Oxi]GEP[Oxi]G | Fibrillar collagen NC1 domain-containing protein | COL1A2 | 46,984 a | 237,462 b | 655,298c | 12,167 a | 97.120 | <0.001 |
GSP[Oxi]GPSGSP[Oxi]GQRGEP[Oxi]GPQ | Collagen type III alpha 1 chain | COL3A1 | 11,730 a | 13,765 a | 232,011b | 22,998 a | 35.482 | <0.001 |
TDPDAPSRKDPKYR | UP | PEBP1 | 266,420 c | 322,481d | 94,672 b | 10,957 a | 48.467 | 0.002 |
SP[Oxi]GPDGKTGPP[Oxi]GPAG | Collagen alpha-1(I) chain preproprotein | COL1A1 | 40,343 a | 355,355b | 45,816 a | 33,045 a | 51.950 | <0.001 |
GSP[Oxi]GPSGSP[Oxi]GQRGEP[Oxi]GP | Collagen type III alpha 1 chain | COL3A1 | 27,410 a | 14,226 a | 198,625 b | 277,532c | 45.123 | 0.024 |
GASGPAGPRGPP[Oxi]GSAGAP[Oxi]GKDG | Collagen alpha-1(I) chain preproprotein | COL1A1 | 5415 a | 95,886 b | 278,639c | 107,394 b | 39.555 | 0.022 |
VLSAADKANVK | GLOBIN domain-containing protein | LOC110259958 | 7566 a | 12,638 a | 10,862 a | 809,312b | 142.092 | 0.042 |
AP[Oxi]GDKGETGPSGPAGPTG | Collagen alpha-1(I) chain preproprotein | COL1A1 | 443 a | 8189 a | 151,220 b | 463,662c | 73475 | 0.009 |
GKDGEAGAQGPP[Oxi]GPA | Collagen alpha-1(I) chain preproprotein | COL1A1 | 32,253 a | 10,023 a | 833,315b | 77,903 a | 130.966 | <0.001 |
GVQGPP[Oxi]GPAGEEGKRG | Collagen alpha-1(I) chain preproprotein | COL1A1 | 9582 a | 19,649 a | 595,576b | 4043 a | 95.797 | <0.001 |
RKPPTDEESLEK | Glutathione transferase | GSTO1 | 372,448c | 6332 a | 29,252 a | 122,768 b | 56.928 | 0.009 |
M[DTM]GDSRDPASDQMK | Catalase | CAT | 15,852 | 203,806 | 934 | 428,309 | 72.553 | 0.061 |
GHQGAVGSP[Oxi]GPAGP | Collagen type III alpha 1 chain | COL3A1 | 66,649 | 199,720 | 7523 | 375,109 | 59.011 | 0.058 |
GASGPAGPRGPP[Oxi]GSA | Collagen alpha-1(I) chain preproprotein | COL1A1 | 9990 a | 17,658 a | 308,010c | 52,706 b | 46.659 | <0.001 |
GPVGPSGPP[Oxi]GKDGASG | Collagen type III alpha 1 chain | COL3A1 | 31,327 a | 25,684 a | 14,649 a | 212,882b | 31.988 | 0.007 |
GAP[Oxi]GDKGETGPSGPAGPT | Collagen alpha-1(I) chain preproprotein | COL1A1 | 71,644 a | 8189 a | 267,506 b | 455,180c | 69.021 | 0.011 |
SGPAGPRGPP[Oxi]GSA | Collagen alpha-1(I) chain preproprotein | COL1A1 | 429,583 | 6914 | 173,859 | 116,358 | 64.360 | 0.051 |
GLP[Oxi]GTSGPP[Oxi]GENGKP[Oxi]GEP[Oxi]GPK | Collagen type III alpha 1 chain | COL3A1 | 40,928 | 588,757 | 285,781 | 156,852 | 126.713 | 0.560 |
GSP[Oxi]GERGEVGPAGPNG | Fibrillar collagen NC1 domain-containing protein | COL1A2 | 4779 a | 11,815 a | 509,034b | 12,027 a | 81.786 | <0.001 |
DQGPVGRTGETGASGP[Oxi]PG | Fibrillar collagen NC1 domain-containing protein | COL1A2 | 18,656 b | 23,656 b | 309,185c | 11,533 a | 47.713 | <0.001 |
AHHPDDFNPSVH | GLOBIN domain-containing protein | LOC110259958 | 88,515 | 23,406 | 362,462 | 889,540 | 209.499 | 0.549 |
GPIGSRGPSGPP[Oxi]GPDGNKGEP[Oxi]G | Fibrillar collagen NC1 domain-containing protein | COL1A2 | 1213 a | 3841 a | 208,112c | 17,469 b | 32.948 | <0.001 |
GPRGPP[Oxi]GAVGAP[Oxi]GPQG | Fibrillar collagen NC1 domain-containing protein | COL1A2 | 970 a | 248,171 b | 631,331c | 4146 a | 97.820 | <0.001 |
EQEKQNPDSEFH | UP | LOC100739741 | 23,441 | 124,249 | 268,476 | 77,106 | 40.512 | 0.131 |
PGQ.QKNQPMTPEAVK | UP | N/A | 20,703 | 76,285 | 153,275 | 56,800 | 20.676 | 0.080 |
SDGLKHLDNLK | GLOBIN domain-containing protein | LOC100515788 | 1297 a | 6,029,690c | 104,465 ab | 831,244 b | 956.604 | 0.001 |
GAGGGAGGGGAGAGAGGGGAGA | Glutamate metabotropic receptor 5 | GRM5 | 74,644 b | 300,710c | 21,625 a | 10,893 a | 44.587 | <0.001 |
GPHEREPTAL | AMP-binding domain-containing protein | SLC27A5 | 331,724 | 7805 | 22,616 | 366,344 | 71.764 | 0.085 |
EPDAGDDDSKGSGQ | Ras protein specific guanine nucleotide releasing factor 2 | RASGRF2 | 951 a | 164,542d | 26,459 b | 68,937 c | 23.835 | 0.001 |
LSDLHAHKLRVDPVN | GLOBIN domain-containing protein | LOC110259958 | 1955 a | 2686 a | 1123 a | 194,505b | 32.480 | 0.006 |
GPN[Dea]GDSGRP[Oxi]GEP[Oxi]GLM | Fibrillar collagen NC1 domain-containing protein | COL1A2 | 241,883 | 23,838 | 49,764 | 124,129 | 38.072 | 0.145 |
LANVVALTMEPK | 60 kDa chaperonin | N/A | 194,959 | 43,520 | 245,393 | 5966 | 47.643 | 0.220 |
GDAGPP[Oxi]GPAGPTGPP[Oxi]GPIGS | Collagen alpha-1(I) chain preproprotein | COL1A1 | 8915 | 26,500 | 221,936 | 111,099 | 35.314 | 0.060 |
IGENIDEKPLPT | UP | N/A | 120,355 | 142,542 | 144,051 | 459,694 | 61.995 | 0.119 |
AGSPGGGAAGPGPAGGGP | Ran-binding protein 9 | RANBP9 | 658,925c | 84,934 a | 261,216 b | 172,460 ab | 85.995 | 0.009 |
DPPKTASYPVIIQ | Rhodanese domain-containing protein | TSTD2 | 237,853b | 18,072 a | 40,463 a | 29,690 a | 34.637 | 0.001 |
NDNPDIPKLKPDPV | Albumin | ALB | 210,501c | 13,125 a | 49,642 b | 52,975 b | 29.353 | 0.003 |
ILASCGLTDAACRLL | NACHT, LRR and PYD domains-containing protein 5 | Nlrp5 | 63,744 | 285,536 | 8094 | 96,696 | 44.753 | 0.087 |
GIIGPLGILGP | collagen alpha-1(XXVII) chain isoform X1 | COL27A1 | 2610 a | 13,191 a | 1,506,056b | 22,977 a | 244.419 | <0.001 |
IGAMIGAI | ATPase | CSA50_09160 | 124,276 a | 51,483 a | 2,046,297b | 99,598 a | 320.834 | <0.001 |
DSGAPIKIPVGPE | ATP synthase subunit beta | ATPB | 439,736b | 15,127 a | 22,057 a | 66,749 a | 67.888 | 0.002 |
LEGTLLKPNMVT | Fructose-bisphosphate aldolase | ALDOB | 5,032,015c | 19,118 a | 10,580 a | 214,393 b | 811.361 | <0.001 |
DNPDIPKLKPDPVAL | Albumin | ALB | 164,367d | 55,725 c | 27,651 b | 16,727 a | 22.199 | <0.001 |
PGQ.QSFSDGLKHLDNLK | GLOBIN domain-containing protein | LOC100515788 | 9644 a | 14,854 a | 2152 a | 1,049,207b | 179.207 | 0.017 |
WDGLNPDKLYT | UP | PEBP1 | 99,491 a | 358,524 b | 32,772 a | 326,020 b | 57.198 | 0.034 |
SGNPNGEGLPHWP | Carboxylic ester hydrolase | APLE | 19,318 b | 5361 a | 557,870c | 12,771 ab | 89.312 | <0.001 |
PGQ.QSFSDGLKHLDNLKGTFAK | GLOBIN domain-containing protein | LOC100515788 | 340 | 530 | 487 | 791,589 | 142.101 | 0.051 |
GPPLRPDPSTPDFL | Dihydropyrimidinase | DPYS | 382,297c | 12,485 b | 1754 a | 3846 a | 61.622 | <0.001 |
DFQEDEQKFW | Albumin | ALB | 526,201 b | 1,619,475c | 17,232 a | 400,233 b | 226.685 | <0.001 |
GIPIPVTPKNPW | Argininosuccinate synthase | ASS1 | 809,850b | 12,991 a | 764 a | 5895 a | 131.502 | <0.001 |
DQLHVDPENFRLLG | GLOBIN domain-containing protein | LOC100515788 | 33,561 b | 7863 a | 603,419c | 5475 a | 96.371 | <0.001 |
AMPDIPVPLTN | Aldehyde dehydrogenase 1 family member A1 | ALDH1A1 | 35,049 a | 188,598 a | 12,213 a | 576,409b | 92.337 | 0.037 |
DQLHVDPENFRLL | GLOBIN domain-containing protein | LOC100515788 | 1047 a | 9104 a | 1585 a | 232,710b | 40.397 | 0.035 |
SVGPVGPAGPI | collagen alpha-2(I) chain isoform X2 | LOC101341020 | 1,210,722c | 1,126,713 c | 476,081 b | 7974 a | 187.098 | <0.001 |
PGQ.QLHVDPENFRLLG | GLOBIN domain-containing protein | LOC100515788 | 3571 a | 14,016 a | 446 a | 268,209b | 45.742 | 0.025 |
PGQ.QLHVDPENFRLL | GLOBIN domain-containing protein | LOC100515788 | 4500 | 9124 | 10,757 | 702,733 | 125.698 | 0.058 |
LVLMILVL | Cytochrome b | CYB | 427,002b | 18,871 a | 15,799 a | 582 a | 68.566 | <0.001 |
Peptide | Protein of Origin | Gen | DPPH | ABTS | ORAC | Enzyme |
---|---|---|---|---|---|---|
SVGPVGPAGPI | Collagen alpha-2(I) chain isoform X2 | LOC101341020 | 0.833 * | Alcalase | ||
SP[Oxi]GPDGKTGPP[Oxi]GPAG | Collagen alpha-1(I) chain preproprotein | COL1A1 | 0.850 ** | Bromelain | ||
GSP[Oxi]GPSGSP[Oxi]GQRGEP[Oxi]GP | Collagen type III alpha 1 chain | COL3A1 | −0.777 * | −0.715 * | Papain | |
GAP[Oxi]GDKGETGPSGPAGPT | Collagen alpha-1(I) chain preproprotein | COL1A1 | −0.843 ** | Papain | ||
NDNPDIPKLKPDPV | Albumin | ALB | 0.917 ** | 0.729 * | Alcalase | |
DNPDIPKLKPDPVAL | Albumin | ALB | 0.990 ** | 0.788 * | Alcalase | |
DFQEDEQKFW | Albumin | ALB | 0.836 * | Bromelain | ||
SDGLKHLDNLK | GLOBIN domain-containing protein | LOC100515788 | 0.753 * | Bromelain | ||
LVLMILVL | Cytochrome b | CYB | 0.983 ** | 0.765 * | Alcalase | |
LEGTLLKPNMVT | Fructose-bisphosphate aldolase | ALDOB | 0.986 ** | 0.761 * | Alcalase | |
GPPLRPDPSTPDFL | Dihydropyrimidinase | DPYS | 0.991 | 0.776 * | Alcalase | |
GIPIPVTPKNPW | Argininosuccinate synthase | ASS1 | 0.990 ** | 0.770 * | Alcalase | |
GAGGGAGGGGAGAGAGGGGAGA | Glutamate metabotropic receptor 5 | GRM5 | 0.916 ** | Bromelain | ||
AGSPGGGAAGPGPAGGGP | Ran-binding protein 9 | RANBP9 | 0.875 ** | 0.757 * | Alcalase | |
DPPKTASYPVIIQ | Rhodanese domain-containing protein | TSTD2 | 0.966 ** | Alcalase | ||
DSGAPIKIPVGPE | ATP synthase subunit beta | ATPB | 0.963 ** | Alcalase | ||
TDPDAPSRKDPKYR | UP | PEBP1 | 0.937 ** | Bromelain |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Pedrouso, M.; Lorenzo, J.M.; Borrajo, P.; Franco, D. In Search of Antioxidant Peptides from Porcine Liver Hydrolysates Using Analytical and Peptidomic Approach. Antioxidants 2022, 11, 27. https://doi.org/10.3390/antiox11010027
López-Pedrouso M, Lorenzo JM, Borrajo P, Franco D. In Search of Antioxidant Peptides from Porcine Liver Hydrolysates Using Analytical and Peptidomic Approach. Antioxidants. 2022; 11(1):27. https://doi.org/10.3390/antiox11010027
Chicago/Turabian StyleLópez-Pedrouso, María, José M. Lorenzo, Paula Borrajo, and Daniel Franco. 2022. "In Search of Antioxidant Peptides from Porcine Liver Hydrolysates Using Analytical and Peptidomic Approach" Antioxidants 11, no. 1: 27. https://doi.org/10.3390/antiox11010027
APA StyleLópez-Pedrouso, M., Lorenzo, J. M., Borrajo, P., & Franco, D. (2022). In Search of Antioxidant Peptides from Porcine Liver Hydrolysates Using Analytical and Peptidomic Approach. Antioxidants, 11(1), 27. https://doi.org/10.3390/antiox11010027