Advances in Production of Hydroxycinnamoyl-Quinic Acids: From Natural Sources to Biotechnology
Abstract
:1. Introduction
2. HCQAs Extraction from Plants and Agricultural Waste
2.1. HCQAs Biosynthesis in Plants
2.1.1. Plant Sources of HCQAs
2.1.2. Marine Sources of HCQAs
2.2. HCQAs Extraction
3. Chemical Synthesis of HCQAs
4. Biosynthesis of HCQAs in Non-Modified and Modified Micro-Organisms
4.1. Non-Modified Micro-Organisms
4.2. Modified Micro-Organisms
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Silva, N.; Mazzafera, P.; Cesarino, I. Should I stay or should I go: Are chlorogenic acids mobilized towards lignin biosynthesis? Phytochemistry 2019, 166, 112063. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.; Jaganath, I.; Ludwig, I.; Crozier, A. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 2017, 34, 1391–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrankó, L.; Clifford, M. An Unambiguous Nomenclature for the Acyl-Quinic Acids Commonly Known as Chlorogenic Acids. J. Agric. Food Chem. 2017, 65, 3602–3608. [Google Scholar] [CrossRef] [PubMed]
- DataIntelo. Global Chlorogenic Acid Market Report, History and Forecast 2014–2025, Breakdown Data by Manufacturers, Key Regions, Types and Application. Available online: https://dataintelo.com/report/chlorogenic-acid-market (accessed on 15 March 2022).
- Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Gouthamchandra, K.; Sudeep, H.; Venkatesh, B.; Shyam Prasad, K. Chlorogenic acid complex (CGA7), standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells. Food Sci. Hum. Wellness 2017, 6, 147–153. [Google Scholar] [CrossRef]
- Cao, X.; Islam, M.N.; Duan, Z.; Pan, X.; Xu, W.; Wei, X.; Zhong, S. Chlorogenic acid osmosis of snakehead fish: A novel approach to maintain quality and suppress deterioration during storage. Int. J. Food Prop. 2020, 23, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Cho, A.-S.; Jeon, S.-M.; Kim, M.-J.; Yeo, J.; Seo, K.-I.; Choi, M.-S.; Lee, M.-K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010, 48, 937–943. [Google Scholar] [CrossRef]
- Ali, F.; Hassan, N.; Abdrabou, R. Hepatoprotective and antiproliferative activity of moringinine, chlorogenic acid and quercetin. Int. J. Med. Sci. 2016, 4, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, D.; Jia, Y.; He, L.; Li, J.; Yu, C.; Liao, C.; Yu, Z.; Zhang, C. Research Note: Anti-inflammatory effects and antiviral activities of baicalein and chlorogenic acid against infectious bursal disease virus in embryonic eggs. Poult. Sci. 2021, 100, 100987. [Google Scholar] [CrossRef]
- Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; et al. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Heitman, E.; Ingram, D. Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci. 2017, 20, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Narita, Y.; Inouye, K. Inhibitory effects of chlorogenic acids from green coffee beans and cinnamate derivatives on the activity of porcine pancreas α-amylase isozyme I. Food Chem. 2011, 127, 1532–1539. [Google Scholar] [CrossRef] [Green Version]
- Narita, Y.; Inouye, K. Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas α-amylase isozymes I and II. J. Agric. Food Chem. 2009, 57, 9218–9225. [Google Scholar] [CrossRef] [PubMed]
- Bajko, E.; Kalinowska, M.; Borowski, P.; Siergiejczyk, L.; Lewandowski, W. 5-O-Caffeoylquinic acid: A spectroscopic study and biological screening for antimicrobial activity. LWT Food Sci. Technol. 2016, 65, 471–479. [Google Scholar] [CrossRef]
- Buron, N.; Coton, M.; Desmarais, C.; Ledauphin, J.; Guichard, H.; Barillier, D.; Coton, E. Screening of representative cider yeasts and bacteria for volatile phenol-production ability. Food Microbiol. 2011, 28, 1243–1251. [Google Scholar] [CrossRef]
- Whiting, G.C.; Carr, J.G. Chlorogenic Acid Metabolism in Cider Fermentation. Nature 1957, 180, 1479. [Google Scholar] [CrossRef]
- Torres-Mancera, M.T.; Baqueiro-Peña, I.; Figueroa-Montero, A.; Rodríguez-Serrano, G.; González-Zamora, E.; Favela-Torres, E.; Saucedo-Castañeda, G. Biotransformation and improved enzymatic extraction of chlorogenic acid from coffee pulp by filamentous fungi. Biotechnol. Prog. 2013, 29, 337–345. [Google Scholar] [CrossRef]
- Gauthier, L.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol. 2016, 221, 61–68. [Google Scholar] [CrossRef]
- Kulik, T.; Stuper-Szablewska, K.; Bilska, K.; Buśko, M.; Ostrowska-Kołodziejczak, A.; Załuski, D.; Perkowski, J. Trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto. Toxins 2017, 9, 198. [Google Scholar] [CrossRef]
- Bel-Rhlid, R.; Thapa, D.; Kraehenbuehl, K.; Fischer, L. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533. AMB Express 2013, 3, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfiky, A.A. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J. Biomol. Struct. Dyn. 2021, 39, 3194–3203. [Google Scholar] [CrossRef] [PubMed]
- Parkar, S.G.; Trower, T.M.; Stevenson, D.E. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 2013, 23, 12–19. [Google Scholar] [CrossRef]
- Clifford, M.N.; Copeland, E.L.; Bloxsidge, J.P.; Mitchell, L.A. Hippuric acid as a major excretion product associated with black tea consumption. Xenobiotica 2000, 30, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Rechner, A.R.; Spencer, J.P.; Kuhnle, G.; Hahn, U.; Rice-Evans, C.A. Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Free Radic. Biol. Med. 2001, 30, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, M.-P.; Verny, M.-A.; Besson, K.; Rémésy, C.; Scalbert, A. Chlorogenic Acid Bioavailability Largely Depends on Its Metabolism by the Gut Microflora in Rats. J. Nutr. 2003, 133, 1853–1859. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.; Jun, S.H.; Park, Y.; Cha, S.-H.; Yoon, M.; Cho, S.; Lee, H.-J.; Park, Y. Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation. Nanotechnol. Biol. Med. 2015, 11, 1677–1688. [Google Scholar] [CrossRef]
- Chen, R.; Wu, S.; Meng, C. Size-tunable green synthesis of platinum nanoparticles using chlorogenic acid. Res. Chem. Intermed. 2021, 47, 1775–1787. [Google Scholar] [CrossRef]
- Salimi, S.; Hallaj, R.; Ghadermazi, M. Modification of carbon ceramic electrode prepared with sol–gel technique by a thin film of chlorogenic acid: Application to amperometric detection of NADH. Talanta 2005, 65, 888–894. [Google Scholar] [CrossRef]
- Moccia, F.; Martín, M.; Ramos, S.; Goya, L.; Marzorati, S.; DellaGreca, M.; Panzella, L.; Napolitano, A. A new cyanine from oxidative coupling of chlorogenic acid with tryptophan: Assessment of the potential as red dye for food coloring. Food Chem. 2021, 348, 129152. [Google Scholar] [CrossRef]
- Jiao, W.; Shu, C.; Li, X.; Cao, J.; Fan, X.; Jiang, W. Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biol. Technol. 2019, 154, 129–136. [Google Scholar] [CrossRef]
- Abdullah, A.; Ismail, Z.; Zainal Abidin, A.; Yusoh, K. Green sonochemical synthesis of few-layer graphene in instant coffee. Mater. Chem. Phys. 2019, 222, 11–19. [Google Scholar] [CrossRef]
- Flourat, A.; Combes, J.; Bailly-Maitre-Grand, C.; Magnien, K.; Haudrechy, A.; Renault, J.-H.; Allais, F. Accessing p-Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production? ChemSusChem 2021, 14, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Can, T.H.; Tufekci, E.F.; Altunoglu, Y.C.; Baloglu, M.C.; Llorent-Martínez, E.J.; Stefanucci, A.; Mollica, A.; Cichelli, A.; Zengin, G. Chemical characterization, computational analysis and biological views on Daphne gnidioides Jaub. Spach extracts: Can a new raw material be provided for biopharmaceutical applications? Comput. Biol. Chem. 2020, 87, 107273. [Google Scholar]
- Zhang, X.; Liu, D.-Y.; Shang, H.; Jia, Y.; Xu, X.-D.; Tian, Y.; Guo, P. Amino acid ester-coupled caffeoylquinic acid derivatives as potential hypolipidemic agents: Synthesis and biological evaluation. RSC Adv. 2021, 11, 1654–1661. [Google Scholar] [CrossRef]
- COSMOS. 27 April 2021. Available online: http://www.cosmos-standard-rm.org/verifmp.php (accessed on 15 September 2021).
- Svetol. 27 April 2021. Available online: http://www.svetol.com/what-is-svetol/ (accessed on 16 September 2021).
- Valiñas, M.A.; Lanteri, M.L.; ten Have, A.; Andreu, A.B. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum). J. Agric. Food Chem. 2015, 63, 4902–4913. [Google Scholar] [CrossRef]
- Lee, D.; Douglas, C.J. Two Divergent Members of a Tobacco 4-Coumarate:Coenzyme A Ligase (4CL) Gene Family (cDNA Structure, Gene Inheritance and Expression, and Properties of Recombinant Proteins). Plant Physiol. 1996, 112, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Niggeweg, R.; Michael, A.J.; Martin, C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 2004, 22, 746–754. [Google Scholar] [CrossRef]
- Mahesh, V.; Million-Rousseau, R.; Ullmann, P.; Chabrillange, N.; Bustamante, J.; Mondolot, L.; Morant, M.; Noirot, M.; Hamon, S.; De Kochko, A.; et al. Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: Evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol. Biol. 2007, 64, 145–159. [Google Scholar] [CrossRef]
- Joet, T.; Salmona, J.; Laffargue, A.; Descroix, F.; Dussert, S. Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation. Plant Cell Environ. 2010, 33, 1220–1233. [Google Scholar] [CrossRef] [Green Version]
- LLallemand, L.A.; Zubieta, C.; Lee, S.G.; Wang, Y.; Acajjaoui, S.; Timmins, J.; McSweeney, S.; Jez, J.M.; McCarthy, J.G.; McCarthy, A.A. A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee. Plant Physiol. 2012, 160, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Moglia, A.; Lanteri, S.; Comino, C.; Hill, L.; Knevitt, D.; Cagliero, C.; Rubiolo, P.; Bornemann, S.; Martin, C. Dual Catalytic Activity of Hydroxycinnamoyl-Coenzyme A Quinate Transferase from Tomato Allows It to Moonlight in the Synthesis of Both Mono- and Dicaffeoylquinic Acids. Plant Physiol. 2014, 166, 1777–1787. [Google Scholar] [CrossRef] [PubMed]
- Sissi, M.; Guillaume, L.; Léonor, D.; Delporte, M.; Menin, B.; Michel, C.; Alexandre, O.; Gabrielle, C.; Aleksander, S.; Joakim, B.; et al. A GDSL lipase-like from Ipomoea batatas catalyzes efficient production of 3,5-diCQA when expressed in Pichia pastoris. Commun. Biol. 2020, 3, 673. [Google Scholar]
- Mhlongo, M.I.; Piater, L.A.; Steenkamp, P.A.; Madala, N.E.; Dubery, I.A. Metabolomic fingerprinting of primed tobacco cells provide the first evidence for the biological origin of cis-chlorogenic acid. Biotechnol. Lett. 2015, 37, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Karaköse, H.; Jaiswal, R.; Deshpande, S.; Kuhnert, N. Investigation of the Photochemical Changes of Chlorogenic Acids Induced by Ultraviolet Light in Model Systems and in Agricultural Practice with Stevia rebaudiana Cultivation as an Example. J. Agric. Food Chem. 2015, 63, 3338–3347. [Google Scholar] [CrossRef]
- Hoffmann, L.; Maury, S.; Martz, F.; Geoffroy, P.; Legrand, M. Purification, Cloning, and Properties of an Acyltransferase Controlling Shikimate and Quinate Ester Intermediates in Phenylpropanoid Metabolism. J. Biol. Chem. 2003, 278, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Wang, D.; Liu, J.; Yu, X.; Wang, R.; Wei, Y.; Wen, C.; Ouyang, Z. Transcriptomic analysis of key genes involved in chlorogenic acid biosynthetic pathway and characterization of MaHCT from Morus alba L. Protein Expr. Purif. 2019, 156, 25–35. [Google Scholar] [CrossRef]
- Farah, A.; Donangelo, C. Phenolic compounds in coffee. Braz. J. Plant Physiol. 2006, 18, 23–36. [Google Scholar] [CrossRef]
- Gutiérrez Ortiz, A.; Berti, F.; Solano Sánchez, W.; Navarini, L.; Colomban, S.; Crisafulli, P.; Forzato, C. Distribution of p-coumaroylquinic acids in commercial Coffea spp. of different geographical origin and in other wild coffee species. Food Chem. 2019, 286, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, R.; Patras, M.; Eravuchira, P.; Kuhnert, N. Profile and Characterization of the Chlorogenic Acids in Green Robusta Coffee Beans by LC-MSn: Identification of Seven New Classes of Compounds. J. Agric. Food Chem. 2010, 58, 8722–8737. [Google Scholar] [CrossRef]
- Meinhart, A.; Damin, F.; Caldeirão, L.; da Silveira, T.; Filho, J.T.; Godoy, H. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res. Int. 2017, 99, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Meinhart, A.D.; Damin, F.M.; Caldeirao, L.; de Jesus Filho, M.; da Silva, L.C.; da Silva Constant, L.; Teixeira Filho, J.; Wagner, R.; Godoy, H.T. Study of new sources of six chlorogenic acids and caffeic acid. J. Food Compos. Anal. 2019, 82, 103244. [Google Scholar] [CrossRef]
- Galani, J.; Mankad, P.M.; Shah, A.K.; Patel, N.J.; Acharya, R.R.; Talati, J.G. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum) Varieties. Hortic. Plant J. 2017, 3, 73–89. [Google Scholar] [CrossRef]
- Meinhart, A.D.; Damin, F.M.; Caldeirao, L.; de Jesus Filho, M.; da Silva, L.C.; da Silva Constant, L.; Teixeira Filho, J.; Wagner, R.; Godoy, H.T. Chlorogenic and caffeic acids in 64 fruits consumed in Brazil. Food Chem. 2019, 286, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Le, P.; Vu, Q.; Nguyen, Q.; Tran, K.A.; Le, K. Spent Coffee Grounds as a Valuable Source of Bioactive Compounds and Bioenergy. Chem. Eng. Trans. 2017, 56, 37–42. [Google Scholar]
- Aires, A.; Carvalho, R.; Saavedra, M. Reuse potential of vegetable wastes (broccoli, green bean and tomato) for the recovery of antioxidant phenolic acids and flavonoids. Int. J. Food Sci. Technol. 2017, 52, 98–107. [Google Scholar] [CrossRef]
- Murthy, P.; Naidu, M. Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products. Food Bioprocess Technol. 2012, 5, 897–903. [Google Scholar] [CrossRef]
- Waldhauser, S.; Baumann, T. Compartmentation of caffeine and related purine alkaloids depends exclusively on the physical chemistry of their vacuolar complex formation with chlorogenic acids. Phytochemistry 1996, 42, 985–996. [Google Scholar] [CrossRef]
- Pardo Torre, J.; Schmidt, G.; Paetz, C.; Reichelt, M.; Schneider, B.; Gershenzon, J.; D’Auria, J. The biosynthesis of hydroxycinnamoyl quinate esters and their role in the storage of cocaine in Erythroxylum coca. Phytochemistry 2013, 91, 177–186. [Google Scholar] [CrossRef]
- dos Santos Scholz, M.; Kitzberger, C.; Durand, N.; Rakocevic, M. From the field to coffee cup: Impact of planting design on chlorogenic acid isomers and other compounds in coffee beans and sensory attributes of coffee beverage. Eur. Food Res. Technol. 2018, 244, 1793–1802. [Google Scholar] [CrossRef]
- Klejdus, B.; Kopecký, J.; Benešová, L.; Vacek, J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J. Chromatogr. A 2009, 1216, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Jerez-Martel, I.; García-Poza, S.; Rodríguez-Martel, G.; Rico, M.; Afonso-Olivares, C.; Gómez-Pinchetti, J. Phenolic Profile and Antioxidant Activity of Crude Extracts from Microalgae and Cyanobacteria Strains. J. Food Qual. 2017, 2017, 2924508. [Google Scholar] [CrossRef] [Green Version]
- Blagojević, D.; Babić, O.; Rašeta, M.; Šibul, F.; Janjušević, L.; Simeunović, J. Antioxidant activity and phenolic profile in filamentous cyanobacteria: The impact of nitrogen. J. Appl. Phycol. 2018, 30, 2337–2346. [Google Scholar] [CrossRef]
- Onofrejová, L.; Vašíčková, J.; Klejdus, B.; Stratil, P.; Mišurcová, L.; Kráčmar, S.; Kopecký, J.; Vacek, J. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal. 2010, 51, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Boudet, A.-M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Wianowska, D.; Gil, M. Recent advances in extraction and analysis procedures of natural chlorogenic acids. Phytochem. Rev. 2019, 18, 273–302. [Google Scholar] [CrossRef] [Green Version]
- Mena-García, A.; Rodríguez-Sánchez, S.; Ruiz-Matute, A.I.; Sanz, M.L. Exploitation of artichoke byproducts to obtain bioactive extracts enriched in inositols and caffeoylquinic acids by Microwave Assisted Extraction. J. Chromatogr. A 2020, 1613, 460703. [Google Scholar] [CrossRef]
- Rajha, H.N.; Mhanna, T.; Kantar, S.E.; Khoury, A.E.; Louka, N.; Maroun, R.G. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. LWT 2019, 111, 138–146. [Google Scholar] [CrossRef]
- Verduzco-Oliva, R.; Gutierrez-Uribe, J.A. Beyond Enzyme Production: Solid State Fermentation (SSF) as an Alternative Approach to Produce Antioxidant Polysaccharides. Sustainability 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Martins, D.A.; Prado, H.F.; Leite, R.S.; Ferreira, H.; Souza Moretti, M.M.; da Silva, R.; Gomes, E. Agroindustrial Wastes as Substrates for Microbial Enzymes Production and Source of Sugar for Bioethanol Production. In Integrated Waste Management; Kumar, S., Ed.; IntechOpen: London, UK, 2011; Volume 2. [Google Scholar]
- Pinelo, M.; Zornoza, B.; Meyer, A. Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Sep. Purif. Technol. 2008, 63, 620–627. [Google Scholar] [CrossRef]
- Liu, T.; Sui, X.; Li, L.; Zhang, J.; Liang, X.; Li, W.; Zhang, H.; Fu, S. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves. Anal. Chim. Acta 2016, 903, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves. Ind. Crops Prod. 2017, 95, 393–403. [Google Scholar] [CrossRef]
- Nakkong, K.; Tangpromphan, P.; Jaree, A. The Design of Three-Zone Simulated Moving Bed Process for the Separation of Chlorogenic and Gallic Acids Extracted from Spent Coffee Grounds. Waste Biomass Valoriz. 2020, 12, 2389–2405. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Alonso, E. Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: Recovery of chlorogenic acid, phenolic content and antioxidant capacity. Food Bioprod. Process. 2021, 125, 57–67. [Google Scholar] [CrossRef]
- Li, G.; Wang, W.; Wang, Q.; Zhu, T. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle. J. Chromatogr. Sci. 2016, 54, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Daraee, A.; Ghoreishi, S.M.; Hedayati, A. Supercritical CO2 extraction of chlorogenic acid from sunflower (Helianthus annuus) seed kernels: Modeling and optimization by response surface methodology. J. Supercrit. Fluids. 2019, 144, 19–27. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, S.; Huang, H.; Hu, Y. Ionic liquid-based enzyme-assisted extraction of chlorogenic acid from Flos Lonicera Japonicae. Bioresour. Bioprocess. 2017, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Wan, H.; Tang, S.; Chen, H.; Li, J.; Zhang, K.; Zhou, B.; Fei, J.; Wu, S.; Zeng, X. Novel caffeoylquinic acid derivatives from Lonicera japonica Thunb. flower buds exert pronounced anti-HBV activities. RSC Adv. 2018, 8, 35374–35385. [Google Scholar] [CrossRef] [Green Version]
- de Souza, A.; Stefanov, S.; Bombardelli, M.; Corazza, M.; Stateva, R. Assessment of composition and biological activity of Arctium lappa leaves extracts obtained with pressurized liquid and supercritical CO2 extraction. J. Supercrit. Fluids. 2019, 152, 104573. [Google Scholar] [CrossRef]
- Granados-Vallejo, M.; Arriola-Guevara, E.; Corona-González, R.I.; Flores-Méndez, D.A.; Padilla-de la Rosa, J.D.; Esquivel-Solis, H.; Pelayo-Ortiz, C.; Guatemala-Morales, G.M. Optimization of 5-CQA Extraction Conditions from Green Coffee By-Product (Coffea arabica) Using a Response-Surface Design and the Study of Its Extraction Kinetics. Molecules 2022, 27, 5704. [Google Scholar] [CrossRef]
- Zeng, G.; Ran, Y.; Huang, X.; Li, Y.; Zhang, M.; Ding, H.; Ma, Y.; Ma, H.; Jin, L.; Sun, D. Optimization of Ultrasonic-Assisted Extraction of Chlorogenic Acid from Tobacco Waste. Int. J. Environ. Res. Public Health 2022, 19, 1555. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, S.; Abid, M.; Wu, T.; Hashim, M.M.; Saeeduddin, M.; Hu, B.; Lei, S.; Zeng, X. Ultrasound Extraction of Bioactives from Carrot. J. Food Process. Preserv. 2015, 39, 1878–1888. [Google Scholar] [CrossRef]
- Castaldo, L.; Izzo, L.; De Pascale, S.; Narváez, A.; Rodriguez-Carrasco, Y.; Ritieni, A. Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract. Molecules 2021, 26, 1968. [Google Scholar] [CrossRef]
- Riciputi, Y.; Diaz-de-Cerio, E.; Akyol, H.; Capanoglu, E.; Cerretani, L.; Caboni, M.F.; Verardo, V. Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chem. 2018, 269, 258–263. [Google Scholar] [CrossRef]
- Wang, L.-T.; Gao, M.-Z.; Yang, Q.; Cui, Q.; Jian, Y.; Fan, X.-H.; Yao, L.-P.; Fu, Y.-J. An Efficient Strategy Based on Liquid–Liquid Extraction with Acid Condition and HSCCC for Rapid Enrichment and Preparative Separation of Three Caffeoylquinic Acid Isomers From Mulberry Leaves. J. Chromatogr. Sci. 2019, 57, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Du, X.; Zu, Y.; Yang, L. A new approach for preparation of essential oil, followed by chlorogenic acid and hyperoside with microwave-assisted simultaneous distillation and dual extraction (MSDDE) from Vaccinium uliginosum leaves. Ind. Crops Prod. 2015, 77, 809–826. [Google Scholar] [CrossRef]
- Puga, H.; Alves, R.; Costa, A.; Vinha, A.; Oliveira, M. Multi-frequency multimode modulated technology as a clean, fast, and sustainable process to recover antioxidants from a coffee by-product. J. Clean. Prod. 2017, 168, 14–21. [Google Scholar] [CrossRef]
- Santos da Silveira, J.; Durand, N.; Lacour, S.; Belleville, M.-P.; Perez, A.; Loiseau, G.; Dornier, M. Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. Food Bioprod. Process. 2019, 115, 175–184. [Google Scholar] [CrossRef]
- Alves Filho, E.G.; Sousa, V.M.; Rodrigues, S.; de Brito, E.S.; Fernandes, F.A. Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrason. Sonochem. 2020, 63, 104911. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Jia, J.; Liu, J.; Ling, X.; Lu, D. Enrichment and Purification of Total Chlorogenic Acids from Tobacco Waste Extract with Macroporous Resins. Sep. Sci. Technol. 2010, 45, 794–800. [Google Scholar]
- Wang, D.; Du, N.; Wen, L.; Zhu, H.; Liu, F.; Wang, X.; Du, J.; Li, S. An Efficient Method for the Preparative Isolation and Purification of Flavonoid Glycosides and Caffeoylquinic Acid Derivatives from Leaves of Lonicera japonica Thunb. Using High Speed Counter-Current Chromatography (HSCCC) and Prep-HPLC Guided by DPPH-HPL. Molecules 2017, 22, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Liu, F.; Dai, G.; Zhang, P.; Tang, K. Preparative separation of chlorogenic acid from Eucommia ulmoides extract via fractional extraction. J. Chem. Technol. Biotechnol. 2020, 95, 2139–2148. [Google Scholar] [CrossRef]
- Han, R.; Zeng, J.; Han, L.; Wang, Y.; Chang, Q.; Zhang, X.; Zhou, J. Application of integrated membrane technology in purification of chlorogenic acid. Desalination Water Treat. 2015, 55, 2165–2170. [Google Scholar] [CrossRef]
- Li, G.; Shi, Z.; Li, D. Efficient synthesis of boronate affinity-based chlorogenic acid-imprinted magnetic nanomaterials for the selective recognition of chlorogenic acid in fruit juices. New J. Chem. 2020, 44, 11013–11021. [Google Scholar] [CrossRef]
- Mansour, M.; Abdel-Shafy, H.; Mehaya, F. Valorization of food solid waste by recovery of polyphenols using hybrid molecular imprinted membrane. J. Environ. Chem. Eng. 2018, 6, 4160–4170. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, C.; Yi, Y.; Wang, H.; Li, M.; Zhou, W.; Tan, S.; Li, F. Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Sep. Purif. Technol. 2014, 132, 396–400. [Google Scholar] [CrossRef]
- Dil, E.; Doustimotlagh, A.; Javadian, H.; Asfaram, A.; Ghaedi, M. Nano-sized Fe3O4@SiO2-molecular imprinted polymer as a sorbent for dispersive solid-phase microextraction of melatonin in the methanolic extract of Portulaca oleracea, biological, and water samples. Talanta 2021, 221, 121620. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhang, Z.; Liao, H.; Nie, L.; Yao, S. Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase. J. Chromatogr. A 2005, 1098, 66–74. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, S.; He, J.; Thirumdas, R.; Montesano, D.; Barba, F. Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: Ultra-filtration performance and HPLC-MS2 profile. Food Res. Int. 2018, 111, 291–298. [Google Scholar] [CrossRef]
- Negrel, J.; Javelle, F.; Morandi, D. Detection of a plant enzyme exhibiting chlorogenate-dependant caffeoyltransferase activity in methanolic extracts of arbuscular mycorrhizal tomato roots. Plant Physiol. Biochem. 2013, 66, 77–83. [Google Scholar] [CrossRef]
- Wianowska, D.; Typek, R.; Dawidowicz, A.L. Chlorogenic acid stability in pressurized liquid extraction conditions. J. AOAC Int. 2015, 98, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.; Zheng, W.; Kuhnert, N. Profiling the chlorogenic acids of aster by HPLC–MSn. Phytochem. Anal. 2006, 17, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S. Tailor-designed deep eutectic liquids as a sustainable extraction media: An alternative to ionic liquids. J. Pharm. Biomed. Anal. 2019, 174, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.-Z.; Cui, Q.; Wang, L.-T.; Meng, Y.; Yu, L.; Li, Y.-Y.; Fu, Y.-J. A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Yue, Y.; Huang, Q.; Fu, Y.; Chang, J. A quick selection of natural deep eutectic solvents for the extraction of chlorogenic acid from herba artemisiae scopariae. RCS Adv. 2020, 10, 23403–23409. [Google Scholar] [CrossRef]
- Tan, T.; Lai, C.-J.-S.; Yang, H.O.; He, M.-Z.; Feng, Y. Ionic liquid-based ultrasound-assisted extraction and aqueous two-phase system for analysis of caffeoylquinic acids from Flos Lonicerae japonicae. J. Pharm. Biomed. Anal. 2016, 120, 134–141. [Google Scholar] [CrossRef]
- Burniol-Figols, A.; Cenian, K.; Skiadas, I.V.; Gavala, H.N. Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds. Biochem. Eng. J. 2016, 111, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.; Fiol, N.; Villaescusa, I.; Pereira, H. The chemical composition of exhausted coffee waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- del Pozo, C.; Bartrolí, J.; Alier, S.; Puy, N.; Fàbregas, E. Production of antioxidants and other value-added compounds from coffee silverskin via pyrolysis under a biorefinery approach. Waste Manag. 2020, 109, 19–27. [Google Scholar] [CrossRef]
- Schievano, A.; Adani, F.; Buessing, L.; Botto, A.; Casoliba, E.N.; Rossoni, M.; Goldfarb, J.L. An integrated biorefinery concept for olive mill waste management: Supercritical CO2 extraction and energy recovery. Green Chem. 2015, 17, 2874–2887. [Google Scholar] [CrossRef] [Green Version]
- Mayanga-Torres, P.; Lachos-Perez, D.; Rezende, C.; Prado, J.; Ma, Z.; Tompsett, G.; Timko, M.; Forster-Carneiro, T. Valorization of coffee industry residues by subcritical water hydrolysis: Recovery of sugars and phenolic compounds. J. Supercrit. Fluids 2017, 120, 75–85. [Google Scholar] [CrossRef]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Kondamudi, N.; Mohapatra, S.; Misra, M. Spent Coffee Grounds as a Versatile Source of Green Energy. J. Agric. Food Chem. 2008, 56, 11757–11760. [Google Scholar] [CrossRef]
- Gupta, N.; Poddar, K.; Sarkar, D.; Kumari, N.; Padhan, B.; Sarkar, A. Fruit waste management by pigment production and utilization of residual as bioadsorbent. J. Environ. Manag. 2019, 244, 138–143. [Google Scholar] [CrossRef]
- Nisar, T.; Wang, Z.-C.; Alim, A.; Iqbal, M.; Yang, X.; Sun, L.; Guo, Y. Citrus pectin films enriched with thinned young apple polyphenols for potential use as bio-based active packaging. CYTA J. Food. 2019, 17, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Kamh, M.; Hedia, R. NPK-Liquid Fertilizer Based on Humic-Like Substances Extracted from Spent Coffee Grounds: Extraction, Preparation and Application to Maize. Alex. Sci. Exch. J. 2018, 39, 260–267. [Google Scholar] [CrossRef]
- Kobylinska, N.; Shakhovsky, A.; Khainakova, O.; Klymchuk, D.; Avdeeva, L.; Ratushnyak, Y.; Duplij, V.; Matvieieva, N. ‘Hairy’ root extracts as source for ‘green’ synthesis of silver nanoparticles and medical applications. RSC Adv. 2020, 10, 39434–39446. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, M.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, J.; Mertz, C.; Morel, G.; Lacour, S.; Belleville, M.-P.; Durand, N.; Dornier, M. Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DAD-MS/MS. Food Chem. 2020, 319, 126600. [Google Scholar] [CrossRef]
- Cai, W.; Chen, T.; Lei, M.; Wan, X. Effective strategy to recycle arsenic-accumulated biomass of Pteris vittata with high benefits. Sci. Total Environ. 2021, 756, 143890. [Google Scholar] [CrossRef]
- Sefkow, M.; Kelling, A.; Schilde, U. First Efficient Syntheses of 1-, 4-, and 5-Caffeoylquinic Acid. Eur. J. Org. Chem. 2001, 2001, 2735–2742. [Google Scholar] [CrossRef]
- Sefkow, M. First Efficient Synthesis of Chlorogenic Acid. Eur. J. Org. Chem. 2001, 2001, 1137–1141. [Google Scholar] [CrossRef]
- Kuhnert, N.; Jaiswal, R.; Matei, M.; Sovdat, T.; Deshpande, S. How to distinguish between feruloyl quinic acids and isoferuloyl quinic acids by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Smarrito, C.M.; Munari, C.; Roberta, F.; Barron, D. A novel efficient and versatile route to the synthesis of 5-O-feruloylquinic acids. Org. Biomol. Chem. 2008, 6, 986–987. [Google Scholar] [CrossRef] [PubMed]
- Kadidae, L.; Usami, A.; Koyama, T.; Honda, M.; Kunimoto, K.-K. New route for synthesis of 3- and 5-caffeoylquinic acids via protected quinic acids. Eur. J. Chem. 2015, 6, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Dokli, I.; Navarini, L.; Hameršak, Z. Syntheses of 3-, 4-, and 5-O-feruloylquinic acids. Tetrahedron Asymmetry 2013, 24, 785–790. [Google Scholar] [CrossRef]
- Gutiérrez Ortiz, A.; Berti, F.; Navarini, L.; Monteiro, A.; Resmini, M.; Forzato, C. Synthesis of p-coumaroylquinic acids and analysis of their interconversion. Tetrahedron Asymmetry 2017, 28, 419–427. [Google Scholar] [CrossRef]
- De Pooter, H.; De Brucker, J.; van Sumere, C.F. Synthesis of 3-0-o.coumaryl-, 4-0-o.coumaryl-and 3-0-ferulyl-d-(-)-quinic acid. Improved synthesis of 3-0-sinapyl-d-(-)-quinic acid. Bull. Soc. Chim. Belg. 1976, 85, 663–671. [Google Scholar] [CrossRef]
- Nagaoka, T.; Baskota, A.H.; Xiong, Q.; Tezuka, Y.; Kadota, S. Synthesis and antihepatotoxic and antiproliferative activities of di- and tri-O-caffeoylquinic acid derivatives. J. Tradit. Med. 2001, 18, 183–190. [Google Scholar]
- Miyamae, Y.; Kurisu, M.; Han, J.; Isoda, H.; Shigemori, H. Structure-activity relationship of caffeoylquinic acids on the accelerating activity on ATP production. Chem. Pharm. Bull. 2011, 59, 502–507. [Google Scholar] [CrossRef] [Green Version]
- Brummond, K.; DeForrest, J. Synthesis of the Naturally Occurring (-)-1,3,5-Tri-O-Caffeoylquinic Acid. Synlett 2009, 9, 1517–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raheem, K.S.; Botting, N.P.; Williamson, G.; Barron, D. Total synthesis of 3,5-O-dicaffeoylquinic acid and its derivatives. Tetrahedron Lett. 2011, 52, 7175–7177. [Google Scholar] [CrossRef]
- ChemicalBook. Chemicalbook.com. 2021. Available online: https://www.chemicalbook.com/ (accessed on 15 April 2021).
- Wang, X.; Qin, L.; Zhou, J.; Fan, X. A novel design to screen chlorogenic acid-producing microbial strains from the environment. Sci. Rep. 2018, 8, 14756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Sang, X.; Li, S.; Zhang, S.; Bai, L. Studies on a chlorogenic acid-producing endophytic fungi isolated from Eucommia ulmoides Oliver. J. Ind. Microbiol. Biotechnol. 2010, 37, 447–454. [Google Scholar] [CrossRef]
- Gonçalves Tavares, D.; Viana Lessa Barbosa, B.; Lopes Ferreira, R.; Ferreira Duarte, W.; Gomes Cardoso, P. Antioxidant activity and phenolic compounds of the extract from pigment-producing fungi isolated from Brazilian caves. Biocatal. Agric. Biotechnol. 2018, 16, 148–154. [Google Scholar] [CrossRef]
- Ahmad, B.; Rizwan, M.; Rauf, A.; Raza, M.; Bashir, S.; Molnár, J.; Csonka, A.; Szabo, D.; Mubarak, M.S.; Noor, M.; et al. Isolation of Chlorogenic Acid from Soil Borne Fungi Screlotium rolfsii, their Reversal of Multidrug Resistance and Anti-Proliferative in Mouse Lymphoma Cells. Med. Chem. 2017, 13, 721–726. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Z.; Tian, Z.; Sun, J.; Li, Y.; Fan, X. Validation of spectrophotometric determination of chlorogenic acid in fermentation broth and fruits. Food Chem. 2019, 278, 170–177. [Google Scholar] [CrossRef]
- Buraimoh, O.; Ilori, M.; Amund, O.; Isanbor, C.; Michel, F. The degradation of coniferyl alcohol and the complementary production of chlorogenic acids in the growth culture of Streptomyces albogriseolus KF977548 isolated from decaying wood residues. Process Biochem. 2017, 52, 22–29. [Google Scholar] [CrossRef]
- Kim, B.G.; Jung, W.D.; Mok, H.; Ahn, J.-H. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: Production of hydroxycinnamic acid conjugates. Microb. Cell Factories 2013, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Song, M.; Kim, B.-G.; Ahn, J.-H. Synthesis of chlorogenic acid and p-coumaroyl shikimate by expressing shikimate gene modules in Escherichia coli. J. Appl. Microbiol. 2022, 132, 1166–1175. [Google Scholar] [CrossRef]
- Cha, M.N.; Kim, H.J.; Kim, B.G.; Ahn, J.-H. Synthesis of Chlorogenic Acid and p-Coumaroyl Shikimates from Glucose Using Engineered Escherichia coli. J. Microbiol. Biotechnol. 2014, 24, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liang, C.; Liu, G.; Jin, J.-M.; Tao, Y.; Tang, S.-Y. De Novo Biosynthesis of Chlorogenic Acid Using an Artificial Microbial Community. J. Agric. Food Chem. 2021, 69, 2816–2825. [Google Scholar] [CrossRef] [PubMed]
- Moglia, A.; Comino, C.; Lanteri, S.; de Vos, R.; de Waard, P.; van Beek, T.A.; Goitre, L.; Retta, S.F.; Beekwilder, J. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast. Metab. Eng. 2010, 12, 223–232. [Google Scholar]
- Eudes, A.; Mouille, M.; Robinson, D.S.; Benites, V.T.; Wang, G.; Roux, L.; Tsai, Y.-L.; Baidoo, E.E.K.; Chiu, T.-Y.; Heazlewood, J.L.; et al. Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Microb. Cell Factories 2016, 15, 198. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Lian, J.; Tu, S.; Xie, L.; Li, J.; Zhang, F.; Linhardt, R.J.; Huang, H.; Zhong, W. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Chlorogenic Acid from Glucose. ACS Synth. Biol. 2022, 11, 800–811. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Chemical Name of Compound (Trivial Name) | R1 | R2 | R3 | R4 |
---|---|---|---|---|---|
5-CQA | 5-caffeoylquinic acid (chlorogenic acid) | H | H | H | C |
5-FQA | 5-feruloylquinic acid | H | H | H | F |
5-p-CoQA | 5-p-coumaroylquinic acid | H | H | H | p-Co |
5-SQA | 5-sinapoylquinic acid | H | H | H | S |
4-CQA | 4-caffeoylquinic acid (cryptochlorogenic acid) | H | H | C | H |
4-FQA | 4-feruloylquinic acid | H | H | F | H |
4-p-CoQA | 4-p-coumaroylquinic acid | H | H | p-Co | H |
4-SQA | 4-sinapoylquinic acid | H | H | S | H |
3-CQA | 3-caffeoylquinic acid (neochlorogenic acid) | H | C | H | H |
3-FQA | 3-feruloylquinic acid | H | F | H | H |
3-p-CoQA | 3-p-coumaroylquinic acid | H | p-Co | H | H |
3-SQA | 3-sinapoylquinic acid | H | S | H | H |
1-CQA | 1-caffeoylquinic acid (pseudochlorogenic acid) | C | H | H | H |
1-FQA | 1-feruoylquinic acid | F | H | H | H |
1-p-CoQA | 1-p-coumaroylquinic acid | p-Co | H | H | H |
1-SQA | 1-sinapoylquinic acid | S | H | H | H |
3,4-diCQA | 3,4-dicaffeoylquinic acid | H | C | C | H |
3,4-diFQA | 3,4-diferuloylquinic acid | H | F | F | H |
3,4-di-p-CoQA | 3,4-di-p-coumaroylquinic acid | H | p-Co | p-Co | H |
4-SQA | 4-sinapoylquinic acid | H | H | S | H |
5-SQA | 5-sinapoylquinic acid | H | H | H | S |
3-S-5-CQA | 3-sinapoyl-5-caffeoylquinic acid | H | S | H | C |
3-S-4-CQA | 3-sinapoyl-4-caffeoylquinic acid | H | S | C | H |
4-S-3-CQA | 4-sinapoyl-3-caffeoylquinic acid | H | C | S | H |
3-S-5-FQA | 3-sinapoyl-5-feruloylquinic acid | H | S | H | F |
3-F-4-SQA | 3-feruloyl-4-sinapoylquinic acid | H | F | S | H |
4-S-5-FQA | 4-sinapoyl-5-feruloylquinic acid | H | H | S | F |
4,5-diCQA | 4,5-dicaffeoylquinic acid | H | H | C | C |
3,5-diCQA | 3,5-dicaffeoylquinic acid (isochlorogenic acid A) | H | C | H | C |
3,5-diFQA | 3,5-diferuloylquinic acid | H | F | H | F |
3,5-di-p-CoQA | 3,5-di-p-coumaroylquinic acid | H | p-C | H | p-Co |
3-C-5-p-CoQA | 3-caffeoyl-5-p-coumaroylquinic acid | H | C | H | p-Co |
3-C-5-FQA | 3-caffeoyl-5-feruloylquinic acid | H | C | H | F |
3-C-5-SQA | 3-caffeoyl-5-sinapoylquinic acid | H | C | H | S |
1,5-diCQA | 1,5-dicaffeoylquinic acid (cynarin) | C | H | H | C |
1,4-diCQA | 1,4-dicaffeoylquinic acid | C | H | C | H |
3,4,5-triCQA | 3,4,5-tricaffeoylquinic acid | H | C | C | C |
1,3,5-triCQA | 1,3,5-tricaffeoylquinic acid | C | C | H | C |
4-F-5-CQA | 4-feruloyl-5-caffeoylquinic acid | H | H | F | C |
Source | HCQAs, g/kg Dry Weight | Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3-CQA | 4-CQA | 5-CQA | 3,4-diCQA | 3,5-diCQA | 4,5-diCQA | 5-FQA | 3-p-CoQA | 4-p-CoQA | 5-p-CoQA | Total | ||
Leaves and Thalli of Yerba mate (Ilex paraguariensis) | 27.6 | 6.80 | 12.07 | 5.82 | 29.59 | 9.98 | n.d. | n.d. | n.d. | n.d. | 91.89 | [54] |
Leaves of White tea (Camellia sinensis) | 3.68 | 0.80 | 3.04 | 1.31 | 5.78 | 1.78 | n.d. | n.d. | n.d. | n.d. | 16.40 | [54] |
Leaves of Green tea (Camellia sinensis) | 3.06 | 0.64 | 1.85 | 1.20 | 5.51 | 0.96 | n.d. | n.d. | n.d. | n.d. | 13.23 | [54] |
Leaves of Artichoke (Cynara scolymus) | 0.08 | 0.01 | 5.97 | 0.12 | 2.86 | 0.095 | n.d. | n.d. | n.d. | n.d. | 9.16 | [54] |
Leaves and Thalli of Arnica (Arnicaeflos) | 0.24 | 0.26 | 2.80 | 1.36 | 2.89 | 1.40 | n.d. | n.d. | n.d. | n.d. | 8.98 | [54] |
Leaves of Rosemary (Rosmarinus officinalis) | 0.04 | 0.01 | 0.005 | n.d. | 0.12 | 8.46 | n.d. | n.d. | n.d. | n.d. | 8.95 | [54] |
Coffee spp. | 4.8–5.5 | 7.1–7.8 | 52.0–54.2 | n.d. | 8.1–8.8 | 4.1–4.8 | 3.8–4.2 | 0.005–0.55 | 0.01–0.26 | 0.14–1.84 | 29.5–70.5 | [52,63] |
Source | 5-CQA Concentration | Ref. |
---|---|---|
Cyanobacteria | ||
Nostoc commune | 2.16 µg/g DW | [65] |
Nostoc 2S9Bn | 9.55 µg/g DW | [66] |
Algae | ||
Euglena cantabrica | 78 µg/g DW | [65] |
Spongiochloris platensis | 72.11 ng/g | [64] |
Spongiochloris spongiosa | 260 ng/g | [67] |
95.87 ng/g | [64] | |
Anabaena doliolum | 82 ± 6.6 ng/g | [67] |
Porphyra tenera | 19 ± 11.9 ng/g | [67] |
Undaria pinnatifia | 10 ± 11.9 ng/g | [67] |
HCQAs | Plant Type and Part | Extraction Method | Yield | Ref. |
---|---|---|---|---|
3-CQA | Mulberry leaves (Morus alba L.) | UAE | 0.47 mg/mL | [89] |
4-CQA | 1.29 mg/mL | |||
5-CQA | 0.65 mg/mL | |||
5-CQA | Spent coffee grounds | SLE | 0.04–0.2 g/L extract | [77] |
5-CQA | Silver skin from coffee | SLE | 3% | [60] |
5-CQA | Honeysuckle (Lonicera japonicae) | UAE | 37.78 mg/g | [79] |
5-CQA | Honeysuckle (Lonicera japonica) flower buds | SLE | 23.08 mg/kg raw material | [82] |
1,4-diCQA | 0.32 mg/kg raw material | |||
3,4-diCQA | 42.46 mg/kg raw material | |||
4,5-diCQA | 14.62 mg/kg raw material | |||
3,4,5-triCQA | 4.62 mg/kg raw material | |||
5-CQA | Sunflower (Helianthus annuus) cake | MAE | 8.4 mg /g | [78] |
5-CQA | Burdock (Arctium lappa) leaves | PLE | 18.453 (g/kg extract) | [83] |
SFE | 8.765(g/kg extract) | |||
5-CQA | Sunflower (Helianthus annuus) seed kernels | SFE | 9.06 mg/g raw material | [80] |
5-CQA | Honeysuckle (L. japonica) flowers | EAE | ~4% | [81] |
5-CQA | Hardy rubber tree (Eucommia ulmoides) leaves | IL-EAE | ~3–5.5 mg/g raw material | [75] |
5-CQA | Bog bilberry (Vaccinium uliginosum) leaves | MSDDE | 17.02 mg/g raw material | [90] |
5-CQA | Coffee chaff | MMM | 0.64–0.94 mg/g raw material | [91] |
5-CQA | Coffee pulp | SLE-SSF | 600 mg/kg raw material | [92] |
3,4,5-triCQA 3,4-diCQA 3,5-diCQA 4,5-diCQA 3-CQA 3-C-FQA | Sweet potato (Ipomoea batatas) peels | UAE | n.d. | [93] |
3-CQA 4-CQA 5-CQA | Tobacco (Nicotiana tabacum) waste | SLE | n.d. | [94] |
5-CQA | Tobacco (Nicotiana tabacum) waste | UAE | 0.497% | [85] |
5-CQA | Carrot (Daucus carota) pomace | UAE | 17.58 μg/g | [86] |
5-CQA | Pomegranate (Punica granatum) peels | SLE UAE IAE | 301–1220 μg/g DW | [71] |
284–1556 μg/g DW | ||||
679–1562 μg/g DW | ||||
4-CQA | Fennel (Foeniculum vulgare) bulbs waste | PLE | 1.949 mg/g DW | [87] |
3,4-diCQA | 0.490 mg/g DW | |||
1-CQA | Potatoes (Fontane) by-products | UAE | 0.36 mg/g DW | [88] |
5-CQA | 3.04 mg/g DW | |||
4-CQA | 0.39 mg/g DW | |||
5-FQA | 0.05 mg/g DW | |||
3,4-diCQA | 0.09 mg/g DW | |||
3,5-diCQA | 0.40 mg/g DW | |||
4,5-diCQA | 0.16 mg/g DW |
HCQA | Synthesis Method | Total Yield, % | Ref. |
---|---|---|---|
5-CQA | Esterification | 65 | [127] |
5-CQA | Esterification | 35 | [130] |
1-CQA 3-CQA 4-CQA | Esterification | 41 60 36 | [126] |
5-FQA | Condensation | 19 | [129] |
3-FQA 4-FQA 5-FQA | Esterification | 32.59 14.47 45.10 | [131] |
1-p-CoQA 3-p-CoQA 4-p-CoQA 5-p-CoQA | Esterification | 34.47 14.64 14.64 26 | [132] |
5-SQA | Esterification | 15 | [133] |
3,4-diCQA | Esterification | n.d. * | [134] |
3,4,5-triCQA | Esterification | ~14 | [135] |
1,3,5-triCQA | Esterification | 11.71 | [136] |
3,5-diCQA 3,5-diFQA | Condensation | 20.46 21.66 | [137] |
Compound (Purity 95–99%) | Average Price for 1 L or 1 kg, USD $ |
---|---|
Piperidine | 80–360 |
DMAP | 60–70 |
Pyridine | 40–150 |
p-Hydroxybenzaldehyde | 50–120 |
Protocatechuic aldehyde | 150–200 |
Vanillin | 100–200 |
Syringaldehyde | 750–1800 |
p-Coumaric acid | 940–1500 |
Vanillic acid | 339–512 |
Syringic acid | 586–1100 |
Caffeic acid | 595–633 |
Quinic acid | 8–2920 * |
Microorganism | Substrate | Product | Product Concentration/Titer | Fermentation Time (Days) | Ref. |
---|---|---|---|---|---|
Streptomyces albogriseolus KF977548 (strain AOB) | Coniferyl alcohol or caffeic acid | 1-CQA or 3,4,5-triCQA | n.d. | n.d. | [144] |
Penicillium flavigenum (CML2965) | PD broth | 5-CQA | 0.38 g/L extract | 7 | [141] |
Screlotium rolfsii | Czapek Yeast extract Broth (CYB) | n.d. | 5 | [142] | |
Lodderomyces elongisporus S216 | Modified PD medium | 23.39 mg /L | 5 | [139] | |
Sphingomonas yabuuchiae N21 | Modified Beef Extract (BEA) medium | 13.04 mg/ L | 1 | [139] | |
Bacillus badius | Modified Beef Extract (BEA) medium | 5.43 mg/ L | 1 | [139] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valanciene, E.; Malys, N. Advances in Production of Hydroxycinnamoyl-Quinic Acids: From Natural Sources to Biotechnology. Antioxidants 2022, 11, 2427. https://doi.org/10.3390/antiox11122427
Valanciene E, Malys N. Advances in Production of Hydroxycinnamoyl-Quinic Acids: From Natural Sources to Biotechnology. Antioxidants. 2022; 11(12):2427. https://doi.org/10.3390/antiox11122427
Chicago/Turabian StyleValanciene, Egle, and Naglis Malys. 2022. "Advances in Production of Hydroxycinnamoyl-Quinic Acids: From Natural Sources to Biotechnology" Antioxidants 11, no. 12: 2427. https://doi.org/10.3390/antiox11122427
APA StyleValanciene, E., & Malys, N. (2022). Advances in Production of Hydroxycinnamoyl-Quinic Acids: From Natural Sources to Biotechnology. Antioxidants, 11(12), 2427. https://doi.org/10.3390/antiox11122427