Apple Antioxidant Properties as an Effect of N Dose and Rate—Mycorrhization Involvement: A Long-Term Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Weather and Soil Conditions
2.2. Fruit Sample Collection and Analysis
2.3. Enzymatic and Non-Enzymatic Antioxidant Measurements
2.4. Statistical Analysis and Presentation of Data
3. Results and Discussion
3.1. Weather Conditions and Growing Season Effect on Apple Peel Antioxidants
3.2. Apple Peel Antioxidant Status as a Function of N Nutrition and Bacterial-Fungal Inoculum
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poiroux-Gonord, F.; Bidel, L.P.R.; Fanciullino, A.-L.; Gautier, H.; Lauri-Lopez, F.; Urban, L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 2010, 58, 12065–12082. [Google Scholar] [CrossRef] [PubMed]
- Noceto, P.A.; Bettenfeld, P.; Boussageon, R.; Hériché, M.; Sportes, A.; van Tuinen, D.; Courty, P.E.; Wipf, D. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza 2021, 31, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Srednicka-Tober, D.; Baranski, M.; Kazimierczak, R.; Ponder, A.; Kopczynska, K.; Hallmann, E. Selected antioxidants in organic vs. conventionally grown apple fruits. Appl. Sci. 2020, 10, 2997. [Google Scholar] [CrossRef]
- Stefaniak, J.; Przybył, J.L.; Latocha, P.; Łata, B. Bioactive compounds, total antioxidant capacity and yield of kiwiberry fruit under different nitrogen regimes in field conditions. J. Sci. Food Agric. 2020, 100, 3832–3840. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mladenović, J. Tree vigor, yield, fruit quality, and antioxidant capacity of apple (Malus × domestica borkh.) influenced by different fertilization regimes: Preliminary results. Turk. J. Agric. For. 2019, 43, 48–57. [Google Scholar] [CrossRef]
- Bai, Q.; Shen, Y.; Huang, Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. Front. Plant Sci. 2021, 12, 620018. [Google Scholar] [CrossRef]
- Tang, H.; Hassan, M.U.; Feng, L.; Nawaz, M.; Shah, A.N.; Qari, S.H.; Liu, Y.; Miao, J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. Front. Plant Sci. 2022, 13, 919166. [Google Scholar] [CrossRef]
- Barreto, C.F.; Navroski, R.; Ferreira, L.V.; Benati, J.A.; Malgarim, M.B.; Antunes, L.E.C. Nitrogen fertilization associated with cold storage and its impacts on the maintenance of peach quality. Biosci. J. 2020, 36, 896–904. [Google Scholar] [CrossRef]
- Jezek, M.; Zörb, C.; Merkt, N.; Geilfus, C.M. Anthocyanin Management in Fruits by Fertilization. J. Agric. Food Chem. 2018, 66, 753–764. [Google Scholar] [CrossRef]
- Tavanti, T.R.; de Melo, A.A.R.; Moreira, L.D.K.; Sanchez, D.E.J.; Silva, R.D.S.; da Silva, R.M.; Reis, A.R. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiol. Biochem. PPB 2021, 160, 386–396. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foyer, C.H. How plant cells sense the outside world through hydrogen peroxide. Nature 2020, 578, 518–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Y.; Sun, H.; Zhang, W.; Sun, Y.; Li, S.; Yu, Z.; Yang, R.; Hu, T.; Yang, P. Distinct rhizosphere soil responses to nitrogen in relation to microbial biomass and community composition at initial flowering stages of alfalfa cultivars. Front. Plant Sci. 2022, 13, 938865. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Leach, A.; Bleeker, A.; Atwell, B.; Cattaneo, L.; Galloway, J. An integrated approach to a nitrogen use efficiency (NUE) indicator for the food production-consumption chain. Sustainability 2018, 10, 925. [Google Scholar] [CrossRef] [Green Version]
- Jain, G. National Seminar “Role of Biological Sciences in Organic Farming” Role of micronutrients in potato cultivation. J. Pharmacogn. Phytochem. 2019, 8, 49–52. [Google Scholar]
- Ye, X.; Abe, S.; Zhang, S. Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging. Precis. Agric. 2020, 21, 198–225. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 2009, 58, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Ganugi, P.; Fiorini, A.; Rocchetti, G.; Bonini, P.; Tabaglio, V.; Lucini, L. A response surface methodology approach to improve nitrogen use efficiency in maize by an optimal mycorrhiza-to-Bacillus co-inoculation rate. Front. Plant Sci. 2022, 13, 956391. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Singh, S.; Chaudhary, A.; Sharma, A.; Kumar, G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front. Plant Sci. 2022, 13, 930340. [Google Scholar] [CrossRef]
- Shah, A.; Smith, D.L. Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 2020, 10, 1209. [Google Scholar] [CrossRef]
- Bokszczanin, K.Ł.; Wrona, D.; Przybyłko, S. The Effect of Microbial Inoculation under Various Nitrogen Regimes on the Uptake of Nutrients by Apple Trees. Agronomy 2021, 11, 2348. [Google Scholar] [CrossRef]
- Mitra, D.; Djebaili, R.; Pellegrini, M.; Mahakur, B.; Sarker, A.; Chaudhary, P.; Khoshru, B.; Del Gallo, M.; Kitouni, M.; Barik, D.P.; et al. Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. J. Plant Nutr. 2021, 44, 1993–2028. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd Allah, E.F.; Hashem, A. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef] [PubMed]
- Zydlik, Z.; Zydlik, P.; Wieczorek, R. The Effects of Bioinoculants Based on Mycorrhizal and Trichoderma spp. Fungi in an Apple Tree Nursery under Replantation Conditions. Agronomy 2021, 11, 2355. [Google Scholar] [CrossRef]
- Lambers, H.; Raven, J.A.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, J.; Lu, X.; Zhou, C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. Front. Plant Sci. 2022, 13, 2355. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Valadez-Blanco, R.; Salas-Coronado, R.; Sustaita-Rivera, F.; Hernández-Carlos, B.; García-Ortega, S.; Santos-Sánchez, N.F. Effect of nitrogen fertilization and Bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Sci. Hortic. 2016, 201, 338–345. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Sharma, V.K.; Rosin, K.G.; Kumar, D. Enhancement of apple (Malus domestica) productivity and soil health through organic fertilization and bio-inoculants under north-western Himalayan region of India. Indian J. Agric. Sci. 2018, 88, 1463–1468. [Google Scholar]
- Kuzin, A.; Solovchenko, A.; Stepantsova, L.; Pugachev, G. Soil fertility management in apple orchard with microbial biofertilizers. E3S Web Conf. 2020, 222, 03020. [Google Scholar] [CrossRef]
- Treder, W.; Klamkowski, K.; Wójcik, K.; Tryngiel-Gać, A.; Sas-Paszt, L.; Mika, A.; Kowalczyk, W. Apple leaf macro- and micronutrient content as affected by soil treatments with fertilizers and microorganisms. Sci. Hortic. 2022, 297, 110975. [Google Scholar] [CrossRef]
- Khan, M.Y.; Haque, M.M.; Molla, A.H.; Rahman, M.M.; Alam, M.Z. Antioxidant compounds and minerals in tomatoes by Trichoderma-enriched biofertilizer and their relationship with the soil environments. J. Integr. Agric. 2017, 16, 691–703. [Google Scholar]
- Zahedyan, A.; Aboutalebi Jahromi, A.; Zakerin, A.; Abdossi, V.; Mohammadi Torkashvand, A. Nitroxin bio-fertilizer improves growth parameters, physiological and biochemical attributes of cantaloupe (Cucumis melo L.) under water stress conditions. J. Saudi Soc. Agric. Sci. 2022, 21, 8–20. [Google Scholar] [CrossRef]
- Mohamed, M.H.M.; Ali, M.; Eid, R.S.M.; El-Desouky, H.S.; Petropoulos, S.A.; Sami, R.; Al-Mushhin, A.A.M.; Ismail, K.A.; Zewail, R.M.Y. Phosphorus and biofertilizer application effects on growth parameters, yield and chemical constituents of broccoli. Agronomy 2021, 11, 2210. [Google Scholar] [CrossRef]
- Łata, B.; Łaźny, R.; Przybyłko, S.; Wrona, D. Malus antioxidant metabolism following bacterial–fungal inoculation in organic farming: From root to fruit. Appl. Sci. 2021, 11, 9466. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, J.; Zhang, Q.; Li, X.; Li, M.; Yang, Y.; Zhou, J.; Wei, Q.; Zhou, B. Integrative physiological, transcriptome, and metabolome analysis reveals the effects of nitrogen sufficiency and deficiency conditions in apple leaves and roots. Environ. Exp. Bot. 2021, 192, 104633. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Xia, R.-X.; Zou, Y.-N. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J. Plant Physiol. 2006, 163, 1101–1110. [Google Scholar] [CrossRef]
- Garza-Alonso, C.A.; Nino-Medina, G.; Guttierez-Diez, A.; Garcia-Lopez, J.I.; Vazquez-Alvarado, R.E.; Lopez-Jimenez, A.; Olivares-Saenz, E. Physicochemical characteristics, minerals, phenolic compounds, and antioxidant capacity in fig tree fruits with macronutrient deficiencies. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1585–1599. [Google Scholar] [CrossRef]
- You, J.; Chan, Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef] [Green Version]
- Yuri, J.A.; Neira, A.; Fuentes, M.; Sáez, B.; Razmilic, I. Have the Flowers, Fruitlets, Ripe Fruit and Leaves of Apples Cultivars Similar Compositions of Phenolic and Antioxidant Capacity? Erwerbs-Obstbau 2022, 64, 201–209. [Google Scholar] [CrossRef]
- Łata, B.; Przeradzka, M.; Bínkowska, M. Great differences in antioxidant properties exist between 56 apple cultivars and vegetation seasons. J. Agric. Food Chem. 2005, 53, 8970–8978. [Google Scholar] [CrossRef]
- Łata, B. Relationship between apple peel and the whole fruit antioxidant content: Year and cultivar variation. J. Agric. Food Chem. 2007, 55, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Li, P.; Ma, F.; Cheng, L. Primary and secondary metabolism in the sun-exposed peel and the shaded peel of apple fruit. Physiol. Plant. 2013, 148, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Marranzano, M.; Rosa, R.L.; Malaguarnera, M.; Palmeri, R.; Tessitori, M.; Barbera, A.C. Polyphenols: Plant Sources and Food Industry Applications. Curr. Pharm. Des. 2018, 24, 4125–4130. [Google Scholar] [CrossRef]
- Torres, N.; Hilbert, G.; Antolín, M.C.; Goicoechea, N. Aminoacids and Flavonoids Profiling in Tempranillo Berries Can Be Modulated by the Arbuscular Mycorrhizal Fungi. Plants 2019, 8, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Kundu, M.; Das, A.; Rakshit, R.; Siddiqui, M.W.; Rani, R. Substitution of mineral fertilizers with biofertilizer: An alternate to improve the growth, yield and functional biochemical properties of strawberry (Fragaria × ananassa Duch.) cv. Camarosa. J. Plant Nutr. 2019, 42, 1818–1837. [Google Scholar] [CrossRef]
- Medina, M.B. Determination of the total phenolics in juices and superfruits by a novel chemical method. J. Funct. Foods 2011, 3, 79–87. [Google Scholar] [CrossRef]
- Łata, B.; Trampczynska, A.; Paczesna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Łata, B. Variability in enzymatic and non-enzymatic antioxidants in red and green-leafy kale in relation to soil type and N-level. Sci. Hortic. 2014, 168, 38–45. [Google Scholar] [CrossRef]
- Hanaka, A.; Ozimek, E.; Reszczyńska, E.; Jaroszuk-ściseł, J.; Stolarz, M. Plant tolerance to drought stress in the presence of supporting bacteria and fungi: An efficient strategy in horticulture. Horticulturae 2021, 7, 390. [Google Scholar] [CrossRef]
- Mandavikia, H.; Rezaei-Chiyaneh, E.; Rahimi, A.; Mohammadkhani, N. Effects of Fertilizer Treatments on Antioxidant Activities and Physiological Traits of Basil (Ocimum basilicum L.) under Water Limitation Conditions. J. Med. Plants By-Products-JMPB 2019, 8, 143–151. [Google Scholar]
- Anli, M.; Baslam, M.; Tahiri, A.; Raklami, A.; Symanczik, S.; Boutasknit, A.; Ait-El-Mokhtar, M.; Ben-Laouane, R.; Toubali, S.; Ait Rahou, Y.; et al. Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth, and Drought Stress Tolerance in the Date Palm. Front. Plant Sci. 2020, 11, 516818. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Ali, D.F.I.; Xiong, Y.C.; Brestic, M.; Skalicky, M.; Hamoud, Y.A.; Ulhassan, Z.; Shaghaleh, H.; AbdElgawad, H.; Farooq, M.; et al. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 2021, 21, 195. [Google Scholar] [CrossRef] [PubMed]
- Mignard, P.; Beguería, S.; Reig, G.; Font i Forcada, C.; Moreno, M.A. Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus x domestica Borkh). Sci. Hortic. 2021, 285, 110142. [Google Scholar] [CrossRef]
- Li, M.; Ma, F.; Shang, P.; Zhang, M.; Hou, C.; Liang, D. Influence of light on ascorbate formation and metabolism in apple fruits. Planta 2009, 230, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.T.A.; Wright, S.A.I.; Falk, A.B.; Vanwalleghem, T.; Van Hemelrijck, W.; Hertog, M.L.; Keulemans, J.; Davey, M.W. Botrytis cinerea differentially induces postharvest antioxidant responses in ‘Braeburn’ and ‘Golden Delicious’ apple fruit. J. Sci. Food Agric. 2019, 99, 5662–5670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetrova, O.; Makarkina, M.; Larisa, L. The effect of mineral nutrition on the biochemical composition of Venyaminovskoe apple cultivar fruits. BIO Web Conf. 2022, 47, 06005. [Google Scholar] [CrossRef]
- Carranca, C.; Brunetto, G.; Tagliavini, M. Nitrogen Nutrition of Fruit Trees to Reconcile Productivity and Environmental Concerns. Plants 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Najafi, S.; Nasi, H.N.; Tuncturk, R.; Tuncturk, M.; Sayyed, R.Z.; Amirnia, R. Biofertilizer application enhances drought stress tolerance and alters the antioxidant enzymes in medicinal pumpkin (Cucurbita pepo convar. pepo var. Styriaca). Horticulturae 2021, 7, 588. [Google Scholar] [CrossRef]
- Pereira, C.; Dias, M.I.; Petropoulos, S.A.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Calhelha, R.C.; Ivanov, M.; Stojković, D.; Soković, M.; et al. The effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.). Molecules 2019, 24, 4494. [Google Scholar] [CrossRef] [Green Version]
- Strissel, T.; Halbwirth, H.; Hoyer, U.; Zistler, C.; Stich, K.; Treutter, D. Growth-promoting nitrogen nutrition affects flavonoid biosynthesis in young apple (Malus domestica Borkh.) leaves. Plant Biol. 2005, 7, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Narendra Babu, A.; Jogaiah, S.; Ito, S.-I.; Kestur Nagaraj, A.; Tran, L.-S.P. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 2015, 231, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Peñas, E.; Zielińska, D.; Gulewicz, P.; Zieliński, H.; Frias, J. Vitamin C, Phenolic Compounds and Antioxidant Capacity of Broccoli Florets Grown under Different Nitrogen Treatments Combined with Selenium. Pol. J. Food Nutr. Sci. 2018, 68, 179–186. [Google Scholar] [CrossRef]
- Jiménez-Gómez, A.; Celador-Lera, L.; Fradejas-Bayón, M.; Rivas, R. Plant probiotic bacteria enhance the quality of fruit and horticultural crops. AIMS Microbiol. 2017, 3, 483–501. [Google Scholar] [CrossRef]
Antioxidative Enzyme Activity (nkat g−1 DW) | Antioxidant Content (g kg−1 DW) | ||||
---|---|---|---|---|---|
Year | Glutathione Reductase | Ascorbate Proxidase | Catalase | Ascorbate 1 | Phenolics 2 |
2012 | 23.8 b | 483 b | 36.1 c | 4.17 a | 16.2 b |
2013 | 18.3 a | 190 a | 27.8 b | 3.82 a | 16.1 b |
2014 | 30.4 c | 549 c | 19.6 a | 4.16 a | 13.7 a |
N-Treatment c | ||||||
---|---|---|---|---|---|---|
N0 | N1 | N2 | N3 | N4 | ||
GR | nkat g−1 DW | AvN-INOvsINO | ||||
N-INO a | 21.7 ± 5.9 | 22.9 ± 4.4 | 23.5 ± 4.6 | 27.2 ± 10.0 | 24.4 ± 7.5 | 15.5 a |
INO b | 24.4 ± 7.0 | 21.0 ± 5.8 | 24.4 ± 4.0 | 26.6 ± 9.5 | 25.4 ± 12.2 | 15.2 a |
AvN-treatment | 23.1 a | 22.0 a | 24.0 ab | 27.0 b | 24.9 ab | |
CAT | nkat g−1 DW | |||||
N-INO | 25.6 ± 10.6 | 29.7 ± 11.9 | 31.0 ± 10.4 | 25.6 ± 6.7 | 27.4 ± 10.8 | 27.9 a |
INO | 29.3 ± 9.5 | 25.8 ± 8.3 | 30.4 ± 8.5 | 26.4 ± 1.1 | 27.2 ± 11.5 | 27.8 a |
AvN-treatment | 27.5 ab | 27.8 ab | 30.7 b | 26.0 a | 27.3 ab | |
APX | nkat g−1 DW | |||||
N-INO | 357 ± 143 | 427 ± 213 | 360 ± 117 | 504 ± 272 | 393 ± 188 | 408 a |
INO | 346 ± 167 | 391 ± 186 | 391 ± 194 | 409 ± 259 | 492 ± 302 | 406 a |
AvN-treatment | 352 a | 409 abc | 376 ab | 456 c | 443 bc | |
ASC | g kg−1 DW | |||||
N-INO | 3.92 ± 0.75 | 4.24 ± 1.23 | 4.22 ± 0.38 | 4.10 ± 0.53 | 4.03 ± 0.40 | 4.10 a |
INO | 4.38 ± 0.85 | 3.64 ± 0.62 | 3.91 ± 0.67 | 3.64 ± 0.65 | 4.42 ± 0.67 | 4.00 a |
AvN-treatment | 4.15 a | 3.94 a | 4.07 a | 3.87 a | 4.22 a | |
TPC | g kg−1 DW | |||||
N-INO | 15.5 ± 1.9 | 14.7 ± 2.1 | 15.9 ± 2.1 | 15.7 ± 2.7 | 15.5 ± 2.6 | 15.5 a |
INO | 16.6 ± 2.3 | 14.3 ± 1.6 | 14.8 ± 1.8 | 15.2 ± 1.9 | 14.9 ± 2.7 | 15.2 a |
AvN-treatment | 16.0 b | 14.5 a | 15.4 ab | 15.5 ab | 15.2 ab |
N-Treatment c | ||||||
---|---|---|---|---|---|---|
N0 | N1 | N2 | N3 | N4 | ||
(+)-Catechin | AvN-INOvsINO | |||||
N-INO a | 0.23 ± 0.02 | 0.22 ± 0.01 | 0.23 ± 0.04 | 0.19 ± 0.03 | 0.20 ± 0.02 | 0.21 a |
INO b | 0.24 ± 0.04 | 0.20 ± 0.00 | 0.15 ± 0.06 | 0.17 ± 0.02 | 0.20 ± 0.08 | 0.19 a |
AvN-treatment | 0.23 b | 0.21 b | 0.19 ab | 0.18 a | 0.20 ab | |
Chlorogenic acid | ||||||
N-INO | 0.12 ± 0.02 | 0.10 ± 0.02 | 0.11 ± 0.01 | 0.11 ± 0.00 | 0.13 ± 0.02 | 0.11 a |
INO | 0.13 ± 0.02 | 0.10 ± 0.01 | 0.10 ± 0.03 | 0.10 ± 0.01 | 0.13 ± 0.01 | 0.11 a |
AvN-treatment | 0.12 bc | 0.10 a | 0.11 ab | 0.11 ab | 0.13 c | |
(−)-Epicatechin | ||||||
N-INO | 2.79 ± 0.25 | 2.57 ± 0.32 | 2.61 ± 0.07 | 2.77 ± 0.13 | 2.77 ± 0.49 | 2.70 a |
INO | 3.25 ± 0.50 | 2.73 ± 0.23 | 2.46 ± 0.36 | 2.53 ± 0.26 | 2.41 ± 0.66 | 2.67 a |
AvN-treatment | 3.02 b | 2.65 ab | 2.53 a | 2.65 ab | 2.59 ab | |
Caffeic acid | ||||||
N-INO | 0.06 ± 0.00 | 0.04 ± 0.01 | 0.06 ± 0.00 | 0.05 ± 0.01 | 0.06 ± 0.00 | 0.53 a |
INO | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.03 | 0.05 ± 0.01 | 0.05 ± 0.02 | 0.58 a |
AvN-treatment | 0.06 ab | 0.05 a | 0.07 b | 0.05 a | 0.05 a | |
Rutin | ||||||
N-INO | 4.64 ± 0.77 | 5.23 ± 2.81 | 5.17 ± 0.58 | 5.18 ± 0.52 | 5.18 ± 1.59 | 5.08 a |
INO | 5.73 ± 0.58 | 4.17 ± 0.83 | 4.14 ± 1.08 | 4.10 ± 1.09 | 4.05 ± 0.26 | 4.64 a |
AvN-treatment | 5.19 a | 4.70 a | 4.65 a | 4.64 a | 5.12 a | |
Phloridzin | ||||||
N-INO | 0.37 ± 0.03 | 0.39 ± 0.08 | 0.34 ± 0.05 | 0.32 ± 0.05 | 0.33 ± 0.03 | 0.35 a |
INO | 0.42 ± 0.07 | 0.38 ± 0.06 | 0.35 ± 0.04 | 0.33 ± 0.03 | 0.38 ± 0.05 | 0.37 a |
AvN-treatment | 0.40 b | 0.38 ab | 0.34 ab | 0.32 a | 0.36 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łata, B.; Żakowska-Biemans, S.; Wrona, D. Apple Antioxidant Properties as an Effect of N Dose and Rate—Mycorrhization Involvement: A Long-Term Study. Antioxidants 2022, 11, 2446. https://doi.org/10.3390/antiox11122446
Łata B, Żakowska-Biemans S, Wrona D. Apple Antioxidant Properties as an Effect of N Dose and Rate—Mycorrhization Involvement: A Long-Term Study. Antioxidants. 2022; 11(12):2446. https://doi.org/10.3390/antiox11122446
Chicago/Turabian StyleŁata, Barbara, Sylwia Żakowska-Biemans, and Dariusz Wrona. 2022. "Apple Antioxidant Properties as an Effect of N Dose and Rate—Mycorrhization Involvement: A Long-Term Study" Antioxidants 11, no. 12: 2446. https://doi.org/10.3390/antiox11122446
APA StyleŁata, B., Żakowska-Biemans, S., & Wrona, D. (2022). Apple Antioxidant Properties as an Effect of N Dose and Rate—Mycorrhization Involvement: A Long-Term Study. Antioxidants, 11(12), 2446. https://doi.org/10.3390/antiox11122446