Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations
Abstract
:1. Sub-Lethal Concentrations of Antibiofilm Phytochemicals as an Innovative Strategy against Microbial Resistance
2. Reactive Oxygen Species (ROS)
3. Individual Phytocompounds Used at Sub-Lethal Doses
3.1. Phenols (Figure 2)
3.1.1. Carvacrol and Thymol
3.1.2. Cathecol
3.1.3. Tannic Acid and Ellagic Acid
3.1.4. Cannabidiol
3.1.5. Resveratrol and ε-Viniferin
3.1.6. Eugenol
3.1.7. Vanillin
3.1.8. Phloretin
3.2. Flavonoids (Figure 3)
3.2.1. Quercetin and Fisetin
3.2.2. (−)-Epigallocatechin-3-gallate
3.2.3. Cyanidin
3.2.4. Hesperetin, Hesperidin, Myricetin and Myricitrin
3.3. Acids and Alkaloids (Figure 4)
3.3.1. Salicylic Acid
3.3.2. Zosteric Acid
3.3.3. Ascorbic Acid
3.3.4. Caffeic Acid
3.3.5. Piperine
3.3.6. Berberine and Roemerine
3.4. Coumarins, Quinones and Miscellaneous Compounds (Figure 5)
3.4.1. Coumarins
3.4.2. Purpurin
3.4.3. Shikonin
3.4.4. trans-Cinnamaldehyde
3.4.5. Curcumin
4. Conclusions
5. Future Perspective
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angelaalincy, M.J.; Navanietha Krishnaraj, R.; Shakambari, G.; Ashokkumar, B.; Kathiresan, S.; Varalakshmi, P. Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bioelectrochemical Systems. Front. Energy Res. 2018, 6, 63. [Google Scholar] [CrossRef]
- Singh, R.; Paul, D.; Jain, R.K. Biofilms: Implications in bioremediation. Trends Microbiol. 2006, 14, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Sentenac, H.; Loyau, A.; Leflaive, J.; Schmeller, D.S. The significance of biofilms to human, animal, plant and ecosystem health. Funct. Ecol. 2022, 36, 294–313. [Google Scholar] [CrossRef]
- Schulze, A.; Mitterer, F.; Pombo, J.P.; Schild, S. Biofilms by bacterial human pathogens: Clinical relevance—Development, composition and regulation—Therapeutical strategies. Microb. Cell 2021, 8, 28–56. [Google Scholar] [CrossRef] [PubMed]
- Mina, I.R.; Jara, N.P.; Criollo, J.E.; Castillo, J.A. The critical role of biofilms in bacterial vascular plant pathogenesis. Plant Pathol. 2019, 68, 1439–1447. [Google Scholar] [CrossRef]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Ha, S.-D.; Jahid, I.K. Multispecies interactions in biofilms and implications to safety of drinking water distribution system. Microbiol. Biotechnol. Lett. 2019, 47, 473–486. [Google Scholar] [CrossRef]
- Flores-Vargas, G.; Bergsveinson, J.; Lawrence, J.R.; Korber, D.R. Environmental biofilms as reservoirs for antimicrobial resistance. Front. Microbiol. 2021, 12, 766242. [Google Scholar] [CrossRef]
- Di Martino, P. Antimicrobial agents and microbial ecology. AIMS Microbiol. 2022, 8, 1–4. [Google Scholar] [CrossRef]
- Duze, S.T.; Marimani, M.; Patel, M. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiol. 2021, 97, 103758. [Google Scholar] [CrossRef]
- Villa, F.; Cappitelli, F. Plant-derived bioactive compounds at sub-lethal concentrations: Towards smart biocide-free antibiofilm strategies. Phytochem. Rev. 2013, 12, 245–254. [Google Scholar] [CrossRef]
- Di Somma, A.D.; Recupido, F.; Cirillo, A.; Romano, A.; Romanelli, A.; Caserta, S.; Guido, S.; Duilio, A. Antibiofilm properties of temporin-l on Pseudomonas fluorescens in static and in-flow conditions. Int. J. Mol. Sci. 2020, 21, 8526. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Nong, X.-H.; Zhang, X.-Y.; Xu, X.-Y.; Amin, M.; Qi, S.-H. Screening of anti-biofilm compounds from marine-derived fungi and the effects of secalonic acid D on Staphylococcus aureus biofilm. J. Microbiol. Biotechnol. 2017, 27, 1078–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Wang, Y.; Ding, X.; Wang, J.; Zhan, X. Inhibitory effects of reuterin on biofilm formation, quorum sensing and virulence genes of Clostridium perfringens. LWT 2022, 162, 113421. [Google Scholar] [CrossRef]
- Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant natural products targeting bacterial virulence factors. Chem. Rev. 2016, 116, 9162–9236. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Li, H.; Guo, X.; Guo, D.; Yang, Y.; Wang, X.; Zhang, C.; Shan, Z.; Xia, X.; et al. Antibiofilm activity of shikonin against Listeria monocytogenes and inhibition of key virulence factors. Food Control 2021, 120, 107558. [Google Scholar] [CrossRef]
- Jagani, S.; Chelikani, R.; Kim, D.S. Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 2009, 25, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Rózalska, B.; Sadowska, B.; Zuchowski, J.; Więckowska-Szakiel, M.; Budzyńska, A.; Wójcik, U.; Stochmal, A. Phenolic and nonpolar fractions of elaeagnus rhamnoides (L.) A. Nelson extracts as virulence modulators—In vitro study on bacteria, fungi, and epithelial cells. Molecules 2018, 23, 1498. [Google Scholar] [CrossRef] [Green Version]
- Dürig, A.; Kouskoumvekaki, I.; Vejborg, R.M.; Klemm, P. Chemoinformatics-assisted development of new anti-biofilm compounds. Appl. Microbiol. Biotechnol. 2010, 87, 309–317. [Google Scholar] [CrossRef]
- Abdelraheem, W.M.; Refaie, M.M.M.; Yousef, R.K.M.; Abd El Fatah, A.S.; Mousa, Y.M.; Rashwan, R. Assessment of antibacterial and anti-biofilm effects of vitamin C against Pseudomonas aeruginosa clinical isolates. Front. Microbiol. 2022, 13, 847449. [Google Scholar] [CrossRef]
- Feldman, M.; Sionov, R.V.; Mechoulam, R.; Steinberg, D. Anti-biofilm activity of cannabidiol against Candida albicans. Microorganisms 2021, 9, 441. [Google Scholar] [CrossRef]
- Shenkutie, A.M.; Zhang, J.; Yao, M.; Asrat, D.; Chow, F.W.N.; Leung, P.H.M. Effects of sub-minimum inhibitory concentrations of imipenem and colistin on expression of biofilm-specific antibiotic resistance and virulence genes in Acinetobacter baumannii sequence type 1894. Int. J. Mol. Sci. 2022, 23, 12705. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, F.; Pitts, B.; Stewart, P.S.; Giussani, B.; Roncoroni, S.; Albanese, D.; Giordano, C.; Tunesi, M.; Cappitelli, F. Efficacy of zosteric acid sodium salt on the yeast biofilm model Candida albicans. Microb. Ecol. 2011, 62, 584–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopu, V.; Meena, C.K.; Shetty, P.H. Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence. PLoS ONE 2015, 10, e0134684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qais, F.A.; Ahmad, I.; Husain, F.M.; Alomar, S.Y.; Ahmad, N.; Albalawi, F.; Alam, P.; Albalawi, T. Interference of quorum sensing regulated bacterial virulence factors and biofilms by Plumbago zeylanica extract. Microsc. Res. Tech. 2021, 84, 3150–3160. [Google Scholar] [CrossRef] [PubMed]
- Villa, F.; Borgonovo, G.; Cappitelli, F.; Giussani, B.; Bassoli, A. Sub-lethal concentrations of Muscari comosum bulb extract suppress adhesion and induce detachment of sessile yeast cells. Biofouling 2012, 28, 1107–1117. [Google Scholar] [CrossRef]
- Ezati, S.; Mirzaie, A.; Zandi, M. Evaluation of anti-efflux activity of anthemis atropatana extract against ciprofloxacin resistant Staphylococcus aureus isolates. J. Med. Plants 2018, 17, 122–134. [Google Scholar]
- Mileski, K.S.; Trifunović, S.S.; Ćirić, A.D.; Šakić, Ž.M.; Ristić, M.S.; Todorović, N.M.; Matevski, V.S.; Marin, P.D.; Tešević, V.V.; Džamić, A.M. Research on chemical composition and biological properties including antiquorum sensing activity of Angelica pancicii Vandas aerial parts and roots. J. Agric. Food Chem. 2017, 65, 10933–10949. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Babotă, M.; Pop, A.; Fizeșan, I.; Diuzheva, A.; Locatelli, M.; Carradori, S.; Campestre, C.; Menghini, L.; Sisea, C.R.; et al. Chemical constituents and biologic activities of sage species: A comparison between salvia officinalis L., s. glutinosa L. and s. transsylvanica (schur ex griseb. & schenk) schur. Antioxidants 2020, 9, 480. [Google Scholar] [CrossRef]
- Rather, M.A.; Gupta, K.; Mandal, M. Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.). J. Ethnopharmacol. 2021, 269, 113699. [Google Scholar] [CrossRef]
- Cattò, C.; de Vincenti, L.; Borgonovo, G.; Bassoli, A.; Marai, S.; Villa, F.; Cappitelli, F.; Saracchi, M. Sub-lethal concentrations of Perilla frutescens essential oils affect phytopathogenic fungal biofilms. J. Environ. Manag. 2019, 245, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S.; Quarta, A.; Marradi, M.; Ragusa, A. Recent developments in the reduction of oxidative stress through antioxidant polymeric formulations. Pharmaceutics 2019, 11, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, X.; Quan, X. Prevention of multi-species wastewater biofilm formation using vanillin and EPS disruptors through non-microbicidal mechanisms. Int. Biodeterior. Biodegrad. 2017, 116, 211–218. [Google Scholar] [CrossRef]
- Raut, J.S.; Rajput, S.B.; Shinde, R.B.; Surwase, B.S.; Karuppayil, S.M. Vanillin inhibits growth, morphogenesis and biofilm formation by Candida albicans. J. Biol. Act. Prod. Nat. 2013, 3, 130–138. [Google Scholar] [CrossRef]
- Aničić, N.; Gašić, U.; Lu, F.; Ćirić, A.; Ivanov, M.; Jevtić, B.; Dimitrijević, M.; Anđelković, B.; Skorić, M.; Nestorović Živković, J.; et al. Antimicrobial and Immunomodulating Activities of Two Endemic Nepeta Species and Their Major Iridoids Isolated from Natural Sources. Pharmaceuticals 2021, 14, 414. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, Y.-G.; Ryu, S.Y.; Cho, M.H.; Lee, J. Resveratrol oligomers inhibit biofilm formation of Escherichia coli O157:H7 and Pseudomonas aeruginosa. J. Nat. Prod. 2014, 77, 168–172. [Google Scholar] [CrossRef]
- Gopu, V.; Shetty, P.H. Cyanidin inhibits quorum signalling pathway of a food borne opportunistic pathogen. J. Food Sci. Technol. 2016, 53, 968–976. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Dong, N.; Chen, K.; Yang, X.; Zeng, P.; Hou, C.; Chi Chan, E.W.; Yao, X.; Chen, S. Bactericidal, anti-biofilm, and anti-virulence activity of vitamin C against carbapenem-resistant hypervirulent Klebsiella pneumoniae. iScience 2022, 25, 103894. [Google Scholar] [CrossRef]
- Qayyum, S.; Sharma, D.; Bisht, D.; Khan, A.U. Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress. Microb. Pathog. 2019, 126, 205–211. [Google Scholar] [CrossRef]
- Aswathanarayan, J.B.; Vittal, R.R. Inhibition of biofilm formation and quorum sensing mediated phenotypes by berberine in Pseudomonas aeruginosa and Salmonella typhimurium. RSC Adv. 2018, 8, 36133–36141. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yao, X.; Zhu, Z.; Tang, T.; Dai, K.; Sadovskaya, I.; Flahaut, S.; Jabbouri, S. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int. J. Antimicrob. Agents 2009, 34, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol. 2013, 36, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Brackman, G.; Defoirdt, T.; Miyamoto, C.; Bossier, P.; Van Calenbergh, S.; Nelis, H.; Coenye, T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 2008, 8, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amalaradjou, M.A.R.; Venkitanarayanan, K. Effect of trans-Cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. J. Food Prot. 2011, 74, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, Y.-G.; Cho, H.S.; Ryu, S.Y.; Cho, M.H.; Lee, J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine 2014, 21, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Bajire, S.K.; Jain, S.; Johnson, R.P.; Shastry, R.P. 6-Methylcoumarin attenuates quorum sensing and biofilm formation in Pseudomonas aeruginosa PAO1 and its applications on solid surface coatings with polyurethane. Appl. Microbiol. Biotechnol. 2021, 105, 8647–8661. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Paul, P.; Chatterjee, S.; Chakraborty, P.; Sarker, R.K.; Das, A.; Maiti, D.; Tribedi, P. Piperine exhibits promising antibiofilm activity against Staphylococcus aureus by accumulating reactive oxygen species (ROS). Arch. Microbiol. 2022, 204, 59. [Google Scholar] [CrossRef]
- Lopes, L.A.A.; Dos Santos Rodrigues, J.B.; Magnani, M.; de Souza, E.L.; de Siqueira-Júnior, J.P. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb. Pathog. 2017, 107, 193–197. [Google Scholar] [CrossRef]
- Li, R.; Lu, J.; Duan, H.; Yang, J.; Tang, C. Biofilm inhibition and mode of action of epigallocatechin gallate against Vibrio mimicus. Food Control 2020, 113, 107148. [Google Scholar] [CrossRef]
- Serra, D.O.; Mika, F.; Richter, A.M.; Hengge, R. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σE-dependent sRNA RybB. Mol. Microbiol. 2016, 101, 136–151. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, T.; Nakahara, A.; Minnatul, K.M.; Noiri, Y.; Ebisu, S.; Kato, A.; Azakami, H. The inhibitory effects of catechins on biofilm formation by the periodontopathogenic bacterium Eikenella corrodens. Biosci. Biotechnol. Biochem. 2010, 74, 2445–2450. [Google Scholar] [CrossRef] [PubMed]
- Tsang, P.W.-K.; Bandara, H.M.H.N.; Fong, W.-P. Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS ONE 2012, 7, e50866. [Google Scholar] [CrossRef] [Green Version]
- Coenye, T.; Brackman, G.; Rigole, P.; De Witte, E.; Honraet, K.; Rossel, B.; Nelis, H.J. Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 2012, 19, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Li, T.; Wang, Z.; Li, J. Curcumin liposomes interfere with quorum sensing system of Aeromonas sobria and in silico analysis. Sci. Rep. 2017, 7, 8612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathinam, P.; Vijay Kumar, H.S.; Viswanathan, P. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling 2017, 33, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Afre, S.; Gilbert, E.S. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett. Appl. Microbiol. 2006, 43, 489–494. [Google Scholar] [CrossRef]
- Huber, B.; Eberl, L.; Feucht, W.; Polster, J. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z. Naturforsch. C J. Biosci. 2014, 58, 879–884. [Google Scholar] [CrossRef]
- Maisarah Norizan, S.N.; Yin, W.-F.; Chan, K.-G. Caffeine as a potential quorum sensing inhibitor. Sensors 2013, 13, 5117–5129. [Google Scholar] [CrossRef]
- Tomaś, N.; Myszka, K.; Wolko, L.; Nuc, K.; Szwengiel, A.; Grygier, A.; Majcher, M. Effect of black pepper essential oil on quorum sensing and efflux pump systems in the fish-borne spoiler Pseudomonas psychrophila KM02 identified by RNA-seq, RT-qPCR and molecular docking analyses. Food Control 2021, 130, 108284. [Google Scholar] [CrossRef]
- Villa, F.; Remelli, W.; Forlani, F.; Vitali, A.; Cappitelli, F. Altered expression level of Escherichia coli proteins in response to treatment with the antifouling agent zosteric acid sodium salt. Environ. Microbiol. 2012, 14, 1753–1761. [Google Scholar] [CrossRef]
- Hu, A.; Hu, M.; Chen, S.; Xue, Y.; Tan, X.; Zhou, J. Five plant natural products are potential Type III secretion system inhibitors to effectively control soft-rot disease caused by Dickeya. Front. Microbiol. 2022, 13, 839025. [Google Scholar] [CrossRef]
- Da, L.M.; Heroux, A.K.; Pakzad, Z.; Schiffmacher, K.F.E.S. Salicylic acid attenuates biofilm formation but not swarming in Pseudomonas aeruginosa. J. Exp. Microbiol. Immunol. 2010, 14, 69–73. [Google Scholar]
- Heard, A.W.; Bekker, A.; Kovalick, A.; Tsikos, H.; Ireland, T.; Dauphas, N. Oxygen production and rapid iron oxidation in stromatolites immediately predating the Great Oxidation Event. Earth Planet. Sci. Lett. 2022, 582, 117416. [Google Scholar] [CrossRef]
- Khademian, M.; Imlay, J.A. How microbes evolved to tolerate oxygen. Trends Microbiol. 2021, 29, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Hong Enriquez, R.P.; Do, T.N. Bioavailability of metal ions and evolutionary adaptation. Life 2012, 2, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Hayyan, M.; Hashim, M.A.; Alnashef, I.M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [Green Version]
- Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [Green Version]
- Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 2003, 57, 395–418. [Google Scholar] [CrossRef]
- Koppenol, W.H. The Haber-Weiss cycle—70 years later. Redox Rep. 2001, 6, 229–234. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Seng, Z.J.; Kohli, G.S.; Yang, L.; Yuk, H.-G. Stress resistance development and genome-wide transcriptional response of Escherichia coli O157:H7 adapted to sublethal thymol, carvacrol, and trans-cinnamaldehyde. Appl. Environ. Microbiol. 2018, 84, e01616-18. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Turan, S.; Kiralan, M.; Ramadan, M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 2021, 15, 621–632. [Google Scholar] [CrossRef]
- Rudrappa, T.; Bais, H.P. Arabidopsis thaliana root surface chemistry regulates in planta biofilm formation of Bacillus subtilis. Plant Signal. Behav. 2007, 2, 349–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordoudi, S.A.; Tsimidou, M.Z.; Vafiadis, A.P.; Bakalbassis, E.G. Structure-DPPH• scavenging activity relationships: Parallel study of catechol and guaiacol acid derivatives. J. Agric. Food Chem. 2006, 54, 5763–5768. [Google Scholar] [CrossRef]
- Sánchez, P.; Gálvez, N.; Colacio, E.; Miñonesa, E.; Domínguez-Vera, J.M. Catechol releases iron(III) from ferritin by direct chelation without iron(II) production. Dalton Trans. 2005, 4, 811–813. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, J.-H.; Cho, H.S.; Joo, S.W.; Cho, M.H.; Lee, J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 2013, 29, 491–499. [Google Scholar] [CrossRef]
- Basu, T.; Panja, S.; Shendge, A.K.; Das, A.; Mandal, N. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation. Environ. Toxicol. 2018, 33, 603–618. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Castillo, C.M.S.; Caroca, R.; Lazo-Vélez, M.A.; Antonyak, H.; Polishchuk, A.; Lysiuk, R.; Oliinyk, P.; De Masi, L.; et al. Ellagic acid: A review on its natural sources, chemical stability, and therapeutic potential. Oxid. Med. Cell. Longev. 2022, 2022, 3848084. [Google Scholar] [CrossRef]
- Dalvi, L.T.; Moreira, D.C.; Andrade, R.; Ginani, J.; Alonso, A.; Hermes-Lima, M. Ellagic acid inhibits iron-mediated free radical formation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 910–917. [Google Scholar] [CrossRef]
- Shendge, A.K.; Basu, T.; Panja, S.; Chaudhuri, D.; Mandal, N. An ellagic acid isolated from Clerodendrum viscosum leaves ameliorates iron-overload induced hepatotoxicity in Swiss albino mice through inhibition of oxidative stress and the apoptotic pathway. Biomed. Pharmacother. 2018, 106, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, V.K.; De Freitas, B.S.; Da Silva Dornelles, A.; Roesler Nery, L.; Falavigna, L.; Dal Ponte Ferreira, R.; Reis Bogo, M.; Hallak, J.E.C.; Zuardi, A.W.; Crippa, J.A.S.; et al. Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: Implications for neuroprotection. Mol. Neurobiol. 2014, 49, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.S.; Lee, J.-H.; Ryu, S.Y.; Joo, S.W.; Cho, M.H.; Lee, J. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-Viniferin. J. Agric. Food Chem. 2013, 61, 7120–7126. [Google Scholar] [CrossRef]
- Kim, H.J.; Chang, E.J.; Cho, S.H.; Chung, S.K.; Park, H.D.; Choi, S.W. Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci. Biotechnol. Biochem. 2002, 66, 1990–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Privat, C.; Telo, J.P.; Bernardes-Genisson, V.; Vieira, A.; Souchard, J.-P.; Nepveu, F. Antioxidant properties of trans-ε-viniferin as compared to stilbene derivatives in aqueous and nonaqueous media. J. Agric. Food Chem. 2002, 50, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Belguendouz, L.; Fremont, L.; Linard, A. Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteins. Biochem. Pharmacol. 1997, 53, 1347–1355. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, H.; Tang, Y.; Yu, W.; Gong, Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett. 2013, 35, 631–637. [Google Scholar] [CrossRef]
- Reddy, A.C.; Lokesh, B.R. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol. Cell. Biochem. 1994, 137, 1–8. [Google Scholar] [CrossRef]
- Mahboub, R.; Memmou, F. Antioxidant activity and kinetics studies of eugenol and 6-bromoeugenol. Nat. Prod. Res. 2015, 29, 966–971. [Google Scholar] [CrossRef]
- Tafforeau, L.; Le Blastier, S.; Bamps, S.; Dewez, M.; Vandenhaute, J.; Hermand, D. Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF. EMBO J. 2006, 25, 4547–4556. [Google Scholar] [CrossRef]
- Tai, A.; Sawano, T.; Yazama, F.; Ito, H. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta 2011, 1810, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Sun, J.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M.; Sun, X.; Li, H. Intracellular antioxidant effect of vanillin, 4-methylguaiacol and 4-ethylguaiacol: Three components in Chinese Baijiu. RSC Adv. 2017, 7, 46395–46405. [Google Scholar] [CrossRef]
- Li, X.; Chen, B.; Xie, H.; He, Y.; Zhong, D.; Chen, D. Antioxidant structure–activity relationship analysis of five dihydrochalcones. Molecules 2018, 23, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nithiya, T.; Udayakumar, R. In vitro antioxidant properties of phloretin—aniImportant phytocompound. J. Biosci. Med. 2016, 4, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Perez, C.; Wei, Y.; Rapoza, E.; Su, G.; Bou-Abdallah, F.; Chasteen, N.D. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 2007, 43, 4951–4961. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Lin, H.; Tu, Q.; Liu, J.; Li, X. Fisetin protects DNA against oxidative damage and its possible mechanism. Adv. Pharm. Bull. 2016, 6, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Hengge, R. Targeting bacterial biofilms by the green tea polyphenol EGCG. Molecules 2019, 24, 2403. [Google Scholar] [CrossRef] [Green Version]
- Nanjo, F.; Goto, K.; Seto, R.; Suzuki, M.; Sakai, M.; Hara, Y. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med. 1996, 21, 895–902. [Google Scholar] [CrossRef]
- Nanjo, F.; Mori, M.; Goto, K.; Hara, Y. Radical scavenging activity of tea catechins and their related compounds. Biosci. Biotechnol. Biochem. 1999, 63, 1621–1623. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, A.; Yonemitsu, K.; Koreeda, A.; Tsunenari, S. Inhibitory activity of epigallocatechin gallate (EGCg) in paraquat-induced microsomal lipid peroxidation—A mechanism of protective effects of EGCg against paraquat toxicity. Toxicology 2003, 183, 143–149. [Google Scholar] [CrossRef]
- Qian, B.-J.; Wu, C.-F.; Lu, M.-M.; Xu, W.; Jing, P. Effect of complexes of cyanidin-3-diglucoside-5-glucoside with rutin and metal ions on their antioxidant activities. Food Chem. 2017, 232, 545–551. [Google Scholar] [CrossRef]
- Mladěnka, P.; Říha, M.; Martin, J.; Gorová, B.; Matějíček, A.; Spilková, J. Fruit extracts of 10 varieties of elderberry (Sambucus nigra L.) interact differently with iron and copper. Phytochem. Lett. 2016, 18, 232–238. [Google Scholar] [CrossRef]
- Acquaviva, R.; Russo, A.; Galvano, F.; Galvano, G.; Barcellona, M.L.; Li Volti, G.; Vanella, A. Cyanidin and cyanidin 3-O-β-D-glucoside as DNA cleavage protectors and antioxidants. Cell Biol. Toxicol. 2003, 19, 243–252. [Google Scholar] [CrossRef]
- Deng, J.; Cheng, J.; Liao, X.; Zhang, T.; Leng, X.; Zhao, G. Comparative study on iron release from soybean (Glycine max) seed ferritin induced by anthocyanins and ascorbate. J. Agric. Food Chem. 2010, 58, 635–641. [Google Scholar] [CrossRef]
- Yang, H.-L.; Chen, S.-C.; Senthil Kumar, K.J.; Yu, K.-N.; Lee Chao, P.-D.; Tsai, S.-Y.; Hou, Y.-C.; Hseu, Y.-C. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: An ex vivo approach. J. Agric. Food Chem. 2012, 60, 522–532. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, F.; Lan, J.; Sun, F.; Li, J.; Li, M.; Song, K.; Wu, X. Ultra-small micelles based on polyoxyl 15 hydroxystearate for ocular delivery of myricetin: Optimization, in vitro, and in vivo evaluation. Drug Deliv. 2019, 26, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florêncio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef]
- Domitrović, R.; Rashed, K.; Cvijanović, O.; Vladimir-Knežević, S.; Škoda, M.; Višnić, A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem. Biol. Interact. 2015, 230, 21–29. [Google Scholar] [CrossRef]
- Mishra, A.K.; Baek, K.-H. Salicylic acid biosynthesis and metabolism: A divergent pathway for plants and bacteria. Biomolecules 2021, 11, 705. [Google Scholar] [CrossRef]
- Cheng, I.F.; Zhao, C.P.; Amolins, A.; Galazka, M.; Doneski, L. A hypothesis for the in vivo antioxidant action of salicyclic acid. Biometals 1996, 9, 285–290. [Google Scholar] [CrossRef]
- Karamać, M.; Kosińska, A.; Pegg, R.B. Comparison of radical-scavenging activities for selected phenolic acids. Pol. J. Food Nutr. Sci. 2005, 55, 165–170. [Google Scholar]
- Cattò, C.; Dell’Orto, S.C.; Villa, F.; Villa, S.; Gelain, A.; Vitali, A.; Marzano, V.; Baroni, S.; Forlani, F.; Cappitelli, F. Unravelling the structural and molecular basis responsible for the anti-biofilm activity of zosteric acid. PLoS ONE 2015, 10, e0131519. [Google Scholar] [CrossRef] [Green Version]
- Kurth, C.; Cavas, L.; Pohnert, G. Sulfation mediates activity of zosteric acid against biofilm formation. Biofouling 2015, 31, 253–263. [Google Scholar] [CrossRef]
- Kiliç, I.; Yeşiloğlu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 115, 719–724. [Google Scholar] [CrossRef]
- Njus, D.; Kelley, P.M.; Tub, Y.-J.; Schlegel, B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef]
- Liu, C.-M.; Kao, C.-L.; Wu, H.-M.; Li, W.-J.; Huang, C.-T.; Li, H.-T.; Chen, C.-Y. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules 2014, 19, 17829–17838. [Google Scholar] [CrossRef]
- Macan, A.M.; Kraljević, T.G.; Raić-Malić, S. Therapeutic perspective of vitamin C and its derivatives. Antioxidants 2019, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Kontoghiorghes, G.J.; Kolnagou, A.; Kontoghiorghe, C.N.; Mourouzidis, L.; Timoshnikov, V.A.; Polyakov, N.E. Trying to solve the puzzle of the interaction of ascorbic acid and iron: Redox, chelation and therapeutic implications. Medicines 2020, 7, 45. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006, 217, 213–220. [Google Scholar] [CrossRef]
- Belghiti, M.E.; Echihi, S.; Mahsoune, A.; Karzazi, Y.; Aboulmouhajir, A.; Dafali, A.; Bahadur, I. Piperine derivatives as green corrosion inhibitors on iron surface; DFT, Monte Carlo dynamics study and complexation modes. J. Mol. Liq. 2018, 261, 62–75. [Google Scholar] [CrossRef]
- Stassen, M.J.J.; Hsu, S.-H.; Pieterse, C.M.J.; Stringlis, I.A. Coumarin communication along the microbiome–root–shoot axis. Trends Plant Sci. 2021, 26, 169–183. [Google Scholar] [CrossRef]
- Rajniak, J.; Giehl, R.F.H.; Chang, E.; Murgia, I.; Von Wirén, N.; Sattely, E.S. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 2018, 14, 442–450. [Google Scholar] [CrossRef]
- Fourcroy, P.; Sisó-Terraza, P.; Sudre, D.; Savirón, M.; Reyt, G.; Gaymard, F.; Abadía, A.; Abadia, J.; Álvarez-Fernández, A.; Briat, J.-F. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 2014, 201, 155–167. [Google Scholar] [CrossRef]
- Harbort, C.J.; Hashimoto, M.; Inoue, H.; Niu, Y.; Guan, R.; Rombolà, A.D.; Kopriva, S.; Voges, M.J.E.E.E.; Sattely, E.S.; Garrido-Oter, R.; et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 2020, 28, 825–837. [Google Scholar] [CrossRef]
- Baune, M.; Kang, K.; Schenkeveld, W.D.C.; Kraemer, S.M.; Hayen, H.; Weber, G. Importance of oxidation products in coumarin-mediated Fe(hydr)oxide mineral dissolution. BioMetals 2020, 33, 305–321. [Google Scholar] [CrossRef]
- Payá, M.; Halliwell, B.; Hoult, J.R.S. Interactions of a series of coumarins with reactive oxygen species: Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem. Pharmacol. 1992, 44, 205–214. [Google Scholar] [CrossRef]
- Nam, W.; Kim, S.P.; Nam, S.H.; Friedman, M. Structure-antioxidative and anti-inflammatory activity relationships of purpurin and related anthraquinones in chemical and cell assays. Molecules 2017, 22, 265. [Google Scholar] [CrossRef]
- Yoshida, L.S.; Kohri, S.; Tsunawaki, S.; Kakegawa, T.; Taniguchi, T.; Takano-Ohmuro, H.; Fujii, H. Evaluation of radical scavenging properties of shikonin. J. Clin. Biochem. Nutr. 2014, 55, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Sethupathy, S.; Prasath, K.G.; Ananthi, S.; Mahalingam, S.; Balan, S.Y.; Pandian, S.K. Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. J. Proteom. 2016, 145, 112–126. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Mamenko, T.P. Regulation of legume-rhizobial symbiosis: Molecular genetic aspects and participation of reactive oxygen species. Cytol. Genet. 2021, 55, 447–459. [Google Scholar] [CrossRef]
- Mandon, K.; Nazaret, F.; Farajzadeh, D.; Alloing, G.; Frendo, P. Redox regulation in diazotrophic bacteria in interaction with plants. Antioxidants 2021, 10, 880. [Google Scholar] [CrossRef]
- Mamenko, T.P.; Khomenko, Y.O.; Kots, S.Y. Influence of fungicides on activities of enzymes of phenolic metabolism in the early stages of formation and functioning of soybean symbiotic apparatus. Regul. Mech. Biosyst. 2019, 10, 111–116. [Google Scholar] [CrossRef]
- Ong, K.S.; Mawang, C.I.; Daniel-Jambun, D.; Lim, Y.Y.; Lee, S.M. Current anti-biofilm strategies and potential of antioxidants in biofilm control. Expert Rev. Anti. Infect. Ther. 2018, 16, 855–864. [Google Scholar] [CrossRef]
- Chua, S.L.; Ding, Y.; Liu, Y.; Cai, Z.; Zhou, J.; Swarup, S.; Drautz-Moses, D.I.; Schuster, S.C.; Kjelleberg, S.; Givskov, M.; et al. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol. 2016, 6, 160162. [Google Scholar] [CrossRef] [Green Version]
- Carraro, L.; Fasolato, L.; Montemurro, F.; Martino, M.E.; Balzan, S.; Servili, M.; Novelli, E.; Cardazzo, B. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microb. Biotechnol. 2014, 7, 265–275. [Google Scholar] [CrossRef]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Rhimi, W.; Theelen, B.; Boekhout, T.; Otranto, D.; Cafarchia, C. Malassezia spp. yeasts of emerging concern in fungemia. Front. Cell. Infect. Microbiol. 2020, 10, 370. [Google Scholar] [CrossRef]
- Mukhi, M.; Vishwanathan, A.S. Beneficial biofilms: A minireview of strategies to enhance biofilm formation for biotechnological applications. Appl. Environ. Microbiol. 2022, 88, e01994-21. [Google Scholar] [CrossRef]
- Tian, W.; Zheng, Y.; Wang, W.; Wang, D.; Tilley, M.; Zhang, G.; He, Z.; Li, Y. A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2274–2308. [Google Scholar] [CrossRef] [PubMed]
Phytocompound | Target Microorganism/s | Sub-Lethal Concentrations Tested | Prevention vs. Control * | Biofilm Growth and Analyses | Oxidative Stress | Effects of the Presence of the Phytocompound |
---|---|---|---|---|---|---|
Vanillin (M.W. = 152.2) [33] | A mixed culture including species of Comamonas, Enterobacteriaceae, Pseudomonas, Stenotrophomonas, Nakamurella, Clostridium, Azospira, Sphingomonas and Ferribacterium | 0.32–1.97 mM (0.05–0.3 mg/mL) | Prevention: 52% biofilm reduction with 1.97 mM (0.3 mg/mL) vanillin Control: no efficacy | Microtiter plates: crystal violet assay; fluorescent concanavalin A (Con A) and amine-reactive fluorescein isothiocyanate (FITC) combined with CLSM to visualize the matrix polysaccharides and the proteins, respectively | Not investigated | Not investigated |
Vanillin [34] | Candida albicans ATCC 90028 | 0.41–3.29 mM (0.062–0.5 mg/mL) | Prevention: 33% biofilm reduction with 3.29 mM (500 µg/mL) vanillin | Microtiter plates: XTT assay; microscopy | Not investigated | Inhibition of ergosterol biosynthesis |
cis,trans-nepetalactone (M.W. = 166.22), 1,5,9-epideoxyloganic acid (M.W. = 360.4), rosmarinic acid (M.W. = 360.3) [35] | Pseudomonas aeruginosa (ATCC 27853) | 0.03 mM cis,trans-nepetalactone (0.005 mg/mL); 0.09 mM cis,trans-nepetalactone (0.015 mg/mL); 0.056 mM 1,5,9-epideoxyloganic acid (0.02 mg/mL); 0.014 mM rosmarinic acid (0.005 mg/mL) | Prevention: 32% and 41% biofilms reduction with 0.03 mM (0.005 mg/mL) cis,trans-nepetalactone and with 0.09 mM (0.015 mg/mL) cis,trans-nepetalactone, respectively Control: no efficacy | Microtiter plates: crystal violet assay | Not investigated | Not investigated |
Vitisin B (M.W. = 906.9) [36] | Escherichia coli O157:H7 and P. aeruginosa | 0.0055–0.055 mM (5–50 μg/mL) | Prevention: 90% reduction in E. coli biofilm with 0.0055 mM (5 μg/mL) vitisin B Control: not investigated | Microtiter plates: crystal violet assay; GFP cells combined with CLSM | Not investigated | Overexpression of motility genes (fliA, flhD, motB and qseB) Reduction in fimbriae |
Cyanidin (M.W. = 287.2) [37] | Klebsiella pneumoniae strain PUFST23 | 0.17–0.52 mM (50–150 μg/mL) | Prevention: 72.43% biofilm reduction with 0.52 mM (150 μg/mL) cyanidin Control: not investigated | Microtiter plates: crystal violet assay; acridine orange staining combined with CLSM | Not investigated | Inhibition of quorum sensing activity |
Ascorbic acid (M.W. = 176.1) [19] | P. aeruginosa clinical isolates | 0.11–1.77 mM (19.5–312.5 μg/mL) | Prevention: 100% biofilm reduction with all the concentrations of ascorbic acid Control: not investigated | Microtiter plates: crystal violet assay | Not investigated | Dowregulation of the biofilm-forming genes lasR and pelA |
Ascorbic acid [38] | K. pneumoniae strain KP1088 and HvKP3 | 22.7–181.7 mM (4–32 mg/mL) | Prevention: significant biofilms reduction with 181.7 mM (32 mg/mL) ascorbic acid Control: not investigated | Microtiter plates: crystal violet assay; CLSM | Increased accumulation of ROS | Suppression the biofilm exopolysaccharide and inhibition of the efflux pump |
Quercetin (M.W. = 302.2) [39] | Enterococcus faecalis MTCC 2729 | 0.21–0.85 mM (64–256 mg/L) | Prevention: -95% biofilm reduction with 0.85 mM (256 mg/L) quercetin Control: not investigated | Microtiter plates: crystal violet assay; SEM; CLSM | Not investigated | Suppression of proteins related to translation and elongation factors |
Berberine (M.W. = 336.4) [40] | P. aeruginosa PAO1 and Salmonella enterica sv. Typhimurium | 0.11–1.86 mM (0.625 and 0.038 mg/mL) | Prevention: 71.7% reduction in P. aeruginosa PA01 biofilm with 1.86 mM (0.625 mg/mL) berberine; 31.2% reduction in S. Typhimurium biofilm with 0.056 mM (0.019 mg/mL) berberine Control: not investigated. | Microtiter plates: crystal violet assay; acridine orange staining combined with CLSM. | Not investigated | Interaction with the quorum sensing signal receptors, LasR and RhlR. Inhibition of swimming and swarming motility in P. aeruginosa PA01 |
Berberine [41] | Staphylococcus epidermidis ATCC 12228, ATCC 35984 and strain SE243 | 0.045–0.19 mM (15–75 μg/mL) | Prevention: 100% biofilm reduction with 0.19 mM (75 μg/mL) berberine Control: not investigated | Microtiter plates: crystal violet assay; acridine orange staining combined with CLSM; SEM | Not investigated | Not investigated |
trans-cinnamaldehyde (M.W. = 132.2); carvacrol (M.W. = 150.2); thymol (M.W. = 150.2); eugenol (M.W. = 164.2) [42] | Listeria monocytogenes ATCC 19115, Scott A and Presque-598 | 0.75 mM trans-cinnamaldehyde; 0.65 mM carvacrol; 0.50 mM thymol; 2.5 mM for eugenol | Prevention: All the molecules inhibited biofilm formation Control: All the molecules inactivated fully formed biofilms | Microtiter plates: plate count; SYTO and propidium iodide staining combined with CLSM | Not investigated | Downregulation of genes involved in the attachment (flaA, fliP, fliG, flgE, motA, motB), quorum sensing (agrA, agrB, agrC), stress response (dnaK) and transcriptional regulation |
Cinnamaldehyde [43] | Vibrio harveyi strains, V. anguillarum LMG 4411, V. vulnificus LMG 16867 | 0.150 mM | Prevention: 26% and 27% reduction in LMG 4411 and LMG 16867, respectively with 0.15 mM cinnamaldehyde Control: not investigated | Microtiter plates: crystal violet assay; resazurin assay; Calcofluor white staining combined with a fluorometer | Not investigated | Decreasing in DNA-binding ability of LuxR, a key factor that drives quorum sensing |
Trans-cinnamaldehyde [44] | Cronobacter sakazakii ATCC 51329, CS 415, CS 4581, CS 4586 and CS 4603 | 560 and 750 mM | Prevention: 4.0 and 3.0 log CFU/mLwith 750 mM trans-cinnamaldehyde Control: not investigated | Microtiter plates: crystal violet assay Tube with different coupons: plate count | Not investigated | Downregulation of rpoS, chaperonins, phoP/Q, outer membrane porins, and osmolyte transporter genes |
Coumarin (M.W. = 146.1); umbelliferone (M.W. = 162.14) [45] | E. coli O157:H7 (ATCC43895) | 0.34 mM coumarin (50 μg/mL); 0.31 mM umbelliferone (50 μg/mL) | Prevention: 80% and 90% biofilms reduction with 0.34 mM coumarin and 0.31 mM umbelliferone, respectively Control: not investigated | Microtiter plates: crystal violet assay; GFP cells and CLSM | Not investigated | Downregulation genes involved in curli formation (sgA and csgB) and motility (flhD and motB) |
6-methylcoumarin (M.W. = 160.2) [46] | P. aeruginosa PAO1 | 0.38–1.56 mM (62–250 μg/mL) | Prevention: biofilm inhibition with 0.78 mM (125 μg/mL) 6-methylcoumarin Control: not investigated | Microtiter plates: crystal violet assay; acridine orange staining combined with CLSM | Not investigated | Reduction in motility and quorum sensing activity |
Shikonin (M.W. = 290.3) [15] | Listeria monocytogenes ATCC 19115 and ATCC 15313 | 0.011–0.0013 mM (0.39–3.13 μg/mL) | Prevention: 50% biofilm reduction with all the concentrations of shikonin after 5 days of incubation Control: not investigated | Microtiter plates: crystal violet assay; Field-emission scanning electron microscopy (FESEM) | Not investigated | Downregulation quorum sensing, flagellum formation, and autoregulatory alternative sigma factor SigB |
Zosteric acid (M.W. = 244.2) [23] | Candida albicans strain SC5314 | 0.041 mM (10 μg/mL) | Prevention: 80% biofilm reduction with 0.041 mM (10 μg/mL) zosteric acid Control: 80% biofilm disruption with 0.041 mM (10 μg/mL) zosteric acid | Microtiter plates: Fluorescent Brightener staining coupled with a fluorometer CDC bioreactor: plate count, FUN1 staining and microscopy | Not investigated | Not investigated |
Piperine (M.W. = 285.3) [47] | Staphylococcus aureus (MTCC 96) | 0.028–0.11 mM (8–32 µg/mL) | Prevention: 52% biofilm reduction with 0.028 (8 µg/mL) and 0.056 mM (16 µg/mL) piperine Control: 39% biofilm disruption with 0.056 mM (16 µg/mL) piperine | Microtiter plates: crystal violet assay; protein quantification; acridine orange staining combined with fluorescence microscopy | Increased accumulation of ROS | Decrease in bacterial motility |
Cannabidiol (M.W. = 314.5) [20] | Candida albicans SC5313 | 0.0050–0.32 mM (1.56 to 100 µg/mL) | Prevention: 39% biofilm reduction with 0.020 mM (6.25 µg/mL) cannabidiol Control: 44% biofilm disruption with 0.0099 mM (3.12 μg/mL) cannabidiol | Microtiter plates: GFP cells, metabolic activity of the biofilms with MTT assay; Calcofluor White M2R combined with CLSM; mitochondrial function; ATP level | Increased accumulation of ROS | Downregulation of genes involved in biofilm maintenance, development, and maturation of factors associated with EPS synthesis |
Myricitrin (M.W. = 318.2); Hesperidin (M.W. = 610.5); Phloridzin (M.W. = 436.4); Myricetin (M.W. = 464.4); Hesperetin (M.W. = 302.3); Phloretin (M.W. = 274.3) [48] | S. aureus RN4220 and S. aureus SA1199B | Myricitrin 0.0031–0.80 mM; hesperidin 0.0016–0.42 mM; phloridzin 0.0023–0.59 mM; myricetin 0.0022–0.55 mM; hesperetin 0.0033–0.85 mM; phloretin 0.0037–0.93 mM (0.25–256 μg/mL) | Prevention: 50% reduction in RN4220 biofilm with 0.0022 mM myricetin (1 μg/mL) and 0.0037 mM phloretin (1 μg/mL), respectively; 50% reduction in SA1199B biofilm with 0.11 mM (32 μg/mL) hesperetin and 0.069 mM (32 μg/mL) myricetin, respectively Control: not investigated | Microtiter plates: crystal violet assay | Not investigated | Not investigated |
Epigallocatechin gallate (M.W. = 458.4) [49] | Vibrio mimicus | 0.139 mM and 0.279 mM (64 and 128 μg/mL) | Prevention: biofilm reduction with 0.139 mM (64 μg/mL) epigallocatechin gallate Control: not investigated | Microtiter plates: crystal violet assay; FTIC and PI staining combined with CLSM | Increased accumulation of ROS | Inhibition of motility |
Epigallocatechin gallate [50] | E. coli K12 strains | 0.0088–0.87 mM (2.5–400 μg/mL) | Prevention: biofilm reduction with 0.044 mM (12.5 μg/mL) epigallocatechin gallate Control: not investigated | Agar plate: stereomicroscopy; GFP strain and biofilm cryosection; SEM | Not investigated | Effect on the assembly of curli subunits into amyloid fibers, and on the σE cell envelope stress response |
Catechin (M.W. = 290.3); Epicatechin (M.W. = 290.3); Gallocatechin (M.W. = 306.3), Epigallocatechin (M.W. = 306.3); Catechin gallate (M.W. = 442.4); Epicatechin gallate (M.W. = 442.4); Gallocatechin gallate (M.W. = 458.4); Epigallocatechin gallate [51] | Eikenella corrodens 1073 | 0.1–0.25 mM | Prevention: significant biofilm reduction with 0.1 mM catechin gallate, epicatechin gallate, gallocatechin gallate and epigallocatechin gallate Control: not investigated | Microtiter plates: XTT assay | Not investigated | Not investigated |
Purpurin (M.W. = 285.3) [52] | C. albicans strain SC5314 | 0.0035–0.035 mM (1–10 µg/mL) | Prevention: 64% biofilm reduction with 0.035 mM (10 μg/mL) purpurin Control: not investigated | Microtiter plates: XTT assay; SEM | Not investigated | Downregulation of the expression of the hypha-specific genes |
Icariin (M.W. = 676.7); Salidroside (M.W. = 300.3); Resveratrol (M.W. = 228.3) [53] | Propionibacterium acnes strains: LMG 16711 (isolated from human facial acne in the UK), LMG 16712 (isolated from human acne) and LMG 16715 (isolated from human blood) | Icariin 0.15–1.18 mM (0.01–0.08%); Salidroside 0.67–83.3 mM (0.02–2.5%); Resveratrol 0.88–14 mM (0.02–0.32%) | Prevention: not investigated Control: 70% biofilm reduction with 1.18 mM (0.08%) icariin; 80% biofilm reduction with 14 mM (0.32%) resveratrol | Microtiter plates: resazurin-based viability assay | Not investigated | Not investigated |
Esculetin (M.W. = 178.1); Fisetin (M.W. = 286.2) [18] | S. aureus strain 8324 and 8325-4, S. dysgalactiae subsp. dysgalactiae NCTC 4671 and ATCC 27957 | Esculetin 0.18–0.72 mM (32–128 µg/mL) Fisetin 0.014–0.056 mM (4–16 µg/mL) | Prevention: 77% reduction in S. aureus 8324 with 128 μg/mL esculetin. 85% reduction in S. aureus 8325-4 and 65% reduction in S. dysgalactiae NCTC 4671 and ATCC 27957 biofilms with 16 µg/mL fisetin Control: not investigated | Microtiter plates: XTT assay; CLSM | Not investigated | Not investigated |
Curcumin (M.W. = 368.4) [54] | Aeromonas sobria | Free curcumin (35–280 µg/mL) Curcumin liposomes (52.5–420 µg/mL) | Prevention: 52% and 93.4% biofilms reduction with 280 µg/mL free curcumin and 420 µg/mL curcumin liposomes, respectively Control: not investigated | Microtiter plates: XTT assay; SEM; CLSM | Not investigated | Effects on siderophore production, swimming and swarming motility, extracellular proteases, biofilm formation and N-acylhomoserine lactones production |
Eugenol (M.W. = 164.2) [55] | Pseudomonas aeruginosa strain PAO1 and two clinical isolates of P. aeruginosa (RRLP1 and RRLP2) | 0.2–0.6 mM | Prevention: 66% reduction in PAO1 biofilm, 68% reduction in RRLP1 biofilm and 64% reduction in RRLP2 biofilm with 0.4 mM eugenol Control: Eugenol treatment reduced biofilm and the extracellular matrix | Microtiter plates: crystal violet assay | Not investigated | Repression of QS associated genes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, M.S.; Villa, F.; Pinto, A.; Cappitelli, F. Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants 2022, 11, 2451. https://doi.org/10.3390/antiox11122451
Christodoulou MS, Villa F, Pinto A, Cappitelli F. Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants. 2022; 11(12):2451. https://doi.org/10.3390/antiox11122451
Chicago/Turabian StyleChristodoulou, Michael S., Federica Villa, Andrea Pinto, and Francesca Cappitelli. 2022. "Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations" Antioxidants 11, no. 12: 2451. https://doi.org/10.3390/antiox11122451
APA StyleChristodoulou, M. S., Villa, F., Pinto, A., & Cappitelli, F. (2022). Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants, 11(12), 2451. https://doi.org/10.3390/antiox11122451