Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review
Abstract
:1. Introduction
2. Methods
3. Parkia speciosa
3.1. Taxonomical Classification
3.2. Botanical Description
3.3. Traditional Medicinal Uses of P. speciosa
3.4. Phytochemistry
4. Pharmacological Potential of P. speciosa Extract in Attenuating Diabetic Vascular Complications
4.1. Antioxidant Properties
4.1.1. Evidence from In Vitro Studies
4.1.2. Evidence from In Vivo Studies
4.2. Hypoglycemic Properties
4.2.1. Evidence from In Vitro Studies
4.2.2. Evidence from In Vivo Studies
4.3. Hypolipidemic Properties
Evidence from In Vivo Studies
4.4. Anti-Inflammatory Properties
Evidence from In Vitro Studies
4.5. Antihypertensive Properties
4.5.1. Evidence from In Vitro Studies
4.5.2. Evidence from In Vivo Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soumya, D.; Srilatha, B. Late Stage Complications of Diabetes and Insulin Resistance. J. Diabetes Metab. 2011, 2, 1000167. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Ata, A.; Kumar, N.V.A.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Ayatollahi, S.A.; Fokou, P.V.T.; Kobarfard, F.; Zakaria, Z.A.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Salsali, A.; Nathan, M. A Review of Types 1 and 2 Diabetes Mellitus and Their Treatment with Insulin. Am. J. Ther. 2006, 13, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential Non-Dairy Probiotic Products—A Healthy Approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Ahmad, N.I.; Rahman, S.A.; Leong, Y.-H.; Azizul, N.H. A Review on the Phytochemicals of Parkia Speciosa, Stinky Beans as Potential Phytomedicine. J. Food Sci. Nutr. Res. 2019, 2, 151–173. [Google Scholar] [CrossRef]
- Milow, P.; Ghazali, N.H.; Mohammad, N.S.; Ong, H.C. Characterization of Plant Resource at Kampung Parit Tok Ngah, Perak, Malaysia. Sci. Res. Essays 2011, 6, 2606–2618. [Google Scholar] [CrossRef]
- Kamisah, Y.; Othman, F.; Qodriyah, H.M.S.; Jaarin, K. Parkia speciosa Hassk.: A Potential Phytomedicine. Evid. Based Complement. Altern. Med. 2013, 2013, 709028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, M.S.M.; Jalil, J.; Zainalabidin, S.; Asmadi, A.Y.; Mustafa, N.H.; Kamisah, Y. Genus Parkia: Phytochemical, Medicinal Uses, and Pharmacological Properties. Int. J. Mol. Sci. 2021, 22, 618. [Google Scholar] [CrossRef]
- Jamaluddin, F.; Mohamed, S.; Lajis, N. Hypoglycaemic Effect of Parkia speciosa Seeds Due to the Synergistic Action of β-Sitosterol and Stigmasterol. Food Chem. 1994, 49, 339–345. [Google Scholar] [CrossRef]
- Fitria, F.; Annisa, A.; Nikita, S.; Ranna, C. Alpha Glukosidase Inhibitory Test and Total Phenolic Content of Ethanol Extract of Parkia speciosa Plant. Sci. Tech. Indones. 2019, 4, 1–4. [Google Scholar] [CrossRef]
- Jamaludin, F.; Mohamed, S. Hypoglycemic Effect of Extracts of Petai Papan (Parkia speciosa, Hassk). Pertanika J. Trop. Agric. Sci. 1993, 16, 161–165. [Google Scholar]
- Balaji, K.; Nedumaran, S.A.; Devi, T.; Sikarwar, M.S.; Fuloria, S. Phytochemical Analysis and in Vitro Antioxidant Activity of Parkia speciosa. Int. J. Green Pharm. 2015, 9, 50–54. [Google Scholar]
- Khalid, N.M.; Babji, A.S. Antioxidative and Antihypertensive Activities of Selected Malaysian Ulam (Salad), Vegetables and Herbs. J. Food Res. 2018, 7, 27–37. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Bukhori, M.F.M.; Rahmat, M.H.; Rahmat, A. Assessment and Comparison of Phytochemical Constituents and Biological Activities of Bitter Bean (Parkia speciosa Hassk.) Collected from Different Locations in Malaysia. Chem. Cent. J. 2018, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Tunsaringkarn, T. Inhibitory Activity of Heinz Body Induction In Vitro Antioxidant Model and Tannin Concentration of Thai Mimosaceous Plant Extracts. J. Med. Plants Res. 2012, 6, 4096–4101. [Google Scholar] [CrossRef] [Green Version]
- Gui, J.S.; Jalil, J.; Jubri, Z.; Kamisah, Y. Parkia speciosa Empty Pod Extract Exerts Anti-Inflammatory Properties by Modulating NFκB and MAPK Pathways in Cardiomyocytes Exposed to Tumor Necrosis Factor-α. Cytotechnology 2019, 71, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, N.H.; Ugusman, A.; Jalil, J.; Kamisah, Y. Anti-Inflammatory Property of Parkia speciosa Empty Pod Extract in Human Umbilical Vein Endothelial Cells. J. Appl. Pharm. Sci. 2018, 8, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Siow, H.L.; Gan, C.Y. Extraction of Antioxidative and Antihypertensive Bioactive Peptides from Parkia speciosa Seeds. Food Chem. 2013, 141, 3435–3442. [Google Scholar] [CrossRef] [PubMed]
- Kamisah, Y.; Zuhair, J.S.F.; Juliana, A.H.; Jaarin, K. Parkia speciosa Empty Pod Prevents Hypertension and Cardiac Damage in Rats given N(G)-Nitro-L-Arginine Methyl Ester. Biomed. Pharmacother. 2017, 96, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Suwannarat, K.; Nualsri, C. Genetic Relationships between 4 Parkia Spp. and Variation in Parkia speciosa Hassk. Based on Random Amplified Polymorphic DNA (RAPD) Markers. Songklanakarin J. Sci. Tech. 2008, 30, 433–440. [Google Scholar]
- Chhikara, N.; Devi, H.R.; Jaglan, S.; Sharma, P.; Gupta, P.; Panghal, A. Bioactive Compounds, Food Applications and Health Benefits of Parkia speciosa (Stinky Beans): A Review. Agric. Food Secur. 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Asikin, Y.; Shikanai, T.; Wada, K. Volatile Aroma Components and MS-Based Electronic Nose Profiles of Dogfruit (Pithecellobium Jiringa) and Stink Bean (Parkia speciosa). J. Adv. Res. 2018, 9, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Azizul, N.H. Nutraceutical Potential of Parkia speciosa (Stink Bean): A Current Review. Am. J. Biomed. Sci. Res. 2019, 4, 392–402. [Google Scholar] [CrossRef]
- Mondal, P.; Bhuyan, N.; Das, S.; Kumar, M.; Borah, S.; Mahato, K. Herbal Medicines Useful for the Treatment of Diabetes in North-East India: A Review. Int. J. Pharm. Biol. Sci. 2013, 3, 575–589. [Google Scholar]
- Boye, A.; Boampong, V.A.; Takyi, N.; Martey, O. Assessment of an Aqueous Seed Extract of Parkia clappertoniana on Reproductive Performance and Toxicity in Rodents. J. Ethnopharmacol. 2016, 185, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, Y.; Maibam, B.C.; Talukdar, N.C.; Deka, D.C.; Borah, J.C. In Vitro and in Vivo Anti-Diabetic and Hepatoprotective Effects of Edible Pods of Parkia roxburghii and Quantification of the Active Constituent by HPLC-PDA. J. Ethnopharmacol. 2016, 191, 21–28. [Google Scholar] [CrossRef]
- Azliza, M.A.; Ong, H.C.; Vikineswary, S.; Noorlidah, A.; Haron, N.W. Ethno-Medicinal Resources Used by the Temuan in Ulu Kuang Village. Stud. Ethno-Med. 2012, 6, 17–22. [Google Scholar] [CrossRef]
- Roosita, K.; Kusharto, C.M.; Sekiyama, M.; Fachrurozi, Y.; Ohtsuka, R. Medicinal Plants Used by the Villagers of a Sundanese Community in West Java, Indonesia. J. Ethnopharmacol. 2008, 115, 72–81. [Google Scholar] [CrossRef]
- Srisawat, T.; Suvarnasingh, A.; Maneenoon, K. Traditional Medicinal Plants Notably Used to Treat Skin Disorders Nearby Khao Luang Mountain Hills Region, Nakhon Si Thammarat, Southern Thailand. J. Herbs Spices Med. Plants 2016, 22, 35–56. [Google Scholar] [CrossRef]
- Siew, Y.Y.; Zareisedehizadeh, S.; Seetoh, W.G.; Neo, S.Y.; Tan, C.H.; Koh, H.L. Ethnobotanical Survey of Usage of Fresh Medicinal Plants in Singapore. J. Ethnopharmacol. 2014, 155, 1450–1466. [Google Scholar] [CrossRef] [PubMed]
- Bahtiar, A.; Vichitphan, K.; Han, J. Leguminous Plants in the Indonesian Archipelago: Traditional Uses and Secondary Metabolites. Nat. Prod. Commun. 2017, 12, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Samuel, A.J.S.J.; Kalusalingam, A.; Chellappan, D.K.; Gopinath, R.; Radhamani, S.; Husain, H.A.; Muruganandham, V.; Promwichit, P. Ethnomedical Survey of Plants Used by the Orang Asli in Kampung Bawong, Perak, West Malaysia. J. Ethnobiol. Ethnomed. 2010, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, H.C.; Chua, S.; Milow, P. Ethno-Medicinal Plants Used by the Temuan Villagers in Kampung Jeram Kedah, Negeri Sembilan, Malaysia. Stud. Ethno-Med. 2011, 5, 95–100. [Google Scholar] [CrossRef]
- Ong, H.C.; Ahmad, N.; Milow, P. Traditional Medicinal Plants Used by the Temuan Villagers in Kampung Tering, Negeri Sembilan, Malaysia. Stud. Ethno-Med. 2011, 5, 169–173. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of Medicinal Plants. J. Pharmacog. Phytochem. 2013, 1, 168–182. [Google Scholar]
- Tariq, A.L.; Reyaz, A.L. Significances and Importance of Phytochemical Present in Terminalia chebula. Int. J. Drug Dev. Res. 2013, 5, 256–262. [Google Scholar]
- Wadood, A. Phytochemical Analysis of Medicinal Plants Occurring in Local Area of Mardan. Biochem. Anal. Biochem. 2013, 2, 1000144. [Google Scholar] [CrossRef]
- Ko, H.J.; Ang, L.H.; Ng, L.T. Antioxidant Activities and Polyphenolic Constituents of Bitter Bean Parkia speciosa. Int. J. Food Prop. 2014, 17, 1977–1986. [Google Scholar] [CrossRef] [Green Version]
- Azizi, C.Y.M.; Salman, Z.; Norulain, N.A.N.; Omar, A.K.M. Extraction and Identification of Compounds from Parkia speciosa Seeds by Supercritical Carbon Dioxide. J. Chem. Nat. Res. Eng. 2008, 2, 153–163. [Google Scholar]
- Rahman, N.N.N.A.; Zhari, S.; Sarker, M.Z.I.; Ferdosh, S.; Yunus, M.A.C.; Kadir, M.O.A. Profile of Parkia speciosa Hassk Metabolites Extracted with SFE Using FTIR-PCA Method. J. Chin. Chem. Soc. 2012, 59, 507–514. [Google Scholar] [CrossRef]
- Frérot, E.; Velluz, A.; Bagnoud, A.; Delort, E. Analysis of the Volatile Constituents of Cooked Petai Beans (Parkia speciosa) Using High-Resolution GC/ToF-MS. Flavour Fragr. J. 2008, 23, 434–440. [Google Scholar] [CrossRef]
- Tocmo, R.; Liang, D.; Wang, C.; Poh, J.; Huang, D. Organosulfide Profile and Hydrogen Sulfide-Releasing Capacity of Stinky Bean (Parkia speciosa) Oil: Effects of PH and Extraction Methods. Food Chem. 2016, 190, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Sena, C.M.; Pereira, A.M.; Seiça, R. Endothelial Dysfunction—A Major Mediator of Diabetic Vascular Disease. Biochim. Biophys. Acta 2013, 1832, 2216–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Boulton, M. The Pathogenesis of Diabetic Retinopathy: Old Concepts and New Questions. Eye 2002, 16, 242–260. [Google Scholar] [CrossRef]
- Wolff, S.P. Diabetes Mellitus and Free Radicals. Free Radicals, Transition Metals and Oxidative Stress in the Aetiology of Diabetes Mellitus and Complications. Br. Med. Bull. 1993, 49, 642–652. [Google Scholar] [CrossRef]
- Félétou, M. The Endothelium: Part 1: Multiple Functions of the Endothelial Cells—Focus on Endothelium-Derived Vasoactive Mediators; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2011. [Google Scholar] [CrossRef]
- Baynes, J.W. Role of Oxidative Stress in Development of Complications in Diabetes. Diabetes 1991, 40, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, B.; Karuna, R.; Sreenivasa, R.S.; Haritha, K.; Sai, M.D.; Sasis, B.R.B.; Saralakumari, D. Effect of Commiphora Mukul Gum Resin on Hepatic Marker Enzymes, Lipid Peroxidation and Antioxidants Status in Pancreas and Heart of Streptozotocin Induced Diabetic Rats. Asian Pac. J. Trop. Biomed. 2012, 2, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. A Review of the Molecular Mechanisms of Hyperglycemia-Induced Free Radical Generation Leading to Oxidative Stress. J. Cell Physiol. 2019, 234, 1300–1312. [Google Scholar] [CrossRef]
- Amiya, E. Interaction of Hyperlipidemia and Reactive Oxygen Species: Insights from the Lipid-Raft Platform. World J. Cardiol. 2016, 8, 689–694. [Google Scholar] [CrossRef]
- Azemi, A.K.; Mokhtar, S.S.; Rasool, A.H.G. Clinacanthus nutans: Its Potential against Diabetic Vascular Diseases. Braz. J. Pharm. Sci. 2020, 56, e18838. [Google Scholar] [CrossRef]
- Kohen, R.; Nyska, A. Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aisha, A.F.A.; Abu-Salah, K.M.; Alrokayan, S.A.; Ismail, Z.; Abdul Majid, A.M.S. Evaluation of Antiangiogenic and Antoxidant Properties of Parkia speciosa Hassk Extracts. Pak. J. Pharm. Sci. 2012, 25, 7–14. [Google Scholar] [PubMed]
- Wonghirundecha, S.; Benjakul, S.; Sumpavapol, P. Total Phenolic Content, Antioxidant and Antimicrobial Activities of Stink Bean (Parkia speciosa Hassk.) Pod Extracts. Songklanakarin J. Sci. Tech. 2014, 36, 300–308. [Google Scholar]
- Sonia, N.; Dsouza, M.R.; Alisha. Pharmacological Evaluation of Parkia speciosa Hassk. for Antioxidant, Anti-Inflammatory, Anti-Diabetic and Anti- Microbial Activities in Vitro. Int. J. Life Sci. 2018, 11, 49–59. [Google Scholar]
- Al Batran, R.; Al-Bayaty, F.; Jamil Al-Obaidi, M.M.; Abdualkader, A.M.; Hadi, H.A.; Ali, H.M.; Abdulla, M.A. In Vivo Antioxidant and Antiulcer Activity of Parkia speciosa Ethanolic Leaf Extract against Ethanol-Induced Gastric Ulcer in Rats. PLoS ONE 2013, 8, e64751. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, W.; Yang, L.; Fan, H.; Olatunji, O.J. Stink Bean (Parkia speciosa) Empty Pod: A Potent Natural Antidiabetic Agent for the Prevention of Pancreatic and Hepatorenal Dysfunction in High Fat Diet/Streptozotocin-Induced Type 2 Diabetes in Rats. Arch. Physiol. Biochem. 2021, 1–17. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, C.G.; Xu, Y.G. Lycopene Attenuates Endothelial Dysfunction in Streptozotocin-Induced Diabetic Rats by Reducing Oxidative Stress. Pharm. Biol. 2011, 49, 1144–1149. [Google Scholar] [CrossRef]
- Endemann, D.H.; Schiffrin, E.L. Nitric Oxide, Oxidative Excess, and Vascular Complications of Diabetes Mellitus. Curr. Hypertens. Rep. 2004, 6, 85–89. [Google Scholar] [CrossRef]
- Khan, B.v.; Harrison, D.G.; Olbrych, M.T.; Alexander, R.W.; Medford, R.M. Nitric Oxide Regulates Vascular Cell Adhesion Molecule 1 Gene Expression and Redox-Sensitive Transcriptional Events in Human Vascular Endothelial Cells. Proc. Natl. Acad. Sci. USA 1996, 93, 9114–9119. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.W.; Lin, Y.; Lei, Y.P.; Wang, L.; He, Z.M.; Xiong, Y. Pyrrolidine Dithiocarbamate Ameliorates Endothelial Dysfunction in Thoracic Aorta of Diabetic Rats by Preserving Vascular DDAH Activity. PLoS ONE 2017, 12, e0179908. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural Products as Alpha-Amylase and Alpha-Glucosidase Inhibitors and Their Hypoglycaemic Potential in the Treatment of Diabetes: An Update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Ferdosh, S.; Ghafoor, K.; Hakim, A.; Juraimi, A.S.; Khatib, A.; Sarker, Z.I. Clinacanthus nutans: A Review of the Medicinal Uses, Pharmacology and Phytochemistry. Asian Pac. J. Trop. Med. 2016, 9, 402–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunsaringkarn, T.; Rungsiyothin, A.; Ruangrungsi, N. α-Glucosidase Inhibitory Activityof Thai Mimosaceous Plant Extracts. J. Health Res. 2008, 22, 29–33. [Google Scholar]
- Tunsaringkarn, T.; Rungsiyothin, A.; Ruangrungsi, N. α-Glucosidase Inhibitory Activity of Water Soluble Extract from Thai Mimosaceous Plants. J. Public Health Burapha Univ. 2009, 4, 54–63. [Google Scholar]
- Jamaluddin, F.; Mohameda, S.; Lajis, M.N. Hypoglycaemic Effect of Stigmast-4-En-3-One, from Parkia speciosa Empty Pods. Food Chem. 1995, 54, 9–13. [Google Scholar] [CrossRef]
- Sharma, A.; Bernatchez, P.N.; de Haan, J.B. Targeting Endothelial Dysfunction in Vascular Complications Associated with Diabetes. Int. J. Vasc. Med. 2012, 2012, 750126. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef] [Green Version]
- Abbasnezhad, A.; Niazmand, S.; Mahmoudabady, M.; Rezaee, S.A.; Soukhtanloo, M.; Mosallanejad, R.; Hayatdavoudi, P. Nigella sativa L. Seed Regulated ENOS, VCAM-1 and LOX-1 Genes Expression and Improved Vasoreactivity in Aorta of Diabetic Rat. J. Ethnopharmacol. 2019, 228, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Haddad, D.; al Madhoun, A.; Nizam, R.; Al-Mulla, F. Role of Caveolin-1 in Diabetes and Its Complications. Oxid. Med. Cell. Longev. 2020, 2020, 9761539. [Google Scholar] [CrossRef] [Green Version]
- Tandi, J.; Handayani, T.W.; Tandebia, M.; Wijaya, J.A. Effect of Parkia speciosa Hassk Peels Extract on Total Cholesterol Levels of Hypercholesterolemia Rats. Indian J. Forensic Med. Toxicol. 2020, 14, 2988–2992. [Google Scholar] [CrossRef]
- Sun, M.Y.; Zhang, M.; Chen, S.L.; Zhang, S.P.; Guo, C.Y.; Wang, J.S.; Liu, X.; Miao, Y.; Yin, H.J. The Influence of Hyperlipidemia on Endothelial Function of FPN1 Tek-Cre Mice and the Intervention Effect of Tetramethylpyrazine. Cell Physiol. Biochem. 2018, 47, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Picchi, A.; Gao, X.; Belmadani, S.; Potter, B.J.; Focardi, M.; Chilian, W.M.; Zhang, C. Tumor Necrosis Factor-Alpha Induces Endothelial Dysfunction in the Prediabetic Metabolic Syndrome. Circ. Res. 2006, 99, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.X.; Yi, F.X.; Zou, A.P.; Li, P.L. Role of Ceramide in TNF-Alpha-Induced Impairment of Endothelium-Dependent Vasorelaxation in Coronary Arteries. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1785–H1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitar, M.S.; Wahid, S.; Mustafa, S.; Al-Saleh, E.; Dhaunsi, G.S.; Al-Mulla, F. Nitric Oxide Dynamics and Endothelial Dysfunction in Type II Model of Genetic Diabetes. Eur. J. Pharmacol. 2005, 511, 53–64. [Google Scholar] [CrossRef]
- Kubes, P.; Suzuki, M.; Granger, D.N. Nitric Oxide: An Endogenous Modulator of Leukocyte Adhesion. Proc. Natl. Acad. Sci. USA 1991, 88, 4651–4655. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, R.; Meinberg, E.G.; Stanley, J.C.; Gordon, D.; Webb, R.C. Nitric Oxide Reversibly Inhibits the Migration of Cultured Vascular Smooth Muscle Cells. Circ. Res. 1996, 78, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Creager, M.A.; Lüscher, T.F.; Cosentino, F.; Beckman, J.A. Diabetes and Vascular Disease: Pathophysiology, Clinical Consequences, and Medical Therapy: Part I. Circulation 2003, 108, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Crocin Attenuate Tumor Necrosis Factor-Alpha (TNF-α) and Interleukin-6 (IL-6) in Streptozotocin-Induced Diabetic Rat Aorta. Cytokine 2016, 88, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Cherng, S.H.; Huang, C.Y.; Kuo, W.W.; Lai, S.E.; Tseng, C.Y.; Lin, Y.M.; Tsai, F.J.; Wang, H.F. GABA Tea Prevents Cardiac Fibrosis by Attenuating TNF-Alpha and Fas/FasL-Mediated Apoptosis in Streptozotocin-Induced Diabetic Rats. Food Chem. Toxicol. 2014, 65, 90–96. [Google Scholar] [CrossRef]
- Guzik, T.J.; Mussa, S.; Gastaldi, D.; Sadowski, J.; Ratnatunga, C.; Pillai, R.; Channon, K.M. Mechanisms of Increased Vascular Superoxide Production in Human Diabetes Mellitus: Role of NAD(P)H Oxidase and Endothelial Nitric Oxide Synthase. Circulation 2002, 105, 1656–1662. [Google Scholar] [CrossRef] [Green Version]
- Cassuto, J.; Dou, H.; Czikora, I.; Szabo, A.; Patel, V.S.; Kamath, V.; de Chantemele, E.B.; Feher, A.; Romero, M.J.; Bagi, Z. Peroxynitrite Disrupts Endothelial Caveolae Leading to ENOS Uncoupling and Diminished Flow-Mediated Dilation in Coronary Arterioles of Diabetic Patients. Diabetes 2014, 63, 1381–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; Whelton, P.K. Hypertension Nature Review. Nat. Rev. Dis. Primers 2018, 4, 18014. [Google Scholar] [CrossRef] [Green Version]
- Harrison, D.G.; Cai, H.; Landmesser, U.; Griendling, K.K. Interactions of Angiotensin II with NAD(P)H Oxidase, Oxidant Stress and Cardiovascular Disease. J. Renin Angiotensin Aldosterone Syst. 2003, 4, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Zaini, N.; Mustaffa, F. Review: Parkia Speciosa as Valuable, Miracle of Nature. Asian J. Med. Health 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Siti, H.N.; Jalil, J.; Asmadi, A.Y.; Kamisah, Y. Parkia speciosa Hassk. Empty Pod Extract Alleviates Angiotensin II-Induced Cardiomyocyte Hypertrophy in H9c2 Cells by Modulating the Ang II/ROS/NO Axis and MAPK Pathway. Front. Pharmacol. 2021, 12, 2819. [Google Scholar] [CrossRef]
Plant Part | Method of Preparation | Traditional Uses | Region/Country | References |
---|---|---|---|---|
Seeds | Eaten raw or cooked oral decoction | Diabetes | Malaysia | [8,27] |
Eaten raw | Diabetes | Singapore | [8,30] | |
– | Loss of appetite | Indonesia | [31] | |
Cooked | Kidney disorder | West Malaysia | [32] | |
Leaves | Pounded with rice and applied on the neck | Cough | Malaysia | [33] |
Decoction | Dermatitis | Indonesia | [8,28] | |
– | Dermatitis | Indonesia | [31] | |
Root | Decoction | Skin conditions | Southern Thailand | [29] |
Decoction is taken orally | Hypertension and diabetes | Malaysia | [27,33] | |
Oral decoction | Toothache | Malaysia | [34] |
Polyphenols | Plant Part | Extract | Country | References |
---|---|---|---|---|
Quercetin, rutin, kaempherol, catechin, luteolin, myricetin, gallic acid, caffeic acid, ferulic acid, trans-cinnamic acid, p-coumaric acid | Seed | Ethanol | Malaysia | [14] |
Gallic acid, catechin, chlorogenic acid, vanillic acid, caffeic acid, epicatechin, kaempferol, ellagic acid, cinnamic acid, ferulic aid, p-coumaric acid, quercetin | Pod | Aqueous, ethanol | Malaysia | [38] |
Lupeol, β-sitosterol, stigmasterol, stigmasterol methyl ester, stigmasta-5,24(28)-diene-3-ol, campesterol, arachidonic acid, linoleic acid chloride, linoleic acid, squalene, lauric acid, stearic acid, oleic acid, myristic acid, lanthionine, ethyl linoleate, ethyl stearate, 3-ethyl-4-nonanol, eicosanoic acid, elaidic acid, 2-nonade-canone, 2-pyrrolidi-none, 2-decanal, cyclo-decanone-2,4-decadienal, Hexaminde, vitamin E | Seed | Supercritical carbon dioxide | Malaysia | [39] |
Apigenin, nobiletin, tangeritin, rutin, didymin, punicalin, coutaric acid, caftaric acid, malvidin, primulin | Pod | Methanol | Malaysia | [19] |
β-sitosterol, stigmasterol, stigmasterol methyl ester, campesterol, arachidonic acid, linoleic acid, linoleic acid chloride, linoleic acid, squalene, stearic acid, oleic acid, palmitic acid, myristic acid, undecanoic acid, stearolic acid, linoleaidic acid methyl ester | Seed | – | Malaysia | [40] |
1,3-dithiabutane, 2,4-dithiapenthane, 2,3,5-trithiahexane, 2,4,6-trithiaheptane, pentanal | Seed | Aqueous | Indonesia | [41] |
1,2,4-trithiolane, 1,3,5-trithaine, 3,5-dimethyl-1,2,4-trithiolane, dimethyl tetrasulfid, 1,2,5,6-tetrahio-cane, 1,2,3,5-tetrathiane, 1,2,4,5-tetrathiane, 1,2,4,6-tetrathie-pane, lethionine | Seed | Hexane | Singapore | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azemi, A.K.; Nordin, M.L.; Hambali, K.A.; Noralidin, N.A.; Mokhtar, S.S.; Rasool, A.H.G. Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review. Antioxidants 2022, 11, 431. https://doi.org/10.3390/antiox11020431
Azemi AK, Nordin ML, Hambali KA, Noralidin NA, Mokhtar SS, Rasool AHG. Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review. Antioxidants. 2022; 11(2):431. https://doi.org/10.3390/antiox11020431
Chicago/Turabian StyleAzemi, Ahmad Khusairi, Muhammad Luqman Nordin, Kamarul Ariffin Hambali, Nur Amalina Noralidin, Siti Safiah Mokhtar, and Aida Hanum Ghulam Rasool. 2022. "Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review" Antioxidants 11, no. 2: 431. https://doi.org/10.3390/antiox11020431
APA StyleAzemi, A. K., Nordin, M. L., Hambali, K. A., Noralidin, N. A., Mokhtar, S. S., & Rasool, A. H. G. (2022). Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review. Antioxidants, 11(2), 431. https://doi.org/10.3390/antiox11020431