Changes in Quality Traits and Oxidation Stability of Syzygium aromaticum Extract-Added Cooked Ground Beef during Frozen Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Syzygium aromaticum Extracts and Sample Preparation
2.2. pH Value and Thawing Loss
2.3. Lipid Oxidation
2.4. Volatile Compound Analysis
2.5. Instrumental Color Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. pH Values and Thawing Loss
3.2. Lipid Oxidation
3.3. Volatile Compounds Analysis
3.4. Color Values
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haak, L.; Raes, K.; De Smet, S. Effect of plant phenolics, tocopherol and ascorbic acid on oxidative stability of pork patties. J. Sci. Food Agric. 2009, 89, 1360–1365. [Google Scholar] [CrossRef]
- Younathan, M.T. Causes and prevention of warmed-over flavour. In Proceedings of American Meat Science Association, Proceedings of the 38th Annual Reciprocal Meat Conference; Louisiana State University: Baton Rouge, LA, USA, 1985; pp. 74–80. [Google Scholar]
- Ozer, O.; Saricoban, C. The effects of butylated hydroxyanisole, ascorbic acid, and α-tocopherol on some quality characteristics of mechanically deboned chicken patty during freeze storage. Czech J. Food Sci. 2010, 28, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.A.; Seo, J.K.; Parvin, R.; Ko, J.; Park, J.Y.; Yang, H.S. Assessment of the stability of fresh beef patties with the addition of clove extract during frozen storage. Food Sci. Anim. Resour. 2020, 40, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. What’s new in meat oxidation. In New Aspects of Meat Quality; Woodhead Publishing: Buenos Aires, Argentina, 2017; pp. 91–109. [Google Scholar]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estevez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.I.; Gomaa, E.A.; Buckley, D.J. Oxidation quality and shelf life on meats. Meat Sci. 1996, 43, S111–S126. [Google Scholar] [CrossRef]
- Mohamed, H.M.H.; Mansour, H.A. Incorporating essential oils of marjoram and rosemary in the formulation of beef patties manufactured with mechanically deboned poultry meat to improve the lipid stability and sensory attributes. Food Sci. Technol. 2012, 45, 79–87. [Google Scholar] [CrossRef]
- Shi, C.; Cui, J.; Yin, X.; Luo, Y.; Zhou, Z. Grape seed and clove bud extracts as natural antioxidants in silver carp (Hypophthalmichthys molitrix) fillets during chilled storage: Effect on lipid and protein oxidation. Food Control 2014, 40, 134–139. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Dominguez, R.; Barba, F.J.; Putnik, P.; Kovacevic, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- Yang, H.S.; Lee, E.J.; Moon, S.H.; Paik, H.D.; Nam, K.; Ahn, D.U. Effect of garlic, onion, and their combination on the quality and sensory characteristics of irradiated raw ground beef. Meat Sci. 2011, 89, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Carballo, D.E.; Caro, I.; Andres, S.; Giraldez, F.J.; Mateo, J. Assessment of the antioxidant effect of astaxanthin in fresh, frozen and cooked lamb patties. Food Res. Int. 2018, 111, 342–350. [Google Scholar] [CrossRef]
- Cunha, L.C.M.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.S.; Muchenje, V.; de Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, M.F.; Asker, M.M.S.; Tadros, M. Lipids profile, antiradical power and antimicrobial properties of Syzygium aromaticum oil. Grasas Aceites 2013, 64, 509–520. [Google Scholar] [CrossRef]
- El-Maatia, M.F.A.; Mahgoubb, S.A.; Labiba, S.M.; Al-Gabya, A.M.A.; Ramadan, M.F. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur. J. Integr. Med. 2016, 8, 494–504. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, X.; Li, X.; Wu, J.; Guo, X. The application of clove extract protects Chinese-style sausages against oxidation and quality deterioration. Korean J. Food Sci. Anim. Resour. 2017, 37, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Larsen, B.S.; Kaiser, M.A.; Botelho, M.; Wooler, G.R.; Buxton, L.W. Comparison of pressurized solvent and reflux extraction methods for the determination of perfluorooctanoic acid in polytetrafluoroethylene polymers using LC-MS-MS. Analyst 2005, 130, 59–62. [Google Scholar] [CrossRef]
- Molette, C.; Remignon, H.; Babile, R. Maintaining muscles at a high post-mortem temperature induces PSE like meat in turkey. Meat Sci. 2003, 63, 525–532. [Google Scholar] [CrossRef]
- Cherian, G.; Traber, M.G.; Goeger, P.M.; Leonard, S.W. Conjugated linoleic acid and fish oil in laying hen diets: Effects on egg fatty acids, thiobarbituric acid reactive substances, and tocopherols during storage. Poult. Sci. 2007, 86, 953–958. [Google Scholar] [CrossRef]
- Minolta. Precise Colour Communication: Colour Control from Feeling to Instrumentation; Minolta Report; Minolta: Tokyo, Japan, 1994. [Google Scholar]
- Mokhtar, S.M.; Youssef, K.M. Antioxidant effect of some plant extracts as compared with BHA/BHT on lipid oxidation and some quality properties of fresh beef burgers stored at 4 °C. Suez Canal Univ. J. Food Sci. 2014, 2, 19–29. [Google Scholar]
- Jin, S.K.; Choi, J.S.; Jeong, J.Y.; Kim, G.D. The effect of clove bud powder at a spice level on antioxidant and quality properties of emulsified pork sausage during cold storage. J. Sci. Food. Agric. 2016, 96, 4089–4097. [Google Scholar] [CrossRef]
- Soriano, A.; Alanon, M.E.; Alarcon, M.; Garcla-Rulz, A.; Dlaz-Maroto, M.C.; Perez-Coello, M.S. Oak wood extracts as natural antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging. Food Res. Int. 2018, 111, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.R.; Gubert, G.; Roman, S.S.; Kempka, A.P.; Prestes, R.C. Meat quality of chicken breast subjected to different thawing methods. Braz. J. Poult. Sci. 2015, 17, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wu, J.; Guo, X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness 2016, 5, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Baghshahi, H.; Riasi, A.; Mahdavi, A.H.; Shirazi, A. Antioxidant effects of clove bud (Syzygium aromaticum) extract used with different extenders on ram spermatozoa during cryopreservation. Cryobiology 2014, 69, 482–487. [Google Scholar] [CrossRef]
- Kong, B.H.; Zhang, H.Y.; Xiong, Y.L. Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action. Meat Sci. 2010, 85, 772–778. [Google Scholar] [CrossRef]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
- Skibsted, L.H. Carotenoids in antioxidant networks. Colorants or radical scavengers. J. Agric. Food Chem. 2012, 60, 2409–2417. [Google Scholar] [CrossRef]
- Ahn, J.; Grun, I.U.; Mustapha, A. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef]
- Nunez De Gonzalez, M.T.; Hafley, B.S.; Boleman, R.M.; Miller, R.M.; Rhee, K.S.; Keeton, J.T. Qualitative effects of fresh and dried plum ingredients on vacuum packaged, sliced hams. Meat Sci. 2009, 83, 74–81. [Google Scholar] [CrossRef]
- Yousuf, B.; Srivastava, A.K. Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils. Int. J. Biol. Macromol. 2017, 104, 1030–1038. [Google Scholar] [CrossRef]
Storage Month | Con | BHT | SAE | SEM | |
---|---|---|---|---|---|
pH | 0 | 5.80 Ba | 5.82 Ba | 5.80 Ba | 0.03 |
1 | 5.85 Ba | 5.87 ABa | 5.87 Ba | 0.02 | |
2 | 5.88 ABa | 5.89 ABa | 5.90 ABa | 0.02 | |
3 | 5.87 ABa | 5.87 Ba | 5.85 Ba | 0.01 | |
4 | 5.87 ABa | 5.86 Ba | 5.85 Ba | 0.03 | |
5 | 5.89 ABa | 5.89 ABa | 5.90 ABa | 0.02 | |
6 | 6.01 Aa | 6.01 Aa | 6.03 Aa | 0.10 | |
SEM | 0.03 | 0.03 | 0.04 | ||
Thawing loss (%) | 1 | 0.05 Ca | 0.05 Ba | 0.05 Ba | 0.00 |
2 | 0.06 Ca | 0.09 Ba | 0.07 Ba | 0.01 | |
3 | 0.10 BCa | 0.09 Ba | 0.09 Ba | 0.02 | |
4 | 0.17 BCa | 0.20 ABa | 0.36 ABa | 0.10 | |
5 | 0.35 ABa | 0.43 Aa | 0.83 Aa | 0.16 | |
6 | 0.55 Aa | 0.45 Aa | 0.79 Aa | 0.13 | |
SEM | 0.05 | 0.05 | 0.11 | ||
TBARS (mg MDA/kg sample) | 0 | 0.62 Da | 0.10 BCb | 0.05 Cb | 0.04 |
1 | 0.67 CDa | 0.10 Cb | 0.06 Cb | 0.02 | |
2 | 0.77 BCDa | 0.12 ABCb | 0.08 BCb | 0.03 | |
3 | 0.80 ABCa | 0.12 ABCb | 0.08 BCb | 0.02 | |
4 | 0.85 ABa | 0.15 ABCb | 0.11 ABb | 0.02 | |
5 | 0.90 ABa | 0.17 ABb | 0.11 ABc | 0.01 | |
6 | 0.94 Aa | 0.18 Ab | 0.13 Ac | 0.01 | |
SEM | 0.05 | 0.02 | 0.01 |
Storage Month | Con | BHT | SAE | SEM | |
---|---|---|---|---|---|
Aldehydes | |||||
Hexanal | 0 | 19.68 Aa | 2.62 Ab | 2.12 Ab | 0.92 |
3 | 17.62 Aa | 2.47 Ab | 1.08 Ac | 0.70 | |
6 | 21.95 Aa | 3.07 Ab | 1.31 Ab | 1.40 | |
SEM | 2.08 | 0.75 | 0.52 | ||
Heptanal | 0 | 0.67 Aa | 0.03 Ab | 0.00 Bb | 0.04 |
3 | 0.60 Aa | 0.07 Ab | 0.00 Bb | 0.05 | |
6 | 0.71 Aa | 0.08 Ab | 0.04 Ab | 0.05 | |
SEM | 0.12 | 0.03 | 0.00 | ||
Octanal | 0 | 0.57 Aa | 0.35 Aa | 0.03 Aa | 0.22 |
3 | 0.37 Aa | 0.05 Ab | 0.04 Ab | 0.04 | |
6 | 0.39 Aa | 0.07 Ab | 0.05 Ab | 0.04 | |
SEM | 0.14 | 0.12 | 0.01 | ||
Hydrocarbons | |||||
2,2,7,7-Tetramethyl-octane | 0 | 3.97 Aa | 3.91 Aa | 7.90 Aa | 1.27 |
3 | 1.99 Aa | 1.82 Ba | 2.90 Aa | 0.36 | |
6 | 2.27 Aa | 1.86 Ba | 1.91 Aa | 0.27 | |
SEM | 0.49 | 0.39 | 1.31 | ||
Pentadecane | 0 | 2.96 ABa | 3.34 ABa | 4.86 Aa | 0.66 |
3 | 1.90 Ba | 2.06 Ba | 2.25 Ba | 0.17 | |
6 | 4.74 Aa | 4.60 Ba | 5.17 Aa | 0.76 | |
SEM | 0.61 | 0.51 | 0.56 | ||
2-Methyl-nonane | 0 | 0.75 Ba | 0.77 ABa | 1.95 Aa | 0.62 |
3 | 1.86 Aa | 1.64 Aa | 2.77 Aa | 0.36 | |
6 | 0.59 Ba | 0.68 Ba | 0.66 Aa | 0.07 | |
SEM | 0.22 | 0.23 | 0.64 | ||
2,4-Dimethyl- heptane | 0 | 0.62 Ba | 0.37 ABb | 0.47 Ab | 0.07 |
3 | 0.45 Ba | 0.17 Bb | 0.16 Bb | 0.05 | |
6 | 0.97 Aa | 0.49 Ab | 0.43 Ab | 0.08 | |
SEM | 0.09 | 0.06 | 0.06 | ||
4-Methyl-undecane | 0 | 0.49 Aa | 0.58 Aa | 0.91 Aa | 0.13 |
3 | 0.21 Aa | 0.20 Ba | 0.36 Ba | 0.05 | |
6 | 0.72 Aa | 0.82 Aa | 0.63 ABa | 0.14 | |
SEM | 0.14 | 0.09 | 0.10 | ||
2-ethyl-1-hexene | 0 | 0.88 Aa | 0.87 ABa | 1.16 Aa | 0.15 |
3 | 0.43 Ba | 0.51 Ba | 0.56 Ba | 0.08 | |
6 | 0.95 Ab | 0.99 Ab | 1.29 Aa | 0.06 | |
SEM | 0.09 | 0.11 | 0.12 | ||
Ketone | |||||
2-methyl-3-octanone | 0 | 0.84 Aa | 0.04 Ab | 0.00 Ab | 0.06 |
3 | 0.77 Aa | 0.05 Ab | 0.00 Ab | 0.03 | |
6 | 1.11 Aa | 0.04 Ab | 0.01 Ab | 0.06 | |
SEM | 0.17 | 0.02 | 0.00 | ||
Alcohols | |||||
1-Pentanol | 0 | 0.69 Aa | 0.08 Ab | 0.02 Ab | 0.03 |
3 | 0.82 Aa | 0.09 Ab | 0.03 Ab | 0.08 | |
6 | 0.81 Aa | 0.10 Ab | 0.04 Ac | 0.02 | |
SEM | 0.11 | 0.03 | 0.01 | ||
1-Hexanol | 0 | 0.11 Aa | 0.02 Ab | 0.02 Ab | 0.00 |
3 | 0.11 Aa | 0.02 Ab | 0.01 Ab | 0.01 | |
6 | 0.12 Aa | 0.02 Ab | 0.01 Ab | 0.00 | |
SEM | 0.01 | 0.00 | 0.00 | ||
1-Octen-3-ol | 0 | 0.64 Aa | 0.07 Ab | 0.04 Ab | 0.02 |
3 | 0.61 Aa | 0.08 Ab | 0.04 Ab | 0.04 | |
6 | 0.67 Aa | 0.09 Ab | 0.04 Ab | 0.03 | |
SEM | 0.08 | 0.03 | 0.01 | ||
Phenol | |||||
4-Methyl-2,6-di-tert-butylphenol | 0 | 0.22 Ab | 32.25 Aa | 0.22 ABb | 1.72 |
3 | 0.21 Ab | 27.41 Aa | 0.39 Ab | 0.52 | |
6 | 0.16 Ab | 22.73 Aa | 0.08 Bb | 1.16 | |
SEM | 0.08 | 4.27 | 0.07 | ||
Benzene | |||||
Benzaldehyde | 0 | 0.31 Aa | 0.25 Ab | 0.09 Ac | 0.03 |
3 | 0.26 Aa | 0.27 Aa | 0.10 Ab | 0.04 | |
6 | 0.34 Aa | 0.26 Ab | 0.11 Ac | 0.04 | |
SEM | 0.03 | 0.04 | 0.02 |
Storage Month | Con | BHT | SAE | SEM | |
---|---|---|---|---|---|
Lightness (L*) | 0 | 48.09 Aa | 49.43 Aa | 47.94 Aa | 0.87 |
1 | 46.69 Aab | 47.11 ABa | 45.20 Bb | 0.49 | |
2 | 46.61 Aa | 46.66 Ba | 45.64 Ba | 1.06 | |
3 | 46.32 Aa | 46.61 Ba | 45.43 Ba | 0.8 | |
4 | 47.40 Aab | 48.47 ABa | 45.10 Bb | 0.68 | |
5 | 47.96 Aa | 47.26 ABab | 44.96 Bb | 0.71 | |
6 | 45.55 Aab | 47.86 ABa | 45.03 Bb | 0.68 | |
SEM | 0.76 | 0.63 | 0.63 | ||
Redness (a*) | 0 | 4.42 Bb | 4.11 Bb | 5.26 Ba | 0.34 |
1 | 5.21 Ba | 5.01 Ba | 5.07 Ba | 0.21 | |
2 | 7.94 Aa | 8.50 Aa | 8.35 Aa | 0.43 | |
3 | 7.55 Aa | 8.12 Aa | 8.09 Aa | 0.69 | |
4 | 7.49 Aa | 7.65 Aa | 8.08 Aa | 0.28 | |
5 | 7.25 Aa | 7.98 Aa | 7.70 Aa | 0.3 | |
6 | 8.04 Aa | 8.12 Aa | 8.38 Aa | 0.5 | |
SEM | 0.43 | 0.32 | 0.32 | ||
Yellowness (b*) | 0 | 14.84 Aa | 15.11 Aa | 14.93 Aa | 0.52 |
1 | 14.40 ABb | 15.46 Aa | 15.70 Aa | 0.28 | |
2 | 13.31 Ba | 13.61 Ba | 14.61 Aa | 0.38 | |
3 | 13.71 ABa | 13.76 Ba | 14.31 Aa | 0.46 | |
4 | 13.37 Bb | 13.68 Bb | 14.66 Aa | 0.24 | |
5 | 13.58 Bb | 13.73 Bb | 14.80 Aa | 0.3 | |
6 | 13.78 ABa | 13.81 Ba | 14.89 Aa | 0.43 | |
SEM | 0.34 | 0.4 | 0.39 | ||
Chroma (C*) | 0 | 15.52 Aa | 15.68 Aa | 15.85 Aa | 0.45 |
1 | 15.34 Ab | 16.26 Aab | 16.53 Aa | 0.27 | |
2 | 15.52 Ab | 16.09 Aab | 16.87 Aa | 0.31 | |
3 | 15.59 Ab | 16.03 Aab | 16.32 Aa | 0.26 | |
4 | 15.34 Ab | 15.69 Ab | 16.75 Aa | 0.27 | |
5 | 15.42 Ab | 15.89 Aab | 16.73 Aa | 0.28 | |
6 | 16.00 Aa | 16.04 Aa | 17.14 Aa | 0.54 | |
SEM | 0.31 | 0.36 | 0.36 | ||
Hue angle (h°) | 0 | 73.38 Aab | 74.76 Aa | 70.61 Ab | 1.54 |
1 | 70.17 Ab | 72.13 Aa | 72.11 Aab | 0.7 | |
2 | 59.17 Ba | 57.80 Ba | 60.27 Ba | 1.7 | |
3 | 60.90 Ba | 59.41 Ba | 60.24 Ba | 1.68 | |
4 | 60.70 Ba | 60.75 Ba | 61.16 Ba | 0.92 | |
5 | 61.86 Ba | 59.83 Ba | 62.53 Ba | 1 | |
6 | 59.83 Ba | 59.58 Ba | 60.53 Ba | 1.43 | |
SEM | 1.6 | 1.15 | 1.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahid, M.A.; Eom, J.-U.; Parvin, R.; Seo, J.-K.; Yang, H.-S. Changes in Quality Traits and Oxidation Stability of Syzygium aromaticum Extract-Added Cooked Ground Beef during Frozen Storage. Antioxidants 2022, 11, 534. https://doi.org/10.3390/antiox11030534
Zahid MA, Eom J-U, Parvin R, Seo J-K, Yang H-S. Changes in Quality Traits and Oxidation Stability of Syzygium aromaticum Extract-Added Cooked Ground Beef during Frozen Storage. Antioxidants. 2022; 11(3):534. https://doi.org/10.3390/antiox11030534
Chicago/Turabian StyleZahid, Mohammad Ashrafuzzaman, Jeong-Uk Eom, Rashida Parvin, Jin-Kyu Seo, and Han-Sul Yang. 2022. "Changes in Quality Traits and Oxidation Stability of Syzygium aromaticum Extract-Added Cooked Ground Beef during Frozen Storage" Antioxidants 11, no. 3: 534. https://doi.org/10.3390/antiox11030534
APA StyleZahid, M. A., Eom, J. -U., Parvin, R., Seo, J. -K., & Yang, H. -S. (2022). Changes in Quality Traits and Oxidation Stability of Syzygium aromaticum Extract-Added Cooked Ground Beef during Frozen Storage. Antioxidants, 11(3), 534. https://doi.org/10.3390/antiox11030534