Cocoa Bar Antioxidant Profile Enrichment with Underutilized Apples Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Polyphenols Extraction
2.4. DPPH Assay
2.5. UHPLC-ESI-MS/MS Analysis
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francini, A.; Sebastiani, L. Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing. Antioxidants 2013, 2, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francini, A.; Romeo, S.; Cifelli, M.; Gori, D.; Domenici, V.; Sebastiani, L. 1H NMR and PCA-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying. Food Chem. 2017, 221, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Cantini, C.; Salusti, P.; Romi, M.; Francini, A.; Sebastiani, L. Sensory profiling and consumer acceptability of new dark cocoa bars containing Tuscan autochthonous food products. Food Sci. Nutr. 2018, 6, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duralija, B.; Putnik, P.; Brdar, D.; Markovinović, A.B.; Zavadlav, S.; Pateiro, M.; Dominguez, R.; Lorenzo, J.M.; Kovačević, D.B. The Perspective of Croatian Old Apple Cultivars in Extensive Farming for the Production of Functional Foods. Foods 2021, 10, 708. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, C.; Guo, Y.; Wang, X.; Meng, Y. Polyphenols in fermented apple juice: Beneficial effects on human health. J. Funct. Foods 2021, 76, 104294. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Ceci, A.T.; Bassi, M.; Guerra, W.; Oberhuber, M.; Robatscher, P.; Mattivi, F.; Franceschi, P. Metabolomic Characterization of Commercial, Old, and Red-Fleshed Apple Varieties. Metabolites 2021, 11, 378. [Google Scholar] [CrossRef]
- Felice, F.; Maragò, E.; Sebastiani, L.; Di Stefano, R. Apple juices from ancient Italian cultivars: A study on mature endothelial cells model. Fruits 2015, 70, 361–369. [Google Scholar] [CrossRef]
- Lo Piccolo, E.; Landi, M.; Massai, R.; Remorini, D.; Conte, G.; Guidi, L. Ancient apple cultivars from Garfagnana (Tuscany, Italy): A potential source for ‘nutrafruit’ production. Food Chem. 2019, 294, 518–525. [Google Scholar] [CrossRef]
- Calderón, A.I.; Wright, B.J.; Hurst, W.J.; Van Breemen, R.B. Screening Antioxidants Using LC-MS: Case Study with Cocoa. J. Agric. Food Chem. 2009, 57, 5693–5699. [Google Scholar] [CrossRef] [Green Version]
- Badrie, N.; Bekele, F.; Sikora, E.; Sikora, M. Cocoa Agronomy, Quality, Nutritional, and Health Aspects. Crit. Rev. Food Sci. Nutr. 2015, 55, 620–659. [Google Scholar] [CrossRef] [PubMed]
- Gröne, M.; Sansone, R.; Höffken, P.; Horn, P.; Rodriguez-Mateos, A.; Schroeter, H.; Kelm, M.; Heiss, C. Cocoa Flavanols Improve Endothelial Functional Integrity in Healthy Young and Elderly Subjects. J. Agric. Food Chem. 2020, 68, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.F.M.; Pogačnik, L. Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants 2020, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.N.; Norat, T.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Sciacca, S.; Pajak, A.; Martínez-González, M.A.; Giovannucci, E.L.; Galvano, F. Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: A dose-response meta-analysis. Eur. J. Epidemiol. 2016, 31, 1191–1205. [Google Scholar] [CrossRef]
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Francini, A.; Fidalgo-Illesca, C.; Raffaelli, A.; Sebastiani, L. Phenolics and Mineral Elements Composition in Underutilized Apple Varieties. Horticulturae 2022, 8, 40. [Google Scholar] [CrossRef]
- Francini, A.; Sodini, M.; Vicario, G.; Raffaelli, A.; Gucci, R.; Caruso, G.; Sebastiani, L. Cations and Phenolic Compounds Concentrations in Fruits of Fig Plants Exposed to Moderate Levels of Salinity. Antioxidants 2021, 10, 1865. [Google Scholar] [CrossRef]
- Flórez-Méndez, J.; Flórez, J.Y.; Pérez, E.; Lares, M. Effect of the consumption of chocolate enriched with tryptophan and resveratrol on biochemical markers and oxidative stress in a healthy population. VITAE 2019, 26, 8–16. [Google Scholar] [CrossRef]
- Felice, F.; Francini, A.; Domenici, V.; Cifelli, M.; Belardinelli, E.; Sebastiani, L.; Cantini, C.; Di Stefano, R. Effects of Extra Virgin Olive Oil and Apples Enriched-Dark Chocolate on Endothelial Progenitor Cells in Patients with Cardiovascular Risk Factors: A Randomized Cross-Over Trial. Antioxidants 2019, 8, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pelsmaeker, S.; Gellynck, X.; Delbaere, C.; Declercq, N.; Dewettinck, K. Consumer-driven product development and improvement combined with sensory analysis: A case-study for European filled chocolates. Food Qual. Prefer. 2015, 41, 20–29. [Google Scholar] [CrossRef]
- Kalinowska, M.; Bielawska, A.; Lewandowska-Siwkiewicz, H.; Priebe, W.; Lewandowski, W. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem. 2014, 84, 169–188. [Google Scholar] [CrossRef]
- Preti, R.; Tarola, A.M. Study of polyphenols, antioxidant capacity and minerals for the valorisation of ancient apple cultivars from Northeast Italy. Eur. Food Res. Technol. 2021, 247, 273–283. [Google Scholar] [CrossRef]
- Starowicz, M.; Achrem-Achremowicz, B.; Piskuła, M.K.; Zieliński, H. Phenolic compounds from apples: Reviewing their occurrence, absorption, bioavailability, processing, and antioxidant activity—A review. Pol. J. Food Nutr. Sci. 2020, 70, 321–336. [Google Scholar] [CrossRef]
- Zielinska, D.; Laparra-Llopis, J.M.; Zielinski, H.; Szawara-Nowak, D.; Giménez-Bastida, J.A. Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation. Nutrients 2019, 11, 1173. [Google Scholar] [CrossRef] [Green Version]
- Jeon, D.; Jeong, M.C.; Jnawali, H.N.; Kwak, C.; Ryoo, S.; Jung, I.D.; Kim, Y. Phloretin Exerts Anti-Tuberculosis Activity and Suppresses Lung Inflammation. Molecules 2017, 22, 183. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, T.; Wang, T.; Hao, N.; Shen, Y.; Wu, Y.; Yuan, Z.; Chen, L.; Wen, F. Phloretin attenuates mucus hypersecretion and airway inflammation induced by cigarette smoke. Int. Immunipharmacol. 2018, 55, 112–119. [Google Scholar] [CrossRef]
- Di Mattia, C.D.; Sacchetti, G.; Mastrocola, D.; Serafini, M. From Cocoa to Chocolate: The Impact of Processing on In Vitro Antioxidant Activity and the Effects of Chocolate on Antioxidant Markers In Vivo. Front. Immunol. 2017, 8, 1207. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.; Uribe, D.; Gallego, V.; Bedoya, C.; Arango-Varela, S. Traceability of polyphenols in cocoa during the postharvest and industrialization processes and their biological antioxidant potential. Heliyon 2021, 7, e07738. [Google Scholar] [CrossRef] [PubMed]
- Gültekin-Özgüven, M.; Berktaş, I.; Özçelik, B. Influence of processing conditions on procyanidin profiles and antioxidant capacity of chocolates: Optimization of dark chocolate manufacturing by response surface methodology. LWT—Food Sci. Technol. 2016, 66, 252–259. [Google Scholar] [CrossRef]
- Payne, M.J.; Hurst, W.J.; Miller, K.B.; Rank, C.; Stuart, D.A. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. [Google Scholar] [CrossRef] [PubMed]
- Das Virgens, I.A.; Pires, T.C.; de Santana, L.R.R.; Soares, S.E.; Maciel, L.F.; Ferreira, A.C.R.; Biasoto, A.C.T.; Bispo, E.D.S. Relationship between bioactive compounds and sensory properties of dark chocolate produced from Brazilian hybrid cocoa. Int. J. Food Sci. Technol. 2021, 56, 1905–1917. [Google Scholar] [CrossRef]
Name | Acronym | RT (min) | Q1 | Q3 | DP (V) | CE (eV) | CXP (V) |
---|---|---|---|---|---|---|---|
Catechin | CTC | 2.33 | 289.0 | 244.9 | −108 | −22 | −11 |
Chlorogenic acid | CGA | 2.44 | 353.0 | 191.0 | −61 | −24 | −9 |
Epicatechin | ECTC | 2.63 | 289.0 | 244.9 | −108 | −22 | −11 |
Quercetagetin 7-O-glucoside | QGT7G | 3.07 | 479.1 | 316.9 | −152 | −31 | −14 |
p-coumaric acid | PCA | 3.09 | 163.0 | 119.0 | −65 | −18 | −11 |
trans-ferulic acid | TFRA | 3.28 | 193.0 | 134.0 | −62 | −20 | −8 |
Rutin | RTN | 3.30 | 609.2 | 299.9 | −154 | −48 | −11 |
Quercetin 3-O-glucoside | QCT3G | 3.40 | 463.1 | 300.0 | −154 | −37 | −5 |
Kaempferol 3-O-rutinoside | KPF3R | 3.53 | 593.2 | 284.9 | −138 | −40 | −5 |
Kaempferol 3-O-glucoside | KPF3G | 3.62 | 447.1 | 284.1 | −202 | −39 | −11 |
Kaempferol 7-O-glucoside | KPF7G | 3.66 | 447.1 | 284.9 | −158 | −38 | −5 |
Phloridzin | PDZ | 3.71 | 435.1 | 272.9 | −135 | −23 | −5 |
Quercetin | QCT | 4.30 | 301.0 | 150.9 | −113 | −38 | −8 |
Tiliroside | TSD | 4.41 | 593.2 | 284.9 | −138 | −40 | −5 |
Phloretin | PHL | 4.64 | 273.0 | 167.0 | −103 | −38 | −11 |
DPPH (%) | Total polyphenols (mg Gallic Acid Equivalents per 100 g) | ||
---|---|---|---|
Dry apple | Golden | 50.7 ± 5.28 a | 991 ± 80.4 c |
Mora | 22.7 ± 3.39 b | 1473 ± 18.6 b | |
Nesta | 47.6 ± 5.80 a | 1614 ± 61.8 a | |
Panaia | 66.6 ± 8.56 a | 1428 ± 57.1 b | |
Ruggina | 55.1 ± 2.93 a | 927 ± 16.2 c | |
Cocoa bar + Dry apple | Golden | 37.3 ± 14.54 ab | 640 ± 151.4 b |
Mora | 27.1 ± 1.14 ab | 563 ± 46.8 b | |
Nesta | 46.8 ± 4.14 a | 890 ± 85.9 a | |
Panaia | 24.2 ± 6.28 b | 502 ± 34.0 b | |
Ruggina | 30.0 ± 4.04 ab | 561 ± 33.2 b | |
Cocoa mass | 17.3 ± 3.80 b | 519 ± 23.9 b |
Variables | Factor 1 | Factor 2 |
---|---|---|
PCA | −0.6561 | 0.6776 |
TFRA | −0.7522 | 0.6011 |
PHL | −0.9715 | 0.0863 |
CTC | −0.7986 | 0.4807 |
ECTC | −0.7853 | 0.5045 |
QCT | −0.8925 | 0.3033 |
CGA | −0.8483 | 0.5050 |
PDZ | −0.8940 | −0.0402 |
KPF7G | −0.2165 | 0.8474 |
KPF3G | −0.8424 | 0.1918 |
QCT3G | −0.9629 | 0.0860 |
QGT7G | −0.5897 | 0.7203 |
TSD | 0.1636 | 0.5776 |
KPF3R | −0.7284 | 0.6470 |
Phenolic Compound | Correlation Coefficient |
---|---|
CTC | 0.401 (**) |
CGA | 0.569 (***) |
ECTC | 0.356 (*) |
QGT7G | 0.347 (*) |
PCA | 0.650 (***) |
TFRA | 0.639 (***) |
RTN | 0.601 (***) |
QCT3G | 0.475 (**) |
KPF3R | 0.585 (***) |
KPF3G | 0.144 (n.s.) |
KPF7G | 0.525 (*) |
PDZ | 0.465 (**) |
QCT | 0.325 (*) |
TSD | 0.088 (n.s.) |
PHL | 0.452 (**) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francini, A.; Fidalgo-Illesca, C.; Raffaelli, A.; Romi, M.; Cantini, C.; Sebastiani, L. Cocoa Bar Antioxidant Profile Enrichment with Underutilized Apples Varieties. Antioxidants 2022, 11, 694. https://doi.org/10.3390/antiox11040694
Francini A, Fidalgo-Illesca C, Raffaelli A, Romi M, Cantini C, Sebastiani L. Cocoa Bar Antioxidant Profile Enrichment with Underutilized Apples Varieties. Antioxidants. 2022; 11(4):694. https://doi.org/10.3390/antiox11040694
Chicago/Turabian StyleFrancini, Alessandra, Carmen Fidalgo-Illesca, Andrea Raffaelli, Marco Romi, Claudio Cantini, and Luca Sebastiani. 2022. "Cocoa Bar Antioxidant Profile Enrichment with Underutilized Apples Varieties" Antioxidants 11, no. 4: 694. https://doi.org/10.3390/antiox11040694
APA StyleFrancini, A., Fidalgo-Illesca, C., Raffaelli, A., Romi, M., Cantini, C., & Sebastiani, L. (2022). Cocoa Bar Antioxidant Profile Enrichment with Underutilized Apples Varieties. Antioxidants, 11(4), 694. https://doi.org/10.3390/antiox11040694