The Protective Effect of Sericin on AML12 Cells Exposed to Oxidative Stress Damage in a High-Glucose Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sericin Sample Preparation
2.3. Cell Culture
2.4. Cell Viability Determination
2.5. Cellular ROS Level Measurement
2.6. Immune Damage Factor Level Determination
2.7. Data Treatment
3. Results
3.1. Protective Effects of Oxidative Stress Damages
3.2. ROS Level in Cells
3.3. TNF-α Level in Cells
3.4. IL-6 Levels in Cells
3.5. NF-κB Level in Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vandanmagsar, B.; Youm, Y.H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Dara, L.; Ji, C.; Kaplowitz, N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology 2011, 53, 1752–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, C.Y.; Lim, S.W.; Koo, J.H.; Kim, W.; Kim, S.G. PHLDA3 overexpression in hepatocytes by endoplasmic reticulum stress via IRE1-Xbp1s pathway expedites liver injury. J. Br. Soc. Gastroenterol. 2016, 65, 1377–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandekar, A.; Mendez, R.; Zhang, K. Cross talk between er stress, oxidative stress, and inflammation in health and disease. Methods Mol. Biol. 2015, 1292, 205–214. [Google Scholar] [CrossRef]
- Hang, N.; Yang, Z.; Xiang, S.Z.; Jin, Y.G.; Wei, W.Y.; Bian, Z.Y.; Deng, W.; Tang, Q.Z. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: Induced diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2016, 417, 87–96. [Google Scholar] [CrossRef]
- Anto, M.N.; Colberg, C.; Buscher, K.; Sommer, B.; Pramod, A.B.; Ehinger, E.; Dufner, B.; Hoppe, N.; Pfeiffer, K.; Marchini, T.; et al. Inflammatory pathways regulated by tumor-necrosis receptor associated factor 1 protect from metabolic consequences in diet-induced obesity. Circ. Res. A J. Am. Heart Assoc. 2018, 122, 693–700. [Google Scholar] [CrossRef]
- Oh, S.; Tanaka, K.; Warabi, E.; Shoda, J. Exercise reduces inflammation and oxidative stress in obesity-related liver diseases. Med. Sci. Sports Exerc. 2013, 45, 2214–2222. [Google Scholar] [CrossRef]
- Wu, H.C.; Chen, H.M.; Shiau, C.Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 2003, 36, 949–957. [Google Scholar] [CrossRef]
- Atmaca, G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med. J. 2004, 45, 776–788. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.Z.; Lin, Y.S.; Hou, W.C. Monohydrates of aspartic acid and glutamic acid exhibit antioxidant and angiotensin converting enzyme inhibitory activities. J. Agric. Food Chem. 2004, 52, 2386–2390. [Google Scholar] [CrossRef]
- Movahedian, A.; Naderi, G.A.; Dashti, G.R.; Asgary, S.; Zadhoosh, F. Antioxidant effects of L-serine against fatty streak formation in hypercholestrolemic animals. ARYA Atheroscler. J. 2006, 2, 126–129. [Google Scholar]
- Selvaraju, R.; Subbashinidevi, K. Impact of glycine on antioxidant defence system in rats with alcohol induced liver injury. Int. J. Res. Pharm. Biomed. Sci. 2011, 2, 1314–1320. [Google Scholar]
- Balsano, C.; Alisi, A. Antioxidant effect of natural bioactive compounds. Curr. Pharm. Des. 2009, 15, 3063–3073. [Google Scholar] [CrossRef] [PubMed]
- Elias, R.J.; Kellerby, S.; Decker, A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Sakanaka, S.; Tachibana, Y. Active oxygen scavenging activity of egg yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem. 2006, 95, 243–249. [Google Scholar] [CrossRef]
- Wu, J.H.; Wang, Z.; Xu, S.Y. Preparation and characterization of sericin powder extracted from silk industry waste water. Food Chem. 2007, 103, 1255–1262. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Zhang, Y.-Q. Three-layered sericins around the silk fibroin fiber from Bombyx mori cocoon and their amino acid composition. Adv. Mater. Res. 2011, 175–176, 158–163. Available online: http://www.scientific.net/AMR.175-176.158 (accessed on 2 April 2022). [CrossRef]
- Kato, N.; Sato, S.; Yamanaka, A.; Yamada, H.; Fuwa, N.; Nomura, M. Silk protein, sericin, inhibits lipid peroxidation and tyrosine activity. Biosci. Biotechnol. Biochem. 1998, 62, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Tsubouchi, K.; Igarashi, Y.; Takasu, Y. Sericin Enhances Attachment of cultured Human Shin Fibroblasts. Biosci. Biotechnol. Biochem. 2005, 69, 403–405. [Google Scholar] [CrossRef]
- Sasaki, M.; Kato, N.; Watanabe, H.; Yamada, H. Silk protein, sericin, suppresses colon carcinogenesis induced by 1, 2-dimethylhydrazine in mice. Oncol. Rep. 2000, 7, 1049–1101. [Google Scholar] [CrossRef]
- Aramwit, P.; Sangcakul, A. The effects of sericin cream on wound healing in rats. Biosci. Biotechnol. Biochem. 2007, 71, 2473–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.G.; Ji, D.F.; Chen, S.; Hu, G.Y. Protective effects of sericin protein on alcohol-mediated liver damage. Alcohol Alcohol. 2008, 43, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, N.; Urao, T.M.; To, Y.I.; Kamoto, N.O.; Asaki, M.S.; Nagai, N. Enhancing effects of sericin on corneal wound healing in rat debrided corneal epithelium. Biol. Pharm. Bull. 2009, 32, 933–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhaorigetu, S.; Yanaka, N.; Sasaki, M.; Watanabe, H.; Kato, N. Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J. Photochem. Photobiol. B 2003, 71, 11–17. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Takagi, H.; Takahashi, M.; Yamada, H.; Nakamori, S. Cryoprotective effects of the serine rich repetitive sequence in silk protein sericin. J. Biol. Chem. 2001, 129, 979–986. [Google Scholar] [CrossRef]
- Cao, T.-T.; Zhang, Y.-Q. Viability and proliferation of L929, tumour and hybridoma cells in the culture media containing sericin protein as a supplement or serum substitute. Appl. Microbiol. Biotechnol. 2015, 99, 7219–7228. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, Y.; Kakehi, S.; Xu, Y.; Tsujimoto, K.; Sasaki, M.; Ogawa, H.; Kato, N. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed on a high fat diet. Biosci. Biotechnol. Biochem. 2010, 74, 1534–1538. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Rao, R.S.; Nambiar, K.S.; Haragannavar, V.C.; Augustine, D.; Sowmya, S.V. Sericin, a dietary additive: Mini review. J. Med. Radiol. Pathol. Surg. 2017, 4, 13–17. [Google Scholar] [CrossRef]
- Dash, R.; Acharya, C.; Bindu, P.C.; Kundu, S.C. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Rep. 2008, 41, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Chlapanidas, T.; Faragò, S.; Lucconi, G.; Perteghella, S.; Galuzzi, M.; Mantelli, M.; Avanzini, M.A.; Tosca, M.C.; Marazzi, M.; Vigo, D.; et al. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int. J. Biol. Macromol. 2013, 58, 47–56. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Zhang, Y.Q. Greener degumming production of layered sericin peptides from a silkworm cocoon and their physicochemical characteristics and bioactivity in vitro. J. Clean. Prod. 2020, 261, 121080. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, S.X.; Yin, X.L.; Wang, H.Y.; Wei, Z.G.; Zhang, Y.Q. Silk sericin has significantly hypoglycaemic effect in type 2 diabetic mice via anti-oxidation and anti-inflammation. Int. J. Biol. Macromol. 2020, 150, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-D.; Zhong, Z.-H.; Weng, Y.-J.; Wei, Z.-Z.; Zhang, Y.-Q. Degraded Sericin Significantly Regulates Blood Glucose Levels and Improves Impaired Liver Function in T2D Rats by Reducing Oxidative Stress. Biomolecules 2021, 11, 1255. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-Z.; Weng, Y.-J.; Zhang, Y.-Q. Enhancing the In Vitro Biological Activity of Degraded Silk Sericin and Its Analog Metabolites. Biomolecules 2022, 12, 161. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Zhang, Y.-Q. Effect of regeneration of liquid silk fibroin on its structure and characterization. Soft Matter 2013, 9, 138–145. [Google Scholar] [CrossRef]
- Zhao, Z.-L.; Li, W.-W.; Wang, F.; Zhang, Y.-Q. Using of hydrated lime water as a novel degumming agent of silk and sericin recycling from wastewater. J. Clean. Prod. 2018, 172, 2090–2096. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Zhao, J.-G.; Zhang, Y.-Q. The flavonoid-rich ethanolic extract from the green cocoon shell of silkworm has excellent antioxidation, glucosidase inhibition, and cell protective effects in vitro. Food Nutr. Res. 2020, 64, 1–12. [Google Scholar] [CrossRef]
- Sefried, S.; Häring, H.-U.; Weigert, C.; Ckstein, S.S. Suitability of hepatocyte cell lines HepG2, AML12 and THLE-2 for investigation of insulin signalling and hepatokine gene expression. Open Biol. 24 2018, 8, 180147. [Google Scholar] [CrossRef] [Green Version]
- Xia, D.; Chen, D.; Cai, T.; Zhu, L.; Lin, Y.; Yu, S.; Zhu, K.; Wang, X.; Xu, L.; Chen, Y. Nimbolide attenuated the inflammation in the liver of autoimmune hepatitis’s mice through regulation of HDAC3. Toxicol. Appl. Pharmacol. 2022, 434, 115795. [Google Scholar] [CrossRef]
- Zhao, J.G.; Wang, H.Y.; Wei, Z.G.; Zhang, Y.Q. Therapeutic effects of ethanolic extract from the green cocoon shell of silkworm: Bombyx mori on type 2 diabetic mice and its hypoglycaemic mechanism. Toxicol. Res. 2019, 8, 407–420. [Google Scholar] [CrossRef]
- Weng, Y.J.; Zhang, M.; Wang, J.; Zhang, Y.Q. Significantly hypoglycemic effect of a novel functional bread rich in mulberry bark and improving the related functions of liver, pancreas, and kidney, on T2D mice. Food Sci. Nutr. 2021, 9, 2468–2482. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Yang, S.J. Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes. Nutr. Res. Pract. 2019, 13, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Wang, Y.; Deng, Y.; Xin, Y.; Jiang, Z. Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy. Lipids Health Dis. 2015, 14, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, P.; Ernest, I.; Houbion, A.; Art, M.; Le Calvez, H.; Raes, M.; Remacle, J. Development of a sensitive multi-well colorimetric assay for active NFkappaB. Nucleic Acids Res. 2001, 29, e21. [Google Scholar] [CrossRef]
- Wu, J.C.; Merlino, G.; Fausto, N. Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc. Natl. Acad. Sci. USA 1994, 91, 674–678. [Google Scholar] [CrossRef] [Green Version]
- Su, S.L.; Liu, X.; Liu, J.; Peng, F.; Fang, C.; Li, B. Mir-494 up-regulates the PI3 K/Akt pathway via targeting PTEN and attenuates hepatic ischemia/reperfusion injury in a rat model. Biosci. Rep. 2017, 37, BSR20170798. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Zhang, T.; Wu, X.; Qiu, J.Y.I. A mixture of mulberry and silk amino acids protected against D-galactosamine induced acute liver damage by attenuating oxidative stress and inflammation in HepG2 cells and rats. Exp. Ther. Med. 2020, 19, 3611–3619. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.P.; Mandal, B.B. Silk sericin induced pro-oxidative stress leads to apoptosis in human cancer cells. Food Chem. Toxicol. 2019, 123, 275–287. [Google Scholar] [CrossRef]
- Deori, M.; Devi, D.; Kumari, S.; Hazarika, A.; Kalita, H. Antioxidant Effect of Sericin in Brain and Peripheral Tissues of Oxidative Stress Induced Hypercholesterolemic Rats. Front. Pharmacol. 2016, 7, 319. [Google Scholar] [CrossRef] [Green Version]
- Scarton, S.; Caroline, A.; Retameiro, B.; Bittencourt, A.T.; Meire, R.; Brancalhão, C.; Fatima, L.; Ribeiro, C. Sericin exerts antioxidation on testis and epididyms of C57BL/6 mice fed high fat diet. Int. J. Dev. Res. 2017, 7, 15813–15820. [Google Scholar]
- Takechi, T.; Wada, R.; Fukuda, T.; Harada, K.; Takamura, H. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods. Biomed. Rep. 2014, 2, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aramwit, P.; Kanokpanont, S.; De-Eknamkul, W.; Kamei, K.; Srichana, T. The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J. Biomater. Sci. 2009, 20, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Boonpisuttinant, K.; Winitchai, S.; Manosroi, W.; Manosroi, J. Free radical scavenging and tyrosinase inhibition activity of oils and sericin extracted from Thai native silkworms (Bombyx mori). Pharm. Biol. 2010, 48, 855–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, T.-T.; Zhang, Y.-Q. The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 2017, 49, 1029–1039. [Google Scholar] [CrossRef]
- Cao, T.-T.; Zhang, Y.-Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C 2016, 61, 940–952. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, T.-T.; Wei, Z.-G.; Zhang, Y.-Q. Silk Sericin Hydrolysate is a Potential Candidate as a Serum-Substitute in the Culture of Chinese Hamster Ovary and Henrietta Lacks Cells. J. Insect Sci. 2019, 19, 10. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Deng, X.; Zhang, Y.; Xu, K. Baicalin protects AML-12 cells from lipotoxicity via the suppression of ER stress and TXNIP/NLRP3 inflammasome activation. Chem. Biol. Interact. 2017, 278, 189–196. [Google Scholar] [CrossRef]
- Kato, N.; Kayashita, J.; Sasaki, M. Physiological Functions of Buckwheat Protein and Sericin as Resistant Proteins. J. Jpn. Soc. Nutr. Food Sci. 2000, 53, 71–75. [Google Scholar] [CrossRef]
- Zhu, L.J.; Arai, M.; Hirabayashi, K. Relationship between adhesive properties and structure of sericin in cocoon filaments. J. Sericult. Sci. Jpn. 1995, 64, 420–426. [Google Scholar]
- Takasu, Y.; Yamada, H.; Tsubouchi, K. The silk sericin component with low crystallinity. Sanshi-Konchu Biotec 2006, 75, 133–139. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, F.-Y.; Weng, Y.-J.; Zhang, Y.-Q. The Protective Effect of Sericin on AML12 Cells Exposed to Oxidative Stress Damage in a High-Glucose Environment. Antioxidants 2022, 11, 712. https://doi.org/10.3390/antiox11040712
Jing F-Y, Weng Y-J, Zhang Y-Q. The Protective Effect of Sericin on AML12 Cells Exposed to Oxidative Stress Damage in a High-Glucose Environment. Antioxidants. 2022; 11(4):712. https://doi.org/10.3390/antiox11040712
Chicago/Turabian StyleJing, Feng-Ya, Yu-Jie Weng, and Yu-Qing Zhang. 2022. "The Protective Effect of Sericin on AML12 Cells Exposed to Oxidative Stress Damage in a High-Glucose Environment" Antioxidants 11, no. 4: 712. https://doi.org/10.3390/antiox11040712
APA StyleJing, F. -Y., Weng, Y. -J., & Zhang, Y. -Q. (2022). The Protective Effect of Sericin on AML12 Cells Exposed to Oxidative Stress Damage in a High-Glucose Environment. Antioxidants, 11(4), 712. https://doi.org/10.3390/antiox11040712