Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects †
Abstract
:1. Introduction
2. Ways of Production of Bioactives and Impact on Their Quality, on the Biodiversity, Environment, and on Human Populations
3. Extracting Bioactives
3.1. Basic Extraction Techniques
3.2. Environmentally Friendly Solvents
3.3. Novel Extraction Techniques
4. Protecting and Delivering Bioactives
4.1. Emulsion Based Structures
4.2. Nanofibers
4.3. Stabilisation of Active Compounds by Water Removal
Incorporation Method within Edible Matrix | Advantages | Disadvantages | Reference |
---|---|---|---|
Emulsions and nanoemulsions |
|
| [114] |
Liposomes |
|
| [115,116,117] |
Solid lipid nanoparticles |
|
| [118] |
Nanofibers |
|
| [102,119] |
Inclusion complex |
|
| [120] |
Complex coacervates |
|
| [121,122,123] |
4.4. Release Mechanisms
5. How to Evaluate the Activity of the Active Compound?
5.1. Evaluation of the Antioxidant Activity
5.2. In Vitro vs. In Vivo
6. Effect on Consumers
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rivera, D.; Alcaraz, F.; Verde, A.; Fajardo, J.; Valdés, A.; Obón, C.; Egea, T.; Moreno, C.; Signorini, M.A.; Palazón, J.A.; et al. Is there nothing new under the sun? The influence of herbals and pharmacopoeias on ethnobotanical traditions in Albacete (Spain). J. Ethnopharmacol. 2017, 4, 96–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dung, H.T.; Grushvitski, I.V. A new species of the genus Panax (Araliaceae) from Vietnam. Bot. Zhurnal 1985, 70, 518–522. [Google Scholar]
- Dàn, N. Un Tapis de Ginseng sur le Mont Ngoc Linh sur les Hauts Plateaux du Centre. Available online: https://www.lecourrier.vn/un-tapis-de-ginseng-sur-le-mont-ngoc-linh-sur-les-hauts-plateaux-du-centre/26414.html (accessed on 1 March 2022).
- Annonymous. Available online: https://www.iucnredlist.org/about/background-history (accessed on 1 March 2022).
- Pham, Q.T.; Nguyen, V.T.; Nguyen, H.H.; Phung, D.T.; Pham, T.D.; Trinh, N.B.; Bui, T.T.; Nguyen, T.S.; Nguyen, Q.H.; Nguyen, T.H.A.; et al. Possible planting areas for Panax vietnamensis var. fuscidiscus toward poverty reduction in Vietnam. World J. Adv. Res. Rev. 2019, 2, 22–27. [Google Scholar] [CrossRef]
- Leong-Skornickova, J.; Tran, H.D.; Newman, M.; Lamxay, V.; Bouamanivong, S. The IUCN Red List of Threatened Species 2019: E.T202228A132696014. Available online: https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T202228A132696014.en (accessed on 28 January 2022).
- Phan, K.L.; Le, T.S.; Phan, K.L.; Vo, D.D.; Phan, V.T. Lai Chau ginseng Panax vietnamensis var. fuscidiscus K. Komatsu, S. Zhu & S.Q. Cai I. morphology, ecology, distribution and conservation status. In Proceedings of the 2nd VAST-KAST Workshop on Biodiversity and Bio-Active Compounds, Hanoi, Vietnam, 28–29 October 2013; pp. 65–73. [Google Scholar]
- Potterat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.E.; Suh, D.H.; Kim, K.T.; Paik, H.D. Comparative study on anti-oxidative and anti-inflammatory properties of hydroponic ginseng and soil-cultured ginseng. Food Sci. Biotechnol. 2019, 28, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.C.; Sheng Gerald, L.T.; Silva Teixeira da, J.A. Micropropagation in the Twenty-First Century. In Plant Cell Culture Protocols; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Springer: New York, NY, USA, 2018; pp. 17–46. [Google Scholar]
- Dimpfel, W.; Mariage, P.A.; Panossian, A.G. Effects of red and white ginseng preparations on electrical activity of the brain in elderly subjects: A randomized, double-blind, placebo-controlled, three-armed cross-over study. Pharmaceuticals 2021, 14, 182. [Google Scholar] [CrossRef]
- Mariage, P.A.; Hovhannisyan, A.; Panossian, A.G. Efficacy of Panax Ginseng meyer herbal preparation hrg80 in preventing and mitigating stress-induced failure of cognitive functions in healthy subjects: A pilot, randomized, double-blind, placebo-controlled crossover trial. Pharmaceuticals 2020, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Overmann, J.; Scholz, A.H. Microbiological Research Under the Nagoya Protocol: Facts and Fiction. Trends Microbiol. 2017, 25, 85–88. [Google Scholar] [CrossRef]
- Buck, M.; Hamilton, C. The Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. Rev. Eur. Community Int. Environ. Law 2011, 20, 47–61. [Google Scholar] [CrossRef]
- Chung, Y.; Park, J.Y.; Lee, J.E.; Kim, K.T.; Paik, H.D. Antioxidant activity and inhibitory effect on nitric oxide production of hydroponic ginseng fermented with Lactococcus Lactis kc24. Antioxidants 2021, 10, 1614. [Google Scholar] [CrossRef]
- Park, J.H.; Garcia, C.V.; Lee, S.P. Fortification of poly-γ-glutamic acid and γ-aminobutyric acid in homogenized hydroponic ginseng co-fermented by Bacillus Subtilis HA and Lactobacillus Plantarum EJ2014. Prev. Nutr. Food Sci. 2019, 24, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Boué, S.M.; Carter, C.H.; Ehrlich, K.C.; Cleveland, T.E. Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. J. Agric. Food Chem. 2000, 48, 2167–2172. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Lecomte, S.; Efstathiou, T.; Ferriere, F.; Pakdel, F. An update on the effects of glyceollins on human health: Possible anticancer effects and underlying mechanisms. Nutrients 2019, 11, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Ochiai, K.; Sasaki, K.; Izumi, A.; Shinyama, Y.; Mohri, S.; Nomura, W.; Jheng, H.F.; Kawada, T.; Inoue, K.; et al. Metabolome analysis revealed that soybean–Aspergillus oryzae interaction induced dynamic metabolic and daidzein prenylation changes. PLoS ONE 2021, 16, e0254190. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Anal, A.K. Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J. Food Sci. Technol. 2017, 54, 1062–1072. [Google Scholar] [CrossRef] [Green Version]
- Perpetuini, G.; Tittarelli, F.; Battistelli, N.; Suzzi, G.; Tofalo, R. γ-aminobutyric acid production by Kluyveromyces marxianus strains. J. Appl. Microbiol. 2020, 129, 1609–1619. [Google Scholar] [CrossRef]
- Saubade, F.; Hemery, Y.M.; Guyot, J.P.; Humblot, C. Lactic acid fermentation as a tool for increasing the folate content of foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3894–3910. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Disalva, X.; Srivastava, C.; Arun, A. Vanilla-Natural vs Artificial: A Review. Res. J. Pharm. Technol. 2019, 12, 3068. [Google Scholar] [CrossRef]
- Phan-Thi, H.; Waché, Y. Behind the Myth of the Fruit of Heaven, a Critical Review on Gac (Momordica cochinchinensis Spreng.) Contribution to Nutrition. Curr. Med. Chem. 2019, 26, 4585–4605. [Google Scholar] [CrossRef]
- Cao-Hoang, L.; Phan-Thi, H.; Osorio-Puentes, F.J.; Waché, Y. Stability of carotenoid extracts of Gac (Momordica cochinchinensis) towards cooxidation–Protective effect of lycopene on β-carotene. Food Res. Int. 2011, 44, 2252–2257. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Herbal beverages: Bioactive compounds and their role in disease risk reduction–A review. J. Tradit. Complement. Med. 2018, 8, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Prakash, B.; Kujur, A.; Singh, P.P.; Kumar, A.; Yadav, A. Plants derived bioactive compounds as functional food ingredients and food preservative. J. Nutr. Food Sci. 2017, 1, 004. [Google Scholar]
- Nunes, R.; Pasko, P.; Tyszka-Czochara, M.; Szewczyk, A.; Szlosarczyk, M.; Carvalho, I.S. Antibacterial, antioxidant and anti-proliferative properties and zinc content of five south Portugal herbs. Pharm. Biol. 2017, 55, 114–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020, 9, 1039. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Skrzypczak, D.; Mikula, K.; Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Foods 2020, 73, 104146. [Google Scholar] [CrossRef]
- Di Sotto, A.; Vitalone, A.; Di Giacomo, S. Plant-derived nutraceuticals and immune system modulation: An evidence-based overview. Vaccines 2020, 8, 468. [Google Scholar] [CrossRef]
- Domínguez González, H.; González Muñoz, M.J. Water Extraction of Bioactive Compounds: From Plants to Drug Development; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128096154. [Google Scholar]
- Khaw, K.Y.; Parat, M.O.; Shaw, P.N.; Falconer, J.R. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Katarzyna, R.; Magdalena, L.; Bogusław, B. Modern Methods of Pre-Treatment of Plant material for the extraction of bioactive compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, e20. [Google Scholar] [CrossRef] [Green Version]
- Kaczorová, D.; Karalija, E.; Dahija, S.; Bešta-Gajević, R.; Parić, A.; Ćavar Zeljković, S. Influence of extraction solvent on the phenolic profile and bioactivity of two achillea species. Molecules 2021, 26, 1601. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.S. Solid-Phase Extraction: Principles, Techniques and Applications Edited by Nigel J. K. Simpson (Varian Associates). Dekker: New York and Basel. 2000. ISBN 0–8247–09021-X. J. Am. Chem. Soc. 2000, 122, 12411–12412. [Google Scholar] [CrossRef]
- Mao, Y.; Robinson, J.; Binner, E. Understanding heat and mass transfer processes during microwave-assisted and conventional solvent extraction. Chem. Eng. Sci. 2021, 233, 116418. [Google Scholar] [CrossRef]
- Ivanović, M.; Razboršek, M.I.; Kolar, M. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Chojnacka, K. Algal extracts: Technology and advances. Eng. Life Sci. 2014, 14, 581–591. [Google Scholar] [CrossRef]
- Lee, J.; Park, G.; Chang, Y.H. Nutraceuticals and antioxidant properties of Lonicera japonica Thunb. as affected by heating time. Int. J. Food Prop. 2019, 22, 630–645. [Google Scholar] [CrossRef] [Green Version]
- Khemakhem, I.; Ahmad-Qasem, M.H.; Catalán, E.B.; Micol, V.; García-Pérez, J.V.; Ayadi, M.A.; Bouaziz, M. Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrason. Sonochem. 2017, 34, 466–473. [Google Scholar] [CrossRef]
- Masota, N.E.; Vogg, G.; Heller, E.; Holzgrabe, U. Comparison of extraction efficiency and selectivity between low-temperature pressurized microwave-assisted extraction and prolonged maceration. Arch. Pharm. 2020, 353, 2000147. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Santos, P.; Zanuso, E.; Genisheva, Z.; Rocha, C.M.R.; Teixeira, J.A. Green and sustainable valorization of bioactive phenolic compounds from pinus by-products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef] [PubMed]
- Fomo, G.; Madzimbamuto, T.N.; Ojumu, T.V. Applications of nonconventional green extraction technologies in process industries: Challenges, limitations and perspectives. Sustainability 2020, 12, 5244. [Google Scholar] [CrossRef]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Ratti, R. Ionic Liquids: Synthesis and Applications in Catalysis. Adv. Chem. 2014, 2014, 729842. [Google Scholar] [CrossRef]
- Mari, M.; Bertolini, P.; Pratella, G.C. Non-conventional methods for the control of post-harvest pear diseases. J. Appl. Microbiol. 2003, 94, 761–766. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Reinoso, B.; Moure, A.; Domínguez, H.; Parajó, J.C. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem. 2006, 54, 2441–2469. [Google Scholar] [CrossRef]
- Murador, D.C.; de Souza Mesquita, L.M.; Vannuchi, N.; Braga, A.R.C.; de Rosso, V.V. Bioavailability and biological effects of bioactive compounds extracted with natural deep eutectic solvents and ionic liquids: Advantages over conventional organic solvents. Curr. Opin. Food Sci. 2019, 26, 25–34. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. Ionic liquids toxicity—benefits and threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef]
- Du, F.Y.; Xiao, X.H.; Luo, X.J.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 2009, 78, 1177–1184. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC—Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 2018, 107, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Dent, M.; Dragovic-Uzelac, V.; Garofulic, I.E.; Bosiljkov, T.; Ježek, D.; Brncic, M. Comparison of conventional and ultrasound-assisted extraction techniques on mass fraction of phenolic compounds from sage (Salvia officinalis L.). Chem. Biochem. Eng. Q. 2015, 29, 475–484. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Characterization of fennel extracts and quantification of estragole: Optimization and comparison of accelerated solvent extraction and Soxhlet techniques. Ind. Crops Prod. 2014, 52, 528–536. [Google Scholar] [CrossRef]
- Macedo, G.A.; Santana, Á.L.; Crawford, L.M.; Wang, S.C.; Dias, F.F.G.; de Mour Bell, J.M.L.N. Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace. LWT 2021, 138, 110621. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of pulsed electric field polyphenol extraction from Vitis Vinifera, Sideritis Scardica and Crocus Sativus. ChemEngineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Vallecilla-Yepez, L.; Ciftci, O.N. Increasing cis-lycopene content of the oleoresin from tomato processing byproducts using supercritical carbon dioxide. LWT 2018, 95, 354–360. [Google Scholar] [CrossRef]
- Azaroual, L.; Liazid, A.; El Mansouri, F.; Brigui, J.; Ruíz-Rodriguez, A.; Barbero, G.F.; Palma, M. Optimization of the microwave-assisted extraction of simple phenolic compounds from grape skins and seeds. Agronomy 2021, 11, 1527. [Google Scholar] [CrossRef]
- De Andrade, R.B.; Machado, B.A.S.; Barreto, G.d.A.; Nascimento, R.Q.; Corrêa, L.C.; Leal, I.L.; Tavares, P.P.L.G.; de Souza Ferreira, E.; Umsza-Guez, M.A. Syrah grape skin residues has potential as source of antioxidant and anti-microbial bioactive compounds. Biology 2021, 10, 1262. [Google Scholar] [CrossRef]
- Rajha, H.N.; Ziegler, W.; Louka, N.; Hobaika, Z.; Vorobiev, E.; Boechzelt, H.G.; Maroun, R.G. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction. Int. J. Mol. Sci. 2014, 15, 18640–18658. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, I.; Maslov, L.; Stupić, D.; Preiner, D.; Ašperger, D.; Kontić, J.K. Recovery of flavonoids from grape skins by enzyme-assisted extraction. Sep. Sci. Technol. 2016, 51, 255–268. [Google Scholar] [CrossRef]
- Ferrentino, G.; Morozova, K.; Mosibo, O.K.; Ramezani, M.; Scampicchio, M. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. J. Clean. Prod. 2018, 186, 253–261. [Google Scholar] [CrossRef]
- Zhang, X.; Su, J.; Chu, X.; Wang, X. Green method of extracting and recovering flavonoids from Acanthopanax Senticosus using deep eutectic solvents. Molecules 2022, 27, 923. [Google Scholar] [CrossRef] [PubMed]
- Ghandahari Yazdi, A.P.; Barzegar, M.; Sahari, M.A.; Ahmadi Gavlighi, H. Optimization of the enzyme-assisted aqueous extraction of phenolic compounds from pistachio green hull. Food Sci. Nutr. 2019, 7, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Pontillo, A.R.N.; Papakosta-Tsigkri, L.; Lymperopoulou, T.; Mamma, D.; Kekos, D.; Detsi, A. Conventional and enzyme-assisted extraction of rosemary leaves (Rosmarinus officinalis L.): Toward a greener approach to high added-value extracts. Appl. Sci. 2021, 11, 3724. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R.; González-Delgado, Á.D.; García-Martinez, J.B.; L’Abbate, P. Optimization of enzyme-assisted extraction of flavonoids from Corn Husks. Processes 2019, 7, 804. [Google Scholar] [CrossRef] [Green Version]
- Córdova, A.; Astudillo-Castro, C.; Ruby-Figueroa, R.; Valencia, P.; Soto, C. Recent advances and perspectives of ultrasound assisted membrane food processing. Food Res. Int. 2020, 133, 109163. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Bhagya Raj, G.V.S.; Dash, K.K. Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies. Ultrason. Sonochem. 2020, 68, 105180. [Google Scholar] [CrossRef]
- Said, F.M.; Gan, J.Y.; Sulaiman, J. Correlation between response surface methodology and artificial neural network in the prediction of bioactive compounds of unripe Musa acuminata peel. Eng. Sci. Technol. Int. J. 2020, 23, 781–787. [Google Scholar] [CrossRef]
- Younas, U.; Iqbal, S.; Bashir, R.; Sajjad, N.; Saeed, Z.; Pervaiz, M.; Hassan, F.; Ali, F.; Ibrahim, S.; Batool, F.; et al. An eco-friendly approach for the extraction of antioxidant components from Artemisia annua leaves using response surface methodology. Polish J. Environ. Stud. 2021, 30, 4827–4833. [Google Scholar] [CrossRef]
- Favre, L.C.; dos Santos, C.; López-Fernández, M.P.; Mazzobre, M.F.; Buera, M.d.P. Optimization of β-cyclodextrin-based extraction of antioxidant and anti-browning activities from thyme leaves by response surface methodology. Food Chem. 2018, 265, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Ozimek, L.; Pospiech, E.; Narine, S. Nanotechnologies in food and meat processing. Acta Sci. Pol. Technol. Aliment. 2010, 28, 290–302. [Google Scholar]
- Pinheiro, R.G.R.; Pinheiro, M.; Neves, A.R. Nanotechnology innovations to enhance the therapeutic efficacy of quercetin. Nanomaterials 2021, 11, 2658. [Google Scholar] [CrossRef]
- Linforth, R.; Taylor, A. The process of flavour release. In Flavour in Food Edited by Andree Voilley and Patrick Etievant; Woodhead Publishing: Cambridge, UK, 2006; pp. 287–307. [Google Scholar]
- Sobel, R.; Gundlach, M.; Su, C.-P. Novel Concepts and Challenges of Flavor Microencapsulation and Taste Modification; Elsevier Inc.: Amsterdam, The Netherlands, 2014; ISBN 9780124045682. [Google Scholar]
- Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar]
- Becerril, R.; Nerin, C. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020, 25, 1134. [Google Scholar] [CrossRef] [Green Version]
- Mathis, R.; Mehling, A. Textiles with Cosmetic Effects; Woodhead Publishing Limited: Sawston, UK, 2011; ISBN 9780857093691. [Google Scholar]
- Quirós-sauceda, A.E.; Ayala-zavala, J.F.; Olivas, G.I.; González-aguilar, G.A. Edible coatings as encapsulating matrices for bioactive compounds: A review. J. Food Sci. Technol. 2014, 51, 1674–1685. [Google Scholar] [CrossRef] [Green Version]
- Timilsena, Y.P.; Haque, M.A.; Adhikari, B. Encapsulation in the food industry: A brief historical overview to recent developments. Food Nutr. Sci. 2020, 11, 481–508. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcu¸s, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity—A critical view. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef]
- McClements, D.J. Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir 2005, 21, 9777–9785. [Google Scholar] [CrossRef]
- Santhanam, A.K.; Lekshmi, M.; Chouksey, M.K.; Tripathi, G.; Gudipati, V. Delivery of omega-3 fatty acids into cake through emulsification of fish oil-in-milk and encapsulation by spray drying with added polymers. Dry. Technol. 2015, 33, 83–91. [Google Scholar] [CrossRef]
- Dammak, I.; Luciano, G.; Jaime, P.; Conte-junior, C.A. Advances in biopolymeric active fi lms incorporated with emulsi fi ed lipophilic compounds: A review. RSC Adv. 2021, 45, 28148–28168. [Google Scholar] [CrossRef]
- Mcclements, D.J.; Chen, W.; Ma, S.; Wang, Q.; Mcclements, D.J.; Liu, X.; Ngai, T.; Liu, F. Fortification of edible films with bioactive agents: A review of their formation, properties, and application in food preservation. Crit. Rev. Food Sci. Nutr. 2021, 8, 1–27. [Google Scholar]
- Leena, M.M.; Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Food Bioscience Edible coating with resveratrol loaded electrospun zein nanofibers with enhanced bioaccessibility. Food Biosci. 2020, 36, 100669. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Protein nanofibers and polyphenol and application for salted duck egg yolks. Foods 2020, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Juhász, Á.; Ungor, D.; Várkonyi, E.Z.; Varga, N.; Csapó, E. The ph-dependent controlled release of encapsulated vitamin b1 from liposomal nanocarrier. Int. J. Mol. Sci. 2021, 22, 9851. [Google Scholar] [CrossRef]
- Subramani, T.; Ganapathyswamy, H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020, 57, 3545–3555. [Google Scholar] [CrossRef]
- Eghbal, N.; Choudhary, R. Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT-Food Sci. Technol. 2018, 90, 254–264. [Google Scholar] [CrossRef]
- Rutz, J.K.; Borges, C.D.; Zambiazi, R.C.; Crizel-Cardozo, M.M.; Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chem. 2017, 220, 59–66. [Google Scholar] [CrossRef]
- Locali-Pereira, A.R.; Lopes, N.A.; Menis-Henrique, M.E.C.; Janzantti, N.S.; Nicoletti, V.R. Modulation of volatile release and antimicrobial properties of pink pepper essential oil by microencapsulation in single- and double-layer structured matrices. Int. J. Food Microbiol. 2020, 335, 108890. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.L.; Quintanar-Guerrero, D.; Del Real, A.; González-Reza, R.M.; Cornejo-Villegas, M.A.; Gutiérrez-Corte, E. Effect of nano-edible coating based on beeswax solid lipid nanoparticles on strawberry’s preservation. Coatings 2020, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef] [PubMed]
- Sameen, D.E.; Ahmed, S.; Lu, R.; Li, R.; Dai, J.; Qin, W.; Li, S.; Liu, Y. Electrospun nanofibers food packaging: Trends and applications in food Electrospun nanofibers food packaging: Trends and applications in food systems. Crit. Rev. Food Sci. Nutr. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, B.S.; Vasile, C. Encapsulation of natural bioactive compounds by electrospinning—applications in food storage and safety. Polymers 2021, 13, 3771. [Google Scholar] [CrossRef]
- Karami, N.; Kamkar, A.; Shahbazi, Y.; Misaghi, A. Electrospinning of double-layer chitosan-flaxseed mucilage nanofibers for sustained release of Ziziphora clinopodioides essential oil and sesame oil. LWT 2021, 140, 110812. [Google Scholar] [CrossRef]
- Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Dry. Technol. 2020, 1–2, 235–258. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Padma Ishwarya, S. Spray Drying Techniques for Food Ingredient Encapsulation; Wiley: Hoboken, NJ, USA, 2015; ISBN 9781118863985. [Google Scholar]
- Furuta, T.; Neoh, T.L. Microencapsulation of food bioactive components by spray drying: A review. Dry. Technol. 2021, 39, 1800–1831. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Cyclodextrin nanofibers by electrospinning. Chem. Commun. 2010, 46, 6903–6905. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Qiu, C.; Qin, Y.; Xu, X.; Fan, L.; Wang, J. Trends in Food Science & Technology Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci. Technol. 2021, 109, 398–412. [Google Scholar]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, natural compounds, and plant bioactives—a nutritional perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef]
- Cho, Y.; Gutierrez, L.; Bordonaro, M.; Russo, D.; Anzelmi, F.; Hooven, J.T.; Cerra, C.; Lazarova, D.L. Effects of propolis and gamma-cyclodextrin on intestinal neoplasia in normal weight and obese mice. Cancer Med. 2016, 5, 2448–2458. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.; Maurício, A.C.; Sencadas, V.; Santos, J.D.; Fernandes, M.H.; Gomes, P.S. Spray Drying: An Overview. In Biomaterials-Physics and Chemistry—New Edition; InTech: London, UK, 2018. [Google Scholar]
- Silva-Espinoza, M.A.; Ayed, C.; Foster, T.; Del Mar Camacho, M.; Martínez-Navarrete, N. The impact of freeze-drying conditions on the physico-chemical properties and bioactive compounds of a freeze-dried orange puree. Foods 2020, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Pop, O.; Pop, C.; Dufrechou, M.; Vodnar, D.; Socaci, S.; Dulf, F.; Minervini, F.; Suharoschi, R.; Pop, O.; Pop, C.; et al. Edible Films and Coatings Functionalization by Probiotic Incorporation: A Review. Polymers 2021, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J.; Decker, E.A.; Weiss, J. Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 2007, 72, R109–R124. [Google Scholar] [CrossRef]
- Emami, S.; Azadmard-Damirchi, S.; Peighambardoust, S.H.; Valizadeh, H.; Hesari, J. Liposomes as carrier vehicles for functional compounds in food sector. J. Exp. Nanosci. 2016, 11, 737–759. [Google Scholar] [CrossRef]
- Shukla, S.; Haldorai, Y.; Hwang, S.K.; Bajpai, V.K.; Huh, Y.S.; Han, Y.K. Current demands for food-approved liposome nanoparticles in food and safety sector. Front. Microbiol. 2017, 8, 2398. [Google Scholar] [CrossRef] [Green Version]
- Ghasemiyeh, P.; Samani, S.M. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar]
- Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr. Rev. Food Sci. 2020, 19, 479–502. [Google Scholar] [CrossRef]
- Tian, B.R.; Jiayue, L. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: A review. Polym. Int. 2020, 69, 597–603. [Google Scholar] [CrossRef]
- Gouin, S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci. Technol. 2004, 19, 26–30. [Google Scholar]
- Özkan, G. Production and characterization of natural lemonade powder using β-Cyclodextrin particles. Bilge Int. J. Sci. Technol. Res. 2018, 2, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Taneja, A.; Singh, H. Challenges for the delivery of long-chain n-3 fatty acids in functional foods. Annu. Rev. Food Sci. Technol. 2012, 3, 105–123. [Google Scholar] [CrossRef]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release–A review. Int. J. Food Sci. Technol. 2006, 41, 1–27. [Google Scholar] [CrossRef]
- Comunian, T.; Babazadeh, A.; Rehman, A.; Shaddel, R.; Akbari-Alavijeh, S.; Boostani, S.; Jafari, S.M. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit. Rev. Food Sci. Nutr. 2020, 1–22. [Google Scholar] [CrossRef]
- Baek, J.; Ramasamy, M.; Willis, N.C.; Kim, D.S.; Anderson, W.A.; Tam, K.C. Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules. Curr. Res. Food Sci. 2021, 4, 215–223. [Google Scholar] [CrossRef]
- Prior, R.L. Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. J. Funct. Foods 2015, 18, 797–810. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Apak, R. Current Issues in Antioxidant Measurement. J. Agric. Food Chem. 2019, 67, 9187–9202. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Carbonell-Capella, J.M.; Buniowska, M.; Barba, F.J.; Esteve, M.J.; Frígola, A. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. [Google Scholar] [CrossRef]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef] [Green Version]
- Kasote, D.M.; Jayaprakasha, G.K.; Patil, B.S. Encapsulation of Polyphenols: An Effective Way to Enhance Their Bioavailability for Gut Health. In ACS Symposium Series; ACS Symposium Series: Washington, DC, USA, 2018; ISBN 9780841232969. [Google Scholar]
- Etxeberria, U.; Arias, N.; Boqué, N.; Macarulla, M.T.; Portillo, M.P.; Martínez, J.A.; Milagro, F.I. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutr. Biochem. 2015, 26, 651–660. [Google Scholar] [CrossRef]
- Gowd, V.; Bao, T.; Wang, L.; Huang, Y.; Chen, S.; Zheng, X.; Cui, S.; Chen, W. Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chem. 2018, 269, 618–627. [Google Scholar]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L. Polyphenols and bioavailability: An update. Crit. Rev. Food Sci. Nutr. 2019, 59, 2040–2051. [Google Scholar] [CrossRef]
- Rainer, M.; Mucke, H.; Schlaefke, S. Ginkgo biloba extract EGb 761® in the treatment of dementia: A pharmacoeconomic analysis of the Austrian setting. Wien. Klin. Wochenschr. 2013, 125, 8–15. [Google Scholar] [CrossRef]
- Herrschaft, H.; Nacu, A.; Likhachev, S.; Sholomov, I.; Hoerr, R.; Schlaefke, S. Ginkgo biloba extract EGb 761 ® in dementia with neuropsychiatric features: A randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J. Psychiatr. Res. 2012, 46, 716–723. [Google Scholar] [CrossRef]
- Nacu, A.; Hoerr, R. Neuropsychiatric symptoms in dementia and the effects of Ginkgo biloba extract EGb 761® treatment: Additional results from a 24-week randomized, placebo-controlled trial. J. Clin. Trials 2016, 8, 1–6. [Google Scholar]
- Liu, H.; Ye, M.; Guo, H. An Updated review of randomized clinical trials testing the improvement of cognitive function of ginkgo biloba extract in healthy people and Alzheimer’s patients. Front. Pharmacol. 2020, 10, 1688. [Google Scholar] [CrossRef] [Green Version]
- Rautiainen, S.; Sesso, H.D.; Manson, J.A.E. Large-scale randomized clinical trials of bioactives and nutrients in relation to human health and disease prevention - Lessons from the VITAL and COSMOS trials. Mol. Aspects Med. 2018, 61, 12–17. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 1989, 274, 532–538. [Google Scholar] [CrossRef]
- Matos, H.R.; Di Mascio, P.; Medeiros, M.H.G. Protective effect of lycopene on lipid peroxidation and oxidative DNA damage in cell culture. Arch. Biochem. Biophys. 2000, 383, 56–59. [Google Scholar] [CrossRef]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L.; Valanis, B.; Williams, J.H.; et al. Effects of a combination of beta carotene and vitamin a on lung cancer and cardiovascular disease. N. Engl. J. Med. 1996, 334, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med. 2018, 8, a030361. [Google Scholar]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.; Siervo, M.; Lara, J. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Burton-Freeman, B.M.; Sesso, H.D. Whole food versus supplement: Comparing the clinical evidence of tomato intake and lycopene supplementation on cardiovascular risk factors. Adv. Nutr. 2014, 5, 457–485. [Google Scholar] [CrossRef] [Green Version]
- Granado-Lorencio, F.; Olmedilla-Alonso, B.; Herrero-Barbudo, C.; Blanco-Navarro, I.; Pérez-Sacristán, B.; Blázquez-García, S. In vitro bioaccessibility of carotenoids and tocopherols from fruits and vegetables. Food Chem. 2007, 102, 641–648. [Google Scholar] [CrossRef]
- Huo, T.; Ferruzzi, M.G.; Schwartz, S.J.; Failla, M.L. Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids. J. Agric. Food Chem. 2007, 55, 8950–8957. [Google Scholar] [CrossRef] [Green Version]
- Failla, M.L.; Thakkar, S.K.; Kim, J.Y. In vitro bioaccessibility of β-carotene in orange fleshed sweet potato (Ipomoea batatas, Lam.). J. Agric. Food Chem. 2009, 57, 10922–10927. [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Alminger, M.; Lemmens, L.; Colle, I.; Knockaert, G.; Moelants, K.; van Loey, A.; Hendrickx, M. In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends Food Sci. Technol. 2010, 21, 607–618. [Google Scholar] [CrossRef]
- Palou, A.; Serra, F.; Pico, C. General aspects on the assessment of functional foods in the European Union. Eur. J. Clin. Nutr. 2003, 57, S12–S17. [Google Scholar] [CrossRef] [Green Version]
- Health, European Network to Advance Carotenoid RESEARCH and applications in Agro-Food, Eurocaroten Infoday, Raising Awareness about The Socioeconomic Importance of Carotenoids. Cost Action. Available online: https://www.eurocaroten.eu/sites/default/files/Programme%20-%20EUROCAROTEN%20meeting%20stakeholders.pdf (accessed on 1 March 2022).
- Vuong, L.T.; Dueker, S.R.; Murphy, S.P. Plasma β-carotene and retinol concentrations of children increase after a 30-d supplementation with the fruit Momordica cochinchinensis (gac). Am. J. Clin. Nutr. 2002, 75, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Avallone, S.; Alpha, A.; Bricas, N. Fortifier Les Aliments Pour Lutter Contre La Malnutrition Par Carence? In Une Ecologie del’alimentation; Bricas, N., Conaré, D.M.W., Eds.; Editions Quæ: Versailles, France, 2021; 312p. [Google Scholar]
- Fadnes, L.; Økland, J.; Haaland, Ø.; Johansson, K. Estimating impact of food choices on life expectancy: A modeling study. PLoS Med. 2022, 19, e1003889. [Google Scholar]
- Van Thuy, P.; Berger, J.; Davidsson, L.; Khan, N.C.; Lam, N.T.; Cook, J.D.; Hurrell, R.F.; Khoi, H.H. Regular consumption of NaFeEDTA-fortified fish sauce improves iron status and reduces the prevalence of anemia in anemic Vietnamese women. Am. J. Clin. Nutr. 2003, 78, 284–290. [Google Scholar] [CrossRef] [Green Version]
Novel Extraction Method | Conventional Extraction | Plant | Extraction Parameters | Solvent Type | Comparison of Novel vs. Conventional Extraction | Reference |
---|---|---|---|---|---|---|
MAE | Soxhlet | Daisy (Vernonia amygdalina L.) | MAE: 5–15 min, power 400–600 W, 90–110 °C Soxhlet: 8 h, 100 °C | Water | MAE vs. Soxhlet: 38% higher e.y. and 48 times shorter treatment period | [58] |
UAE | Water bath shaking technique (WBST) | Sage (Salvia officinalis L.) | UAE: 100% amplitude, 400 W water bath: 30 min, 60 °C | Water | UAE vs. WBST: 23% higher e.y. in UAE 3 times shorter treatment | [59] |
30% ethanol | UAE vs. WBST: 6% higher e.y. in UAE, 3 times shorter treatment | |||||
30% acetone | UAE vs. WBST: 19% lower e.y. in UAE, 3 times shorter treatment | |||||
ASE and SFE | Soxhlet, Shaking sample/methanol | Peppermint (Mentha piperita L.) | ASE: solvent: methanol; 35 °C SFE: CO2 flow 40 g/min | 3% (v/v) methanol | No benefits from SFE ASE vs. Soxhlet: 44% higher e.y. ASE vs. Sample shaking: 92% higher e.y. | [60] |
Oregano (Origanum vulgare L.) | ASE vs. Soxhlet: 22% higher e.y. ASE vs. Sample shaking: 72% higher e.y. | |||||
Rosemary (Rosmarinus officinalis L.) | ASE vs. Soxhlet: 22% higher e.y.ASE vs. Sample shaking: 14% higher e.y. | |||||
Thyme (Thymus vulgaris L.) | ASE vs. Soxhlet: 40% higher e.y. ASE vs. Sample shaking: 64% lower e.y. | |||||
EAE, MAE and MEAE | Solvent extraction | Olive pomace from Biancolilla, Cerasuola, and Nocellara cultivars | MAE: 17 min, 600 W, 35–60 °C EAE: cellulase, pectinase, and tannase; 50 °C, 120 rpm for 2 h | Ethanol/water | MAE vs. solvent extraction: 11% higher e.y. in 7× shorter treatment EAE vs. solvent extraction: 55% higher e.y., best result for cellulase MEAE: improvements compared to EAE only for cellulase (95%) | [61] |
PEF | Solvent extraction | Greek mountain tea (Sideritis scardica Griseb.), saffron crocus (Crocus sativus L.), grape vine (Vitis vinifera L.) | PEF: 20 min, 10 μs, field intensity 1.2–2.0 kV/cm | Water | PEF vs. solvent extraction: 49% higher e.y. | [62] |
SFE | Soxhlet extraction | Tomato peel and seed, by-products | SC-CO2: 20 min, CO2 flow rate at 1 L/min; 40–80 °C, 30–50 MPa | Hexane | 30% shorter extraction time for SFE than Soxhlet extraction | [63] |
Method | Grape Variety/Sample Type | Processing Conditions | Total Flavanoids Content | Major Compounds Determined | Reference |
---|---|---|---|---|---|
MAE | Vitis vinifera L., “Napoleon” variety, skin and seeds | 100 °C; solvents: methanol, ethanol, acetone, and water; 100–500 W; ratio sample to solvent 10–50 mg mL−1; 5–20 min; magnetic stirring: 0–100% | 75.9 mg/100 g + 2.2 mg (caffeic acid equivalent)/100 g + 6.1 mg (rutin equivalent)/100 g | phenolic acids: caftaric acid flavanols: catechin, epicatechin flavanol glycosides: dihydrokaempferol-glycoside, quercetin, quercetin-3-O-glucoside, kaempferol-3-O-glucoside | [64] |
UAE | Vitis vinifera L., Syrah variety, grape skin residue | 80% ethanol; 55 ± 5 KHz ultrasound; 190 rpm; 25 °C–60 °C; 10–30 min | 9.8–40.0 mg quercetin equivalent/100 g | phenolic acids: gallic acid, caffeic acid, caftaric acid flavanols: catechin, procyanidin B1, procyanidin B2 flavanol glycosides: kaempferol-3-O-glucoside, quercetin-β-D-glucoside, isorhamnetin-3-O-glucoside-chloride, myricetin, rutin anthocyanins: malvidin-3-O-glucoside-chloride, cyanidin-3-O-glucoside-chloride, pelargonidin-3-glucoside-chloride, delfinidine-3-O-glucoside, peonidine-3-O-glucoside stilbenes: cis-reservatril, trans-reservatrol, viniferin | [65] |
ASE | Vitis vinifera L., cv. Cabernet Sauvignon, wet and dry grape pomace | 45 °C–140 °C; solvent: 70% ethanol/water | ∼1000 mg GAE/100 g at 140 °C for wet pomace and 600 mg GAE/100 g at 80 °C for dry pomace | phenolic acids: gallic acid, protocatechuic acid flavanols: gallocatechin, catechin, prodelphinidin B3, epicatechin | [66] |
EAE | Vitis vinifera, cv. Regen, grape skin | 45 °C; 3 h; pH 2.0, enzyme types: EX-V*, HC*, ER*, ECP*, enzyme dosage of 10.52 mg/g | 4581.7 mg/100 g (with EX-V*) 4467.7 mg/100 g (with HC*)4358.8 mg/100 g (with ER*)4316.9 mg/100 g (with ECP*) | flavanols: galocatechin, procyanidin B1, epigallocatechin, catechin, procyanidin B2, epicatechin flavanol glycosides: myricetin-3-O-glucoside, rutin, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, kaempferol-3-O-glucuronide, isorhamnetin-3-O-glucoside anthocyanins: delphinidin-3,5-O-diglucoside, cyanidin-3,5-O-diglucoside, delphinidin-3-O-glucoside, peonidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside, cyanidin-3-O-glucoside, peonidin-3-O-glucoside, malvidin-3-O-glucoside | [67] |
SLE | 70% aqueous ethanol containing 1% formic acid for one day in the dark; 40 °C | 4462.2 mg/100 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurek, M.; Benaida-Debbache, N.; Elez Garofulić, I.; Galić, K.; Avallone, S.; Voilley, A.; Waché, Y. Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects. Antioxidants 2022, 11, 742. https://doi.org/10.3390/antiox11040742
Kurek M, Benaida-Debbache N, Elez Garofulić I, Galić K, Avallone S, Voilley A, Waché Y. Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects. Antioxidants. 2022; 11(4):742. https://doi.org/10.3390/antiox11040742
Chicago/Turabian StyleKurek, Mia, Nadjet Benaida-Debbache, Ivona Elez Garofulić, Kata Galić, Sylvie Avallone, Andrée Voilley, and Yves Waché. 2022. "Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects" Antioxidants 11, no. 4: 742. https://doi.org/10.3390/antiox11040742
APA StyleKurek, M., Benaida-Debbache, N., Elez Garofulić, I., Galić, K., Avallone, S., Voilley, A., & Waché, Y. (2022). Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects. Antioxidants, 11(4), 742. https://doi.org/10.3390/antiox11040742