Phytochemical Characterization, Antioxidant and Anti-Proliferative Properties of Rubia cordifolia L. Extracts Prepared with Improved Extraction Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Preparation of Extracts
2.3. Qualitative Phytochemical Screening of R. cordifolia Constituents
2.3.1. Alkaloid Detection
2.3.2. Saponin Detection
2.3.3. Tannin Detection
2.3.4. Phenol Detection
2.3.5. Glycoside Detection
2.3.6. Flavonoids Detection
2.3.7. Terpene Detection
2.3.8. Steroid Detection
2.3.9. Quinone Detection
2.3.10. Carotenoids Detection
2.4. Quantification of Phenols
2.5. Quantification of Flavonoids
2.6. Antioxidant Assays
2.6.1. DPPH Free Radical Scavenging Assay
2.6.2. Hydrogen Peroxide Scavenging Assay
2.6.3. Scavenging Activity of Nitric Oxide
2.6.4. Determination of Total Antioxidant Capacity
2.7. Principal Component Analysis
2.8. Cell Culture and Cytotoxicity
2.9. UPLC-UV-MS Analysis
2.10. Statistical Analysis
3. Results
3.1. Qualitative Analysis of Secondary Metabolites of R. cordifolia Extracts
3.2. Quantification of Phenols and Flavonoids in Extracts
3.3. Root Extracts Have Better Antioxidant Activity Than Leaf and Stem Extracts
3.4. Principal Component Analysis of R. cordifolia Phenol, Flavonoid and Antioxidant Levels in PVPP Untreated and Treated Extracts
3.5. Plant Extracts Are Cytotoxic to Cancer Cells
3.6. UPLC-UV-MS Phytochemical Profiling of Methanol Extract of R. cordifolia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DPPH | 2:2-diphenyl-1-picrylhydrazyl |
PVPP | Polyvinylpolypyrrolidone |
References
- Raghunath, K.; Sumathi, C.; Rajappa, S.J.; Mohan, M.V.T.K.; Kumar, U.; Shaik, U.; Botlagunta, M. Impact of naturopathy, yoga, and dietary interventions as adjuvant chemotherapy in the management of stage II and III adenocarcinoma of the colon. Int. J. Colorectal Dis. 2020, 35, 2309–2322. [Google Scholar] [CrossRef] [PubMed]
- Gras, M.; Vallard, A.; Brosse, C.; Beneton, A.; Sotton, S.; Guyotat, D.; Fournel, P.; Daguenet, E.; Magné, N.; Morisson, S. Use of Complementary and Alternative Medicines among Cancer Patients: A Single-Center Study. Oncology 2019, 97, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.; Yu, S.; Yan, H.; Chen, P.; Zhang, L.; Ding, A. A Review of the Botany, Phytochemistry, Pharmacology and Toxicology of Rubiae Radix et Rhizoma. Molecules 2016, 21, 1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.-P.; Sun, Y.-Y.; Chen, W.; Guo, X.; Guan, J.-K.; Li, D.-Y.; Du, G. Anti-diarrheal and anti-inflammatory activities of aqueous extract of the aerial part of Rubia cordifolia. BMC Complement. Altern. Med. 2017, 17, 20. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gong, X.; Tan, J.Y.; Kang, L.; Li, D.; Vikash; Yang, J.; Du, G. In vitro antiviral activity of Rubia cordifolia aerial part extract against Rotavirus. Front. Pharmacol. 2016, 7, 308. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, B.; Prabhakara, S.; Mohan, T.; Shabeer, D.; Bhandare, B.; Nalini, M.; Sharmila, P.; Meghana, D.; Reddy, S.; Hanimantha Rao, H.; et al. Characterization of Rubia cordifolia L. root extract and its evaluation of cardioprotective effect in Wistar rat model. Indian J. Pharmacol. 2018, 50, 12–21. [Google Scholar]
- Shilpa, P.N.; Sivaramakrishnan, V.; Devaraj, S.N. Induction of Apoptosis by Methanolic Extract of Rubia Cordifolia Linn in HEp-2 Cell Line is Mediated by Reactive Oxygen Species. Asian Pac. J. Cancer Prev. 2012, 13, 2753–2758. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Sarma, M.D.; Amarendra, P.; Hazra, B. Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn. J. Pharm. Pharmacol. 2010, 62, 1158–1166. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, P.-D.; Bao, B.-H.; Shan, M.-Q.; Zhang, K.-C.; Cheng, F.-F.; Cao, Y.-D.; Zhang, L.; Ding, A.-W. Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia extract in zebrafish. J. Ethnopharmacol. 2018, 219, 152–160. [Google Scholar] [CrossRef]
- Adwankar, M.K.; Chitnis, M.P. In vivo anti-cancer activity of RC-18: A plant isolate from Rubia cordifolia, Linn. against a spectrum of experimental tumour models. Chemotherapy 1982, 28, 291–293. [Google Scholar] [CrossRef]
- Chang, L.C.; Chavez, D.; Gills, J.J.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, D.A. Rubiasins A-C, new anthracene derivatives from the roots and stems of Rubia cordifolia. Tetrahedron Lett. 2000, 41, 7157–7162. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.L.; Gong, X.P.; Xiao, M.; Song, Y.Y.; Pi, H.F.; Du, G. Anti-inflammatory Activity of Mollugin on DSS-induced Colitis in Mice. Curr. Med. Sci. 2020, 40, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Hussain, Y.; Luqman, S.; Meena, A. Purpurin: A natural anthraquinone with multifaceted pharmacological activities. Phytother. Res. 2020, 35, 2418–2428. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.H.; Liu, C.T.; Song, X.J.; Zeng, W.Y.; Lu, X.Y.; Zheng, Z.L.; Pan, J.; Zhan, R.T.; Ping, Y. Evaluation of analgesic and anti-inflammatory activities of Rubia cordifolia L. by spectrum-effect relationships. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1090, 73–80. [Google Scholar] [CrossRef]
- Kamble, S.C.; Humbare, R.B.; Sarkar, J.; Kulkarni, A.A. Assessment of Phytochemicals and Antioxidant Properties of Root Extracts of Rubia cordifolia L. in Different Solvent Systems. Biol. Life Sci. Forum 2020, 4, 100. [Google Scholar]
- Humbare, R.B.; Sarkar, J.; Kulkarni, A.A.; Kamble, S.C. Evaluation of Free Radical Scavenging with in vitro Antiproliferative Properties of Different Extracts of Pluchea lanceolata (DC.) Oliv. and Hiern in Cancer Cell Lines. Pharmacogn. Mag. 2021, 17, 886–892. [Google Scholar]
- Ranatunge, I.; Adikary, S.; Dasanayake, P.; Fernando, C.D.; Soysa, P. Development of a Rapid and Simple Method to Remove Polyphenols from Plant Extracts. Int. J. Anal. Chem. 2017, 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Pochapski, M.T.; Fosquiera, E.C.; Esmerino, L.A.; Dos Santos, E.; Farago, P.; Santos, F.; Groppo, F. Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves’ extract from Ipomoea batatas (L.) Lam. Pharmacogn. Mag. 2020, 7, 165–170. [Google Scholar]
- Evans, W.C.; Evans, D.; Trease, G.E. Trease and Evans Pharmacognosy, 16th ed.; Evans, W.C., Evans, D., Eds.; Saunders: Edinburgh, UK; Elsevier: New York, NY, USA, 2009; ISBN 9780702029349. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid Alam, A.H.M. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Ruch, R.J.; Cheng, S.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese Green Tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Teodori, L.; Accorsi, A.; Uguccioni, F.; Rocchi, M.B.L.; Baldoni, F.; Piatti, E.; Albertini, M.C. Erythrocyte morphology automated analysis: Proposal for a new prediction tool of essential hypertension diagnosis. Cytom. Part B-Clin. Cytom. 2007, 72, 211–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, L.-J.; Song, T.-T.; Wang, Y.-Q.; Yang, X. An approach based on antioxidant fingerprint–efficacy relationship and TLC bioautography assay to quality evaluation of Rubia cordifolia from various sources. J. Nat. Med. 2014, 68, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Hazra, B. Evaluation of Nitric Oxide Scavenging Activity, In Vitro and Ex Vivo, of Selected Medicinal Plants Traditionally Used in Inflammatory Diseases. Phyther. Res. 2006, 20, 896–900. [Google Scholar] [CrossRef]
- Nikolova, M. Screening of Radical Scavenging Activity and Polyphenol Content of Bulgarian Plant Species. Pharmacogn. Res. 2011, 3, 256–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef]
- Jerez-Martel, I.; García-Poza, S.; Rodríguez-Martel, G.; Rico, M.; Afonso-Olivares, C.; Gómez-Pinchetti, J.L. Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J. Food Qual. 2017, 2017, 2924508. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Kumar, B.; Alam, P.; Singh, V.; Kumar Gupta, S. Rubia cordifolia—A Review on Pharmaconosy and Phytochemistry. Int. J. Pharm. Sci. Res. 2016, 7, 2720. [Google Scholar]
- Joharapurkar, A.A.; Zambad, S.P.; Wanjari, M.M.; Umathe, S.N. In vivo evaluation of antioxidant activity of alcoholic extract of Rubia cordifolia Linn. and its influence on ethanol-induced immunosuppression. Indian J. Pharmacol. 2003, 35, 232–236. [Google Scholar]
- Wu, C.C.; Li, X.B.; Han, T.S.; Li, P.; Wang, J.G.; Liu, G.W.; Wang, Z.; Ge, C.R.; Gao, S.Z. Dietary pseudopurpurin improves bone geometry architecture and metabolism in red-bone Guishan goats. PLoS ONE 2012, 7, e37469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lajkó, E.; Bányai, P.; Zámbó, Z.; Kursinszki, L.; Szoke, É.; Kohidai, L. Targeted tumor therapy by Rubia tinctorum L.: Analytical characterization of hydroxyanthraquinones and investigation of their selective cytotoxic, adhesion and migration modulator effects on melanoma cell lines (A2058 and HT168-M1). Cancer Cell Int. 2015, 15, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, P.; Lee, K.H.; Shingu, T.; Hirayama, T.; Hall, I.H.; Huang, H.C. Antitumor agents 50. 1 Morindaparvin-A, a new antileukemic anthraquinone, and alizarin-1-methyl ether from Morinda parvifolia, and the antileukemic activity of the related derivatives. J. Nat. Prod. 1982, 45, 206–210. [Google Scholar] [CrossRef] [PubMed]
No. | Chemical Compounds | PubChem ID | Molecular Formula | Molecular Weight (g/mol) | Isolated from |
---|---|---|---|---|---|
1 | 6-methoxygeniposidic acid | 50998059 | C17H24O11 | 404.4 | Root |
2 | Rubiprasin A | 21594201 | C32H52O5 | 516.799 | Root |
3 | Rubiprasin B | 21594133 | C32H52O4 | 500.8 | Root |
4 | Rubiarbonol A | 12019473 | C30H50O4 | 474.7 | Root |
5 | Rubiarbonol B | 12019474 | C30H50O3 | 458.7 | Root |
6 | Rubiarbonol C | 21672545 | C32H52O5 | 516.799 | Root |
7 | Rubiarbonol D | 21672546 | C32H52O5 | 516.799 | Root |
8 | Rubiarbonol E | 21582934 | C30H50O4 | 474.7 | Root |
9 | Rubiarbonol F | 21582935 | C30H50O5 | 490.7 | Root |
10 | 1,8-dihydroxyanthraquinone | 2950 | C14H8O4 | 240.21 | Root |
11 | 1-hydroxy 2-methoxy anthraquinone | 80103 | C15H10O4 | 254.24 | Root |
12 | 1,3- dimethoxy 2- carboxy anthraquinone | 129670266 | C17H12O6 | 312.27 | Root |
13 | 1, 5-dihydroxy 2- methylanthraquinone | 182449 | C15H10O4 | 254.24 | Root |
14 | Pseudopurpurin | 442765 | C15H8O7 | 300.22 | Root |
15 | Dihydromollugin | 10779560 | C17H18O4 | 286.32 | Root |
16 | Munjistin | 160476 | C15H8O6 | 284.22 | |
17 | 1-hydroxy-2-hydroxymethyl-9,10-anthraquinone | 32209 | C15H10O4 | 254.24 | Root |
18 | Mollugin | 124219 | C17H16O4 | 284.31 | Root |
19 | 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone | 5319801 | C15H10O5 | 270.24 | Root |
20 | Rubioncolin B | 14777446 | C31H24O10 | 556.5 | Root |
21 | Rubilactone | 132415 | C15H10O5 | 270.24 | Root |
22 | 1- hydroxy-2 carboxy 3-methoxyanthraquinone | 129670276 | C16H10O6 | 298.25 | Root |
23 | Oleanolic acid acetate | 6708573 | C32H50O4 | 498.7 | Root |
24 | Hederagenin | 73299 | C30H48O4 | 472.7 | |
25 | Β-sitosterol | 222284 | C29H50O | 414.7 | Root |
26 | Rubiasin A | 101064500 | C15H16O2 | 228.29 | Root, Stem Root, Stem |
27 | Rubiasin B | 101064501 | C15H16O2 | 228.29 | |
28 | Rubiasin C | 101064502 | C15H16O2 | 228.29 | |
29 | 1-hydroxy-2-methylanthraquinone | 160817 | C15H10O3 | 238.24 | Root |
30 | 1,4-dihydroxy-2-methylanthraquinone | 99300 | C15H10O4 | 254.24 | Root |
31 | 2-methylanthraquinone | 6773 | C15H10O2 | 222.24 | Root |
32 | Alizarin | 6293 | C14H8O4 | 240.21 | Root |
33 | Rubiadin | 124062 | C15H10O4 | 254.24 | Root |
34 | Purpurin | 6683 | C14H8O5 | 256.209 | Root |
35 | 1,4-dihydroxy-2-methyl-5-methoxyanthraquinone | 12714658 | C16H12O5 | 284.26 | Root |
36 | Ruberythric acid | 92101 | C25H26O13 | 534.5 | Root |
37 | Lucidine primeveroside | 160180 | C26H28O14 | 564.5 | Root |
38 | 2,3-dihydroxyanthraquinone | 11391150 | C15H10O4 | 254.24 | Root |
39 | 1,3-dimethoxyanthraquinone | 361511 | C16H12O4 | 268.26 | Root |
40 | 3-methoxymollugin | 46187191 | C18H18O5 | 314.3 | Root |
41 | Xanthopurpurin | 196978 | C14H8O4 | 240.21 | Root |
42 | Methyl 1,4-bisglucosyloxy-3-prenyl-2-naphthoate | 10031663 | C29H38O14 | 610.6 | Root |
43 | Physcion | 10639 | C16H12O5 | 284.26 | Root |
44 | Nordamnacanthal | 160712 | C15H8O5 | 268.22 | Root |
45 | Quinizarin (1,4-dihydroxy-6-methyl-anthraquinone) | 6688 | C14H8O4 | 240.21 | Root |
46 | 1,4-dihydroxy-2- naphthoic acid | 671 | C11H8O4 | 204.18 | Root |
47 | Furomollugin | 10354359 | C14H10O4 | 242.23 | Root |
48 | 2-methyl-1, 3, 6-trihydroxy-9, 10-anthraquinone | 5319801 | C15H10O5 | 270.24 | Root |
49 | RA-I | 14390137 | C40H48N6O10 | 772.8 | Root |
50 | [Gly-1]ra-vii | 10440096 | C40H48N6O9 | 756.8 | Root |
51 | [Gly-2]ra-vii | 12098468 | C40H48N6O9 | 756.8 | Root |
52 | RA-III | 14390141 | C41H50N6O10 | 786.9 | Root |
53 | RA-V | 13361282 | C40H48N6O9 | 756.8 | Root |
54 | RA-XXIV | 24881308 | C42H51N7O10 | 813.9 | Root |
55 | RA-VIII | 152772187 | C41H50N6O10 | 786.9 | Root |
56 | RA-X | 6444175 | C43H52N6O11 | 828.9 | Root |
57 | RA-XI | 131676023 | C42H50N6O11 | 814.9 | Root |
58 | RA-XII | 10373581 | C46H58N6O14 | 919 | Root |
59 | RA-XIII | 14999350 | C48H60N6O16 | 977 | Root |
60 | RA-XVI | 5320896 | C47H58N6O16 | 963 | Root |
61 | RA-XVII | 102355358 | C41H50N6O9 | 770.9 | Root |
62 | RA-XVIII | 25033039 | C41H50N6O10 | 786.9 | Root |
63 | RA-XIX | 24829365 | C44H56N6O9 | 812.9 | Root |
64 | RA-XX | 24829366 | C42H52N6O9 | 784.9 | Root |
65 | RA-XXI | 24861920 | C41H50N6O9 | 770.9 | Root |
66 | RA-XXII | 24862183 | C41H50N6O10 | 786.9 | Root |
67 | Rubicoumaric acid | 5377693 | C39H54O6 | 618.8 | Whole Plant |
68 | Rubifolic acid | 91895456 | C30H48O4 | 472.7 | Whole Plant |
69 | 1-hydroxy-9,10-anthraquinone | 8512 | C14H8O3 | 224.21 | Root |
70 | 2-carbamoyl-3-methoxy-1,4- naphthoquinone | 91825839 | C11H7NO4 | 217.18 | Root |
71 | N-nonadecane | 12401 | C19H40 | 268.5 | Root |
72 | 2,6-dihydroxyanthraquinone | 6776 | C14H8O4 | 240.21 | Root |
73 | N-heptadecane | 12398 | C17H36 | 240.5 | Root |
74 | Rubiatriol | 21582929 | C30H50O3 | 458.7 | Root |
75 | Epoxymollugin | 24814354 | C17H16O5 | 300.3 | Root |
76 | 1,6-dihydroxy-2-methyl-9,10-anthraquinone | 124063 | C15H10O4 | 254.24 | Root |
77 | Citric acid | 311 | C6H8O7 | 192.12 | |
78 | Malic acid | 525 | C4H6O5 | 134.09 | |
79 | Palmitic acid | 985 | C16H32O2 | 256.42 | |
80 | 1-hydroxy-2, 7- dimethylanthraquinone | 1382 | C16H12O3 | 252.26 | |
81 | Emodin | 3220 | C15H10O5 | 270.24 | |
82 | Eugenol | 3314 | C10H12O2 | 164.2 | |
83 | Alizarin | 6293 | C14H8O4 | 240.21 | |
84 | Quinic acid | 6508 | C7H12O6 | 192.17 | |
85 | 2-methyl anthraquinone | 6773 | C15H10O2 | 222.24 | |
86 | Vanillic acid | 8468 | C8H8O4 | 168.15 | |
87 | 1-hydroxyanthraquinone | 8512 | C14H8O3 | 224.21 | |
88 | Lucidin | 10163 | C15H10O5 | 270.24 | |
89 | Naphthohydroquinone | 11305 | C10H8O2 | 160.17 | |
90 | Tricosanoic acid | 17085 | C23H46O2 | 354.6 | |
91 | Ursolic acid | 64945 | C30H48O3 | 456.7 | |
92 | Atraric acid | 78435 | C10H12O4 | 196.2 | |
93 | Friedelinol | 101341 | C30H52O | 428.7 | |
94 | Soranjidiol | 124063 | C15H10O4 | 254.24 | |
95 | Lariciresinol | 332427 | C20H24O6 | 360.4 | |
96 | Naphthaquinone | 377214 | C13H11NO4 | 245.23 | |
97 | Anethole | 637563 | C10H12O | 148.2 | |
98 | Geraniol | 637566 | C10H18O | 154.25 | |
99 | Geranyl acetate | 1549026 | C12H20O2 | 196.29 | |
100 | Scopoletol | 5280460 | C10H8O4 | 192.17 | |
101 | Rosmarinic acid | 5281792 | C18H16O8 | 360.3 | |
102 | Daucosterol | 5742590 | C35H60O6 | 576.8 | |
103 | 1-hydroxy 2-methyl anthraquinone | 10250776 | C25H26O5 | 406.5 | |
104 | Rubicordifolin | 11786393 | C33H28O9 | 568.6 | |
105 | Oleanolic acid | 12313704 | C30H46O3 | 454.7 | |
106 | 1, 4-dihydroxy 2- methylanthraquinone | 12488527 | C16H12O5 | 284.26 | |
107 | 1-Hydroxy-2-(methoxycarbonyl)-3-[(methoxycarbonyl)methyl]-9,10-anthraquinone | 13793380 | C19H14O7 | 354.3 | |
108 | Rubiatriol | 21582929 | C30H50O3 | 458.7 | |
109 | Rubiprasin B | 21594133 | C32H52O4 | 500.8 | |
110 | Rubiprasin A | 21594201 | C32H52O5 | 516.8 | |
111 | Rubiarbonol C | 21672545 | C32H52O5 | 516.8 | |
112 | 1, 4- dihydroxy 2- methyl 5-methoxy anthraquinone | 23626543 | C20H16O7 | 368.3 | |
113 | 2′-hydroxymollugin | 46187192 | C17H16O5 | 300.3 | |
114 | Methyl 6-hydroxy-3-methoxy-2,2-dimethyl-3,4-dihydrobenzo[h]chromene-5-carboxylate | 5319476 | C18H18O5 | 316.3 | |
115 | Methyl 3,6-dihydroxy-4-methoxy-2,2-dimethyl-3,4-dihydrobenzo[h]chromene-5-carboxylate | 5319446 | C18H20O6 | 332.3 | |
116 | 2-methyl-1, 3, 6-trihydroxy-9, 10- anthraquinone | 70698136 | C29H32O15 | 620.6 | |
117 | Rubifolic acid | 72994727 | C30H48O4 | 472.7 | |
118 | 2-Acetoxy-1,5-dihydroxy-7-methylanthraquinone | 100994924 | C17H12O6 | 312.27 | |
119 | 1, 3- dimethoxy 2-carboxy anthraquinone | 129670266 | C17H12O6 | 312.27 | |
120 | Rubicordin A | 132553188 | C46H60N6O14 | 921 | |
121 | Rubicordin B | 132553189 | C47H62N6O14 | 935 | |
122 | Rubicordin C | 132553190 | C42H54N6O9 | 786.9 | |
123 | 2, 6-methylanthraquinone | 155490709 | C25H28O6 | 424.5 | |
124 | Sitosteryl acetate | 348285530 | C29H50O | 414.71 | |
125 | Sitostenone | 60123241 | C29H48O | 412.7 |
S.No. | Detection | Assays | Root | Leaf | Stem | ||
---|---|---|---|---|---|---|---|
Methanol Extract | Ethanol Extract | Aqueous Extract | Methanol Extract | Methanol Extract | |||
1 | Alkaloids | Mayer’s test | − | − | − | + | + |
2 | Alkaloids | Dragendorff’s test | + | + | + | + | + |
3 | Alkaloids | Wagner’s test | + | − | − | + | + |
4 | Alkaloids | Hager’s test | − | − | − | + | + |
5 | Saponins | Foam test | − | − | + | − | − |
6 | Tannins | Ferric chloride test | + | − | − | + | − |
7 | Phenols | Folin–Ciocalteu reagent test | + | + | + | + | + |
8 | Glycosides | Keller–Kiliani test | − | − | + | + | − |
9 | Flavonoids | Shinoda test | + | + | + | + | + |
10 | Terpenes | Chloroform-Sulphuric acid test | + | + | + | + | + |
11 | Steroids | Liebermann–Burchard test | − | − | − | − | − |
12 | Quinones | Hydrochloride test | − | − | − | + | + |
13 | Carotenoids | Iodine crystal test | − | − | − | − | + |
Extracts in Solvent | PVPP ‘+’ = presence of PVPP, ‘−‘ = absence of PVPP | Phenol Content (mg GAE/g of Plant Extract) | Flavonoid Content (mg QE/g of Plant Extract) |
---|---|---|---|
Root-Methanol | − | 43.34 ± 0.27 a,b,c | 369.69 ± 1.49 a,b,c |
+ | 6.59 ± 0.73 | 55.28 ± 2.7 | |
Root-Ethanol | − | 74.31 ± 0.16 a,d | 334.9 ± 1.8 a,d |
+ | 5.46 ± 0.25 | 49.64 ± 3.11 | |
Root-Aqueous | − | 67.14 ± 0.11 a | 177.05 ± 3.6 a |
+ | 6.80 ± 0.25 | 37.08 ± 1.54 | |
Leaf-Methanol | − | 35.12 ± 0.32 | 55.1 ± 0.46 a |
+ | # | # | |
Stem-Methanol | − | 26.87 ± 0.23 | 49.19 ± 0.61 |
+ | # | # |
DPPH | Hydrogen Peroxide Scavenging Activity | Nitric Oxide Scavenging Activity | Total Antioxidant Capacity | |||||
---|---|---|---|---|---|---|---|---|
Extracts | IC50 (µg/mL) | IC50 (µg/mL) | IC50 (µg/mL) | IC50 (µg/mL) | IC50 (µg/mL) | IC50 (µg/mL) | IC50 (µg/mL) | IC50 (µg/mL) |
PVPP | - | + | - | + | - | + | - | + |
Root-Methanol | 79.1 ± 1.92 ** | 89.47 ± 0.79 | 74.5 ± 1.38 *** | 97.71 ± 1.69 | 94.53 ± 1.84 ** | 78.46 ± 0.7 | 88.62 ± 1.05 ** | 97.52 ± 0.88 |
Root-Ethanol | 88.5 ± 2.68 ** | 98.26 ± 0.73 | 61.2 ± 2.12 *** | 101.14 ± 1.52 | 95.11 ± 0.74 *** | 82.17 ± 0.51 | 101.15 ± 1.77 ** | 85.92 ± 0.74 |
Root-Aqueous | 99.97 ± 2.09 ** | 85.53 ± 1.01 | 92.97 ± 2.31 | 80.85 ± 1.89 | 85.49 ± 0.82 | 84.23 ± 0.75 | 71.86 ± 0.3 ** | 85.14 ± 0.81 |
Leaf-Methanol | 115.76± 0.85 * | 84.63 ± 0.03 | 96.35 ± 1.62 ** | 146.98 ± 7.13 | 126.86 ± 1.14 | 118.99 ± 2.16 | 91.84 ± 4.24 * | 117.95 ± 0.58 |
Stem-Methanol | 153.12± 1.19 | 112.75 ± 0.09 | 109.02 ± 1.62 | 138.41 ± 0.69 | 111.16 ± 1.36 | 86.17 ± 0.53 | 134.83 ± 2.05 | 103.91 ± 0.78 |
Ascorbic Acid | 159.34 ± 3.41 *** | 100.42 ± 1.25 | 64.49 ± 0.51 * | 99.12 ± 2.7 | 100.01 ± 0.6 * | 86.35 ± 0.39 | 104.26 ± 0.62 * | 100.29 ± 1.4 |
Extracts in Solvent | PVPP ‘+’ = presence of PVPP, ‘−‘ = absence of PVPP | Phenol Content | Flavonoid Content | DPPH Free Radical Scavenging Assay | H2O2 Scavenging Activity | NO Scavenging Activity | Total Antioxidant Capacity |
---|---|---|---|---|---|---|---|
mg GAE/g of Plant Extract | mg QE/g of Plant Extract | IC50 (µg/mL) | IC50 (µg/mL) | IC50 (µg/mL) | IC50 (µg/mL) | ||
Root- Methanol | − | 43.34 ± 0.27 | 369.69 ± 1.49 | 79.1 ± 1.92 | 74.5 ± 1.38 | 94.53 ± 1.84 | 88.62 ± 1.05 |
+ | 6.59 ± 0.73 | 55.28 ± 2.7 | 89.47 ± 0.79 | 97.71 ± 1.69 | 78.46 ± 0.7 | 97.52 ± 0.88 | |
Root- Ethanol | − | 74.31 ± 0.16 | 334.9 ± 1.8 | 88.49 ± 2.68 | 61.2 ± 2.12 | 95.11 ± 0.74 | 101.15 ± 1.77 |
+ | 5.46 ± 0.25 | 49.64 ± 3.11 | 98.26 ± 0.73 | 101.14 ± 1.52 | 82.17 ± 0.51 | 85.92 ± 0.74 | |
Root- Aqueous | − | 67.14 ± 0.11 | 177.05 ± 3.6 | 99.976 ± 2.01 | 92.97 ± 2.31 | 85.49 ± 0.82 | 71.86 ± 0.3 |
+ | 6.80 ± 0.25 | 37.08 ± 1.54 | 85.53 ± 1.01 | 80.85 ± 1.89 | 84.23 ± 0.75 | 85.14 ± 0.81 | |
Leaf- Methanol | − | 35.12 ± 0.32 | 55.1 ± 0.46 | 115.76 ± 0.85 | 96.35 ± 1.62 | 126.86 ± 1.14 | 91.84 ± 4.24 |
+ | # | # | 84.63 ± 0.03 | 146.98 ± 7.13 | 118.99 ± 2.16 | 117.95 ± 0.58 | |
Stem- Methanol | − | 26.87 ± 0.23 | 49.19 ± 0.61 | 153.12 ± 1.19 | 109.02 ± 1.62 | 111.16 ± 1.36 | 134.83 ± 2.05 |
+ | # | # | 112.75 ± 0.09 | 138.41 ± 0.69 | 86.17 ± 0.53 | 103.91 ± 0.78 | |
Ascorbic Acid | − | NA | NA | 159.34 ± 3.41 | 64.49 ± 0.51 | 100.01 ± 0.6 | 104.26 ± 0.62 |
+ | NA | NA | 100.42 ± 1.25 | 99.12 ± 2.7 | 86.35 ± 0.39 | 100.29 ± 1.4 |
Variables | 1st Principal Component (PC1) | 2nd Principal Component (PC2) |
---|---|---|
Phenol content | −0.779 | 0.517 |
Flavonoid content | −0.812 | 0.447 |
Antioxidant_DPPH Assay | 0.706 | 0.435 |
Antioxidant_H2O2 scavenging activity | 0.817 | −0.276 |
Antioxidant_NO scavenging activity | 0.430 | 0.692 |
Antioxidant_Total antioxidant capacity | 0.735 | 0.526 |
Methanol Extract (mg/mL) | Ethanol Extract (mg/mL) | Aqueous Extract (mg/mL) | 5-FU (μM) | |
---|---|---|---|---|
HeLa | 0.29 ± 0.23 a, c | 1.41 ± 0.37 | 0.51 ± 0.34 b | 34.73 ± 10.02 |
ME-180 | 1.68 ± 0.39 a | 2.37 ± 0.96 d | 1.78 ± 0.55 b | 13.68 ± 2.04 |
HepG2 | 0.38 ± 0.26 | 0.45 ± 0.07 | 0.57 ± 0.31 | 1.51 ± 0.38 |
No. | Name | Formula | Score | Mass | CAS | RT |
---|---|---|---|---|---|---|
1 | Pseudopurpurin | C15H8O7 | 97.4 | 300.0275 | 476-41-5 | 9.442 |
2 | Morindaparvin A | C15H8O4 | 84.38 | 252.0421 | 41621-32-3 | 10.821 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humbare, R.B.; Sarkar, J.; Kulkarni, A.A.; Juwale, M.G.; Deshmukh, S.H.; Amalnerkar, D.; Chaskar, M.; Albertini, M.C.; Rocchi, M.B.L.; Kamble, S.C.; et al. Phytochemical Characterization, Antioxidant and Anti-Proliferative Properties of Rubia cordifolia L. Extracts Prepared with Improved Extraction Conditions. Antioxidants 2022, 11, 1006. https://doi.org/10.3390/antiox11051006
Humbare RB, Sarkar J, Kulkarni AA, Juwale MG, Deshmukh SH, Amalnerkar D, Chaskar M, Albertini MC, Rocchi MBL, Kamble SC, et al. Phytochemical Characterization, Antioxidant and Anti-Proliferative Properties of Rubia cordifolia L. Extracts Prepared with Improved Extraction Conditions. Antioxidants. 2022; 11(5):1006. https://doi.org/10.3390/antiox11051006
Chicago/Turabian StyleHumbare, Ravikiran B., Joyita Sarkar, Anjali A. Kulkarni, Mugdha G. Juwale, Sushil H. Deshmukh, Dinesh Amalnerkar, Manohar Chaskar, Maria C. Albertini, Marco B. L. Rocchi, Swapnil C. Kamble, and et al. 2022. "Phytochemical Characterization, Antioxidant and Anti-Proliferative Properties of Rubia cordifolia L. Extracts Prepared with Improved Extraction Conditions" Antioxidants 11, no. 5: 1006. https://doi.org/10.3390/antiox11051006
APA StyleHumbare, R. B., Sarkar, J., Kulkarni, A. A., Juwale, M. G., Deshmukh, S. H., Amalnerkar, D., Chaskar, M., Albertini, M. C., Rocchi, M. B. L., Kamble, S. C., & Ramakrishna, S. (2022). Phytochemical Characterization, Antioxidant and Anti-Proliferative Properties of Rubia cordifolia L. Extracts Prepared with Improved Extraction Conditions. Antioxidants, 11(5), 1006. https://doi.org/10.3390/antiox11051006