Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Preparation of Extracts
2.2. Total Phenolic and Flavonoid Content
2.3. LC-HRMS/MS Analysis
2.4. Antioxidant and Enzyme Inhibitory Activity
2.5. Anti-Mycobacterium Activity
2.5.1. Inoculum Preparation
2.5.2. MIC Determination
2.6. Data Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoid Content
3.2. LC-HRMS/MS Analysis
3.3. Antioxidant Activity
3.4. Enzyme Inhibitory Activity
3.5. Anti-Mycobacterium Activity
3.6. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Com. 2019, 14, 1934578X19850354. [Google Scholar]
- Pellicer, J.; Garcia, S.; Canela, M.; Garnatje, T.; Korobkov, A.A.; Twibell, J.; Vallès, J. Genome size dynamics in Artemisia L. (Asteraceae): Following the track of polyploidy. Plant Biol. 2010, 12, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Abbasi, B.H.; Ahmad, N.; Khan, H.; Ali, G.S. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia–current trends. Crit. Rev. Biotechnol. 2017, 37, 833–851. [Google Scholar] [CrossRef]
- Turi, C.E.; Shipley, P.R.; Murch, S.J. North American Artemisia species from the subgenus Tridentatae (Sagebrush): A phytochemical, botanical and pharmacological review. Phytochemistry 2014, 98, 9–26. [Google Scholar] [CrossRef]
- Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus Artemisia. Arch. Pharm. Res. 2021, 44, 439–474. [Google Scholar] [CrossRef]
- Taleghani, A.; Emami, S.A.; Tayarani-Najaran, Z. Artemisia: A promising plant for the treatment of cancer. Bioorg. Med. Chem. 2020, 28, 115180. [Google Scholar] [CrossRef]
- Trendafilova, A.; Moujir, L.M.; Sousa, P.M.; Seca, A.M. Research advances on health effects of edible Artemisia species and some sesquiterpene lactones constituents. Foods 2020, 10, 65. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Singh, P. The genus Artemisia: A 2012–2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines 2017, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Sârbu, I.; Ştefan, N.; Oprea, A. Plante Vasculare din România: Determinator Ilustrat de Teren; Editura Victor B Victor: Bucuresti, Romania, 2013; pp. 810–816. [Google Scholar]
- Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O.; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia absinthium L.—Importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants 2020, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Bordean, M.-E.; Muste, S.; Marțiș, G.S.; Mureșan, V.; Buican, B.-C. Health effects of wormwood (Artemisia absinthium L.): From antioxidant to nutraceutical. J. Agroalim. Proc. Technol. 2021, 27, 211–218. [Google Scholar]
- Batiha, G.E.-S.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Magdy Beshbishy, A.; Murata, T.; Zaragoza-Bastida, A. Bioactive compounds, pharmacological actions, and pharmacokinetics of wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Cao, S.; Qiu, F.; Zhang, B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol. Ther. 2020, 216, 107650. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Su, X.-Z. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti Infect. Ther. 2009, 7, 999–1013. [Google Scholar] [CrossRef]
- Ekiert, H.; Pajor, J.; Klin, P.; Rzepiela, A.; Ślesak, H.; Szopa, A. Significance of Artemisia vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules 2020, 25, 4415. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Lalarizo Rakoto, M.; Marodon, C.; Bedoui, Y.; Nakab, J.; Simon, E.; Hoarau, L.; Savriama, S.; Strasberg, D.; Guiraud, P. Artemisia annua, a traditional plant brought to light. Int. J. Mol. Sci. 2020, 21, 4986. [Google Scholar] [CrossRef]
- Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2017; pp. 65–83. [Google Scholar]
- Sadiq, A.; Hayat, M.Q.; Ashraf, M. Ethnopharmacology of Artemisia annua L.: A review. In Artemisia Annua-Pharmacology and Biotechnology; Aftab, T., Ferreira, J.F.S., Khan, M.M.A., Naeem, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 9–25. [Google Scholar]
- Willcox, M. Artemisia species: From traditional medicines to modern antimalarials—And back again. J. Altern. Complement. Med. 2009, 15, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Adekenov, S. Chemical study of Artemisia austriaca Jacq. Int. J. Biol. Chem. 2021, 14, 156–163. [Google Scholar] [CrossRef]
- Costa, R.; De Fina, M.R.; Valentino, M.R.; Rustaiyan, A.; Dugo, P.; Dugo, G.; Mondello, L. An investigation on the volatile composition of some Artemisia species from Iran. Flavour Fragr. J. 2009, 24, 75–82. [Google Scholar] [CrossRef]
- Kikhanova, Z.S.; Iskakova, Z.B.; Dzhalmakhanbetova, R.; Seilkhanov, T.; Ross, S.; Suleimen, E. Constituents of Artemisia austriaca and their biological activity. Chem. Nat. Compd. 2013, 49, 967–968. [Google Scholar] [CrossRef]
- Cubukcu, B.; Melikoğlu, G. Flavonoids of Artemisia austriaca. Planta Med. 1995, 61, 488. [Google Scholar] [CrossRef] [PubMed]
- Valant-Vetschera, K.M.; Wollenweber, E. Flavonoid aglycones from the leaf surfaces of some Artemisia spp. (Compositae-Anthemideae). Z. Naturforsch. C 1995, 50, 353–357. [Google Scholar] [CrossRef]
- Ivashchenko, I. Fungicidal properties of artemisia aromatic plants towards Fusarium oxysporum. Ukr. J. Ecol. 2015, 5, 44. [Google Scholar]
- Mercan, U.; Öner, A.C.; Öntürk, H.; Cengiz, N.; Erten, R.; Özgökç, F.; Özbek, H. Investigation of acute liver toxicity and anti-inflammatory effects of Artemisia austriaca J. Jacq. Pharmacologyonline 2008, 1, 131–138. [Google Scholar]
- Altunkaya, A.; Yıldırım, B.; Ekici, K.; Terzioğlu, Ö. Determining essential oil composition, antibacterial and antioxidant activity of water wormwood extracts. GIDA 2014, 39, 17–24. [Google Scholar]
- Smirnova, G.; Samoilova, Z.; Muzyka, N.; Oktyabrsky, O. Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli. J. Appl. Microbiol. 2012, 113, 192–199. [Google Scholar] [CrossRef]
- Yiğit, D.; Yiğit, N.; Özgen, U. An investigation on the anticandidal activity of some traditional medicinal plants in Turkey. Mycoses 2009, 52, 135–140. [Google Scholar] [CrossRef]
- Kiplimo, J.J.; Chichira, D.; Kaiyonia, B.; Yugi, J.; Kebenei, S.J. Chemical composition and larvicidal activity of essential oil of Artemisia pontica. J. Afr. Res. Dev. 2016, 1, 1–7. [Google Scholar]
- Bos, R.; Stojanova, A.S.; Woerdenbag, H.J.; Koulman, A.; Quax, W.J. Volatile components of the aerial parts of Artemisia pontica L. grown in Bulgaria. Flav. Fragr. J. 2005, 20, 145–148. [Google Scholar] [CrossRef]
- Talzhanov, N.; Sadyrbekov, D.; Smagulova, F.; Mukanov, R.; Raldugin, V.; Shakirov, M.; Tkachev, A.; Atazhanova, G.; Tuleuov, B.; Adekenov, S. Components of Artemisia pontica. Chem. Nat. Compd. 2005, 41, 178–181. [Google Scholar] [CrossRef]
- Ivanescu, B.; Corciova, A.; Vlase, L.; Gheldiu, A.M.; Miron, A.; Ababei, D.C.; Bild, V. Analgesic and anti-inflammatory activity of Artemisia extracts on animal models of nociception. Balneo PRM Res. J. 2021, 12, 34–39. [Google Scholar] [CrossRef]
- Nikolova, M.; Gussev, C.; Nguyen, T. Evaluation of the Antioxidant action and flavonoid composition of Artemisia species extracts. Biotechnol. Biotechnol. Equip. 2010, 24, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical compositions and insectisidal activity of essential oils of three plants Artemisia sp: Artemisia herba-alba, Artemisia absinthium and Artemisia pontica (Morocco). Elec. J. Env. Agricult. Food Chem. 2009, 8, 1202–1211. [Google Scholar]
- Bisset, N.G.; Wichtl, M. Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis; Medpharm GmbH Scientific Publishers Stuttgart, CRC Press: Boca Raton, FL, USA, 1994; pp. 88–89. [Google Scholar]
- Moacă, E.-A.; Pavel, I.Z.; Danciu, C.; Crăiniceanu, Z.; Minda, D.; Ardelean, F.; Antal, D.S.; Ghiulai, R.; Cioca, A.; Derban, M. Romanian wormwood (Artemisia absinthium L.): Physicochemical and nutraceutical screening. Molecules 2019, 24, 3087. [Google Scholar] [CrossRef] [Green Version]
- Marinas, I.C.; Oprea, E.; Chifiriuc, M.C.; Badea, I.A.; Buleandra, M.; Lazar, V. Chemical composition and antipathogenic activity of Artemisia annua essential oil from Romania. Chem. Biodiv. 2015, 12, 1554–1564. [Google Scholar] [CrossRef] [PubMed]
- Badea, M.L.; Delian, E. In vitro antifungal activity of the essential oils from Artemisia spp. L. on Sclerotinia sclerotiorum. Rom. Biotechnol. Lett. 2014, 19, 9345–9352. [Google Scholar]
- Obistioiu, D.; Cristina, R.T.; Schmerold, I.; Chizzola, R.; Stolze, K.; Nichita, I.; Chiurciu, V. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem. Cent. J. 2014, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Craciunescu, O.; Constantin, D.; Gaspar, A.; Toma, L.; Utoiu, E.; Moldovan, L. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts. Chem. Cent. J. 2012, 6, 97. [Google Scholar] [CrossRef] [Green Version]
- Stan, R.L.; Sevastre, B.; Ionescu, C.; Olah, N.K.; Vicaș, L.G.; Páll, E.; Moisa, C.; Hanganu, D.; Sevastre-Berghian, A.C.; Andrei, S. Artemisia annua L. extract: A new phytoproduct with sod-like and antitumour activity. Farmacia 2020, 68, 812–821. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Ali, M.; Iqbal, R.; Safdar, M.; Murtaza, S.; Mustafa, M.; Sajjad, M.; Bukhari, S.A.; Huma, T. Antioxidant and antibacterial activities of Artemisia absinthium and Citrus paradisi extracts repress viability of aggressive liver cancer cell line. Mol. Biol. Rep. 2021, 48, 7703–7710. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Ma, J.; Xing, Y.; Xu, Y.; Jin, X.; Yan, S.; Shi, B. Artemisia annua L. aqueous extract as an alternative to antibiotics improving growth performance and antioxidant function in broilers. Ital. J. Anim. Sci. 2020, 19, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Larrazábal-Fuentes, M.J.; Fernández-Galleguillos, C.; Palma-Ramírez, J.; Romero-Parra, J.; Sepúlveda, K.; Galetovic, A.; González, J.; Paredes, A.; Bórquez, J.; Simirgiotis, M.J. Chemical profiling, antioxidant, anticholinesterase, and antiprotozoal potentials of Artemisia copa Phil. (Asteraceae). Front. Pharmacol. 2020, 11, 1911. [Google Scholar] [CrossRef]
- Jakovljević, M.R.; Grujičić, D.; Vukajlović, J.T.; Marković, A.; Milutinović, M.; Stanković, M.; Vuković, N.; Vukić, M.; Milošević-Djordjević, O. In vitro study of genotoxic and cytotoxic activities of methanol extracts of Artemisia vulgaris L. and Artemisia alba Turra. S. Afr. J. Bot. 2020, 132, 117–126. [Google Scholar] [CrossRef]
- Xiao, J.-Q.; Liu, W.-Y.; Sun, H.-p.; Li, W.; Koike, K.; Kikuchi, T.; Yamada, T.; Li, D.; Feng, F.; Zhang, J. Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi. Bioorg. Chem. 2019, 92, 103268. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Suberu, J.; Gromski, P.S.; Nordon, A.; Lapkin, A. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar. J. Pharm. Biomed. Anal. 2016, 117, 522–531. [Google Scholar] [CrossRef]
- Singh, P.; Bajpai, V.; Khandelwal, N.; Varshney, S.; Gaikwad, A.N.; Srivastava, M.; Singh, B.; Kumar, B. Determination of bioactive compounds of Artemisia Spp. plant extracts by LC–MS/MS technique and their in-vitro anti-adipogenic activity screening. J. Pharm. Biomed. Anal. 2021, 193, 113707. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.-W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.E.-H.H.; El-Sayed, M.; Hegazy, M.E.; Helaly, S.E.; Esmail, A.M.; Mohamed, N.S. Chemical constituents and biological activities of Artemisia herba-alba. Rec. Nat. Prod. 2010, 4, 1–25. [Google Scholar]
- Melguizo-Melguizo, D.; Diaz-de-Cerio, E.; Quirantes-Piné, R.; Švarc-Gajić, J.; Segura-Carretero, A. The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J. Funct. Foods 2014, 10, 192–200. [Google Scholar] [CrossRef]
- Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.-r.; Guo, D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Bourgou, S.; Rebey, I.B.; Mkadmini, K.; Isoda, H.; Ksouri, R.; Ksouri, W.M. LC-ESI-TOF-MS and GC-MS profiling of Artemisia herba-alba and evaluation of its bioactive properties. Food Res. Int. 2017, 99, 702–712. [Google Scholar] [CrossRef]
- Nagy, C.; Pesti, A.; Andrási, M.; Vasas, G.; Gáspár, A. Determination of artemisinin and its analogs in Artemisia annua extracts by capillary electrophoresis–mass spectrometry. J. Pharm. Biomed. Anal. 2021, 202, 114131. [Google Scholar] [CrossRef]
- Bajomo, E.M.; Aing, M.S.; Ford, L.S.; Niemeyer, E.D. Chemotyping of commercially available basil (Ocimum basilicum L.) varieties: Cultivar and morphotype influence phenolic acid composition and antioxidant properties. NFS J. 2022, 26, 1–9. [Google Scholar] [CrossRef]
- Zannou, O.; Pashazadeh, H.; Ibrahim, S.A.; Koca, I.; Galanakis, C.M. Green and highly extraction of phenolic compounds and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESs) using maceration, ultrasound-assisted extraction and homogenate-assisted extraction. Arab. J. Chem. 2022, 15, 103752. [Google Scholar] [CrossRef]
- Dargham, M.B.; Boumosleh, J.M.; Farhat, A.; Abdelkhalek, S.; Bou-Maroun, E.; El Hosry, L. Antioxidant and anti-diabetic activities in commercial and homemade pomegranate molasses in Lebanon. Food Biosci. 2022, 46, 101540. [Google Scholar] [CrossRef]
- Chen, M.; He, X.; Sun, H.; Sun, Y.; Li, L.; Zhu, J.; Xia, G.; Guo, X.; Zang, H. Phytochemical analysis, UPLC-ESI-Orbitrap-MS analysis, biological activity, and toxicity of extracts from Tripleurospermum limosum (Maxim.) Pobed. Arab. J. Chem. 2022, 15, 103797. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Bouasla, I.; Hamel, T.; Barour, C.; Bouasla, A.; Hachouf, M.; Bouguerra, O.M.; Messarah, M. Evaluation of solvent influence on phytochemical content and antioxidant activities of two Algerian endemic taxa: Stachys marrubiifolia Viv. and Lamium flexuosum Ten. (Lamiaceae). Eur. J. Integr. Med. 2021, 42, 101267. [Google Scholar] [CrossRef]
- Rocchetti, G.; Miras-Moreno, M.B.; Zengin, G.; Senkardes, I.; Sadeer, N.B.; Mahomoodally, M.F.; Lucini, L. UHPLC-QTOF-MS phytochemical profiling and in vitro biological properties of Rhamnus petiolaris (Rhamnaceae). Ind. Crops Prod. 2019, 142, 111856. [Google Scholar] [CrossRef]
- Minda, D.; Ghiulai, R.; Banciu, C.D.; Pavel, I.Z.; Danciu, C.; Racoviceanu, R.; Soica, C.; Budu, O.D.; Muntean, D.; Diaconeasa, Z. Phytochemical Profile, Antioxidant and Wound Healing Potential of Three Artemisia Species: In Vitro and In Ovo Evaluation. Appl. Sci. 2022, 12, 1359. [Google Scholar] [CrossRef]
- Kamarauskaite, J.; Baniene, R.; Raudone, L.; Vilkickyte, G.; Vainoriene, R.; Motiekaityte, V.; Trumbeckaite, S. Antioxidant and Mitochondria-Targeted Activity of Caffeoylquinic-Acid-Rich Fractions of Wormwood (Artemisia absinthium L.) and Silver Wormwood (Artemisia ludoviciana Nutt.). Antioxidants 2021, 10, 1405. [Google Scholar] [CrossRef]
- Ferrante, C.; Zengin, G.; Menghini, L.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Recinella, L.; Chiavaroli, A.; Leone, S.; Brunetti, L. Qualitative Fingerprint Analysis and Multidirectional Assessment of Different Crude Extracts and Essential Oil from Wild Artemisia santonicum L. Processes 2019, 7, 522. [Google Scholar] [CrossRef] [Green Version]
- Kooltheat, N.; Chujit, K.; Nuangnong, K.; Nokkaew, N.; Bunluepuech, K.; Yamasaki, K.; Chatatikun, M. Artemisia lactiflora Extracts Prevent Inflammatory Responses of Human Macrophages Stimulated with Charcoal Pyrolysis Smoke. J. Evid. Based Integr. Med. 2021, 26, 2515690X211068837. [Google Scholar] [CrossRef]
- Dahal, P.; Bista, G.; Dahal, P. Phytochemical screening, antioxidant, antibacterial, and antidandruff activities of leaf extract of Artemisia indica. J. Rep. Pharm. Sci. 2021, 10, 231. [Google Scholar] [CrossRef]
- Nowsheen, T.; Hazrat, A.; Shah, S.W.A.; Bibi, S.; Begum, A.; Mukhtiar, M.; Khan, A. Phytochemical, antibacterial and antioxidant screening of Artemisia santolinifolia various parts. J. Biosci. 2021, 37, e37061. [Google Scholar] [CrossRef]
- Romeilah, R.M.; El-Beltagi, H.S.; Shalaby, E.A.; Younes, K.M.; Hani, E.; Rajendrasozhan, S.; Mohamed, H. Antioxidant and cytotoxic activities of Artemisia monosperma L. and Tamarix aphylla L. essential oils. Not. Bot. Horti Agrobot. Cluj Napoca 2021, 49, 12233. [Google Scholar] [CrossRef]
- Taqui, R.; Debnath, M.; Ahmed, S.; Ghosh, A. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease. Phytomed. Plus 2022, 2, 100184. [Google Scholar] [CrossRef]
- Ayua, E.O.; Nkhata, S.G.; Namaumbo, S.J.; Kamau, E.H.; Ngoma, T.N.; Aduol, K.O. Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems. Heliyon 2021, 7, e06245. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Khan, S.T.; Zargaham, M.K.; Khan, A.U.; Khan, S.; Hussain, A.; Uddin, J.; Khan, A.; Al-Harrasi, A. Potential therapeutic natural products against Alzheimer’s disease with Reference of Acetylcholinesterase. Biomed. Pharmacother. 2021, 139, 111609. [Google Scholar] [CrossRef]
- Rauf, A.; Jehan, N. Natural products as a potential enzyme inhibitors from medicinal plants. In Enzyme Inhibitors and Activators; Senturk, M., Ed.; IntechOpen Limited: London, UK, 2017; pp. 165–177. [Google Scholar]
- El-Askary, H.; Salem, H.H.; Abdel Motaal, A. Potential Mechanisms Involved in the Protective Effect of Dicaffeoylquinic Acids from Artemisia annua L. Leaves against Diabetes and Its Complications. Molecules 2022, 27, 857. [Google Scholar] [CrossRef]
- Bhat, S.H.; Ullah, M.F.; Abu-Duhier, F.M. Bioactive extract of Artemisia judaica causes in vitro inhibition of dipeptidyl peptidase IV and pancreatic/intestinal enzymes of the carbohydrate absorption cascade: Implication for anti-diabetic new molecular entities (NMEs). Orient. Pharm. Exp. Med. 2019, 19, 71–80. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, I.; Adikhari, A.; Ali, N.; Ayub, T.; Ul-Haq, Z.; Ali Shah, S.W. Isolation of flavonoides from Artemisia macrocephala anticholinesterase activity: Isolation, characterization and its in vitro anticholinesterse activity supported by molecular docking. Pak. J. Pharm. Sci. 2018, 31, 1347–1354. [Google Scholar] [PubMed]
- Zengin, G.; Mollica, A.; Aktumsek, A.; Picot, C.M.N.; Mahomoodally, M.F. In vitro and in silico insights of Cupressus sempervirens, Artemisia absinthium and Lippia triphylla: Bridging traditional knowledge and scientific validation. Eur. J. Integr. Med. 2017, 12, 135–141. [Google Scholar] [CrossRef]
- Raza, M.A.; Danish, M.; Mushtaq, M.; Sumrra, S.H.; Saqib, Z.; Rehman, S.U. Phenolic profiling and therapeutic potential of local flora of Azad Kashmir; In vitro enzyme inhibition and antioxidant. Open Chem. 2017, 15, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Allué-Guardia, A.; García, J.I.; Torrelles, J.B. Evolution of drug-resistant Mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front. Microbiol. 2021, 12, 612675. [Google Scholar] [CrossRef]
- Choi, W.H. Novel pharmacological activity of artesunate and artemisinin: Their potential as anti-tubercular agents. J. Clin. Med. 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Colvin, C.J.; Johnson, B.K.; Kirchhoff, P.D.; Wilson, M.; Jorgensen-Muga, K.; Larsen, S.D.; Abramovitch, R.B. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat. Chem. Biol. 2017, 13, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.C.; Zhang, T.; Williams, J.T.; Abramovitch, R.B.; Weathers, P.J.; Shell, S.S. Artemisia annua and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium tuberculosis. J. Ethnopharmcol. 2020, 262, 113191. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Lima, M.; de Medeiros, A.A.; Silva, K.S.; Cardoso, G.; de Oliveira Lima, E.; de Oliveira Pereira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017, 27, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, S.; Baptista, R.; Fazakerley, D.; Whatley, K.E.; Hoffmann, K.F.; Shen, J.; Mur, L.A. The anti-mycobacterial activity of Artemisia annua L. is based on deoxyartemisinin and artemisinic acid. bioRxiv 2020. [Google Scholar] [CrossRef]
- Stavri, M.; Mathew, K.; Gordon, A.; Shnyder, S.D.; Falconer, R.A.; Gibbons, S. Guaianolide sesquiterpenes from Pulicaria crispa (Forssk.) oliv. Phytochemistry 2008, 69, 1915–1918. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Franzblau, S.G.; Fischer, N.H. Antimycobacterial plant terpenoids. Planta Med. 2001, 67, 685–694. [Google Scholar] [CrossRef] [Green Version]
Artemisia Species | Part | Extraction Solvent | Yield (%) | TPC (mg GAE/g) | TFC (mg RE/g) |
---|---|---|---|---|---|
A. absinthium L. | Roots | MeOH | 15.66 | 19.77 ± 0.20 f | 2.35 ± 0.04 e |
CHCl3 | 5.79 | 5.78 ± 0.10 g | 0.37 ± 0.02 g | ||
Aerial parts | MeOH | 18.75 | 53.38 ± 0.16 d | 28.74 ± 0.51 d | |
CHCl3 | 9.47 | 18.28 ± 0.15 i | 24.25 ± 1.28 e | ||
A. annua L. | Roots | MeOH | 2.19 | 76.35 ± 0.75 a | 10.41 ± 0.27 a |
CHCl3 | 0.68 | 26.10 ± 0.10 d | 1.41 ± 0.07 f | ||
Aerial parts | MeOH | 17.57 | 60.00 ± 0.24 c | 47.74 ± 0.79 a | |
CHCl3 | 10.69 | 25.27 ± 0.20 g | 35.36 ± 0.30 c | ||
A. austriaca Jacq. | Roots | MeOH | 11.73 | 41.68 ± 0.25 c | 4.65 ± 0.20 c |
CHCl3 | 1.57 | 26.59 ± 0.23 d | 2.37 ± 0.01 e | ||
Aerial parts | MeOH | 13.88 | 48.42 ± 0.49 e | 40.30 ± 0.94 b | |
CHCl3 | 8.12 | 24.50 ± 0.14 g | 32.89 ± 1.58 c | ||
A. pontica L. | Roots | MeOH | 6.55 | 65.65 ± 0.46 b | 6.99 ± 0.17 b |
CHCl3 | 1.16 | 23.59 ± 0.58 e | 2.46 ± 0.03 e | ||
Aerial parts | MeOH | 22.95 | 65.06 ± 0.59 b | 33.01 ± 0.43 c | |
CHCl3 | 9.46 | 22.65 ± 0.18 h | 26.85 ± 1.02 de | ||
A. vulgaris L. | Roots | MeOH | 12.45 | 27.36 ± 0.99 d | 3.29 ± 0.12 d |
CHCl3 | 1.03 | 22.21 ± 0.82 e | 1.13 ± 0.17 f | ||
Aerial parts | MeOH | 15.67 | 106.34 ± 0.61 a | 39.39 ± 0.86 b | |
CHCl3 | 5.86 | 37.62 ± 0.09 f | 11.02 ± 0.78 f |
No. | Proposed Identity | Class | TR (min) | HRMS | Exp. (m/z) | Calcd. (m/z) | Δ (ppm) | HRMS/MS (m/z) |
---|---|---|---|---|---|---|---|---|
1 | Quinic acid * | Organic acid | 1.83 | [M − H]− | 191.0557 | 191.0561 | 2.14 | 173.0381, 127.0340, 111.0384 |
2 | Sucrose | Sugar | 1.86 | [M − H]− | 341.1097 | 341.1089 | −2.24 | 179.0571, 119.0312 |
3 | Dihydroxybenzoic acid hexoside | Phenolic acid | 7.58 | [M − H]− | 315.0706 | 315.0722 | 4.92 | 153.0105, 109.0215 |
4 | Hydroxybenzoic acid * | Phenolic acid | 9.98 | [M − H]− | 137.0241 | 137.0244 | 2.30 | 109.0358 |
5 | Neochlorogenic acid | Phenolic acid | 10.27 | [M − H]− | 353.0893 | 353.0878 | −4.22 | 191.0484, 179.0252, 135.0370 |
6 | Esculetin-O-hexoside I | Coumarin | 10.91 | [M − H]− | 339.0715 | 339.0722 | 1.93 | 177.0233, 149.0157, 133.0217, 105.0327 |
7 | Esculetin | Coumarin | 14.41 | [M − H]− | 177.0207 | 177.0193 | −7.68 | 133.0227, 105.0266 |
8 | Cyrptochlorogenic acid | Phenolic acid | 15.71 | [M − H]− | 353.0880 | 353.0878 | −0.55 | 191.0488, 173.0429, 161.0239, 135.0412 |
9 | Chlorogenic acid * | Phenolic acid | 16.69 | [M − H]− | 353.0893 | 353.0878 | −4.22 | 191.0568, 173.0429, 135.0461 |
10 | Tuberonic acid-O-hexoside | Fatty acid | 17.48 | [M − H]− | 387.1681 | 387.1661 | −5.27 | 207.1010, 163.1121, 119.0376 |
11 | Esculetin-O-hexoside II | Coumarin | 18.19 | [M − H]− | 339.0728 | 339.0722 | −1.89 | 177.0203, 149.0144, 133.0215 |
12 | Mearnsetin-di-O-hexoside | Flavonoid | 18.57 | [M − H]− | 655.1575 | 655.1516 | −1.39 | 493.1190, 331.0475, 315.0138 |
13 | Chrysartemin A | Sesquiterpene | 18.99 | [M − H]− | 277.1072 | 277.1081 | 3.41 | 233.1193, 218.0969, 215.1098, 191.1061, 175.0763, 135.0835 |
14 | Caffeic acid-O-pentoside | Phenolic acid | 19.50 | [M − H]− | 311.0767 | 311.0772 | 1.73 | 179.0343, 149.0461, 135.0440 |
15 | Chrysartemin B | Sesquiterpene | 20.38 | [M − H]− | 277.1066 | 277.1081 | 5.56 | 233.1165, 215.0981, 191.1034, 175.0705, 160.0463, 135.0839 |
16 | Feruloylquinic acid | Phenolic acid | 20.52 | [M − H]− | 367.1049 | 367.1035 | −3.92 | 191.0563, 173.0460, 134.0349 |
17 | Artabsinolide A | Sesquiterpene | 20.60 | [M − H]− | 279.1237 | 279.1237 | 0.35 | 261.1027, 243.0906, 217.1121, 199.1051, 175.1082 |
18 | Dicaffeoylquinic acid I | Phenolic acid | 20.65 | [M − H]− | 515.1198 | 515.1195 | −0.58 | 353.0763, 191.0485, 179.0265, 135.0373 |
19 | Coumaroylquinic acid | Phenolic acid | 20.67 | [M − H]− | 337.0926 | 337.0929 | 0.86 | 191.0589, 173.0462, 145.0322, 109.0380 |
20 | Artecanin hydrate | Sesquiterpene | 21.15 | [M − H]− | 295.1187 | 296.1187 | −4.69 | 251.1300, 207.1409, 189.1280, 151.0831 |
21 | Apigenin-C-hexoside-C-pentoside I | Flavonoid | 21.33 | [M − H]− | 563.1404 | 563.1406 | 0.41 | 503.1277, 383.0784, 353.0680, 325.0671, 297.0714 |
22 | Quercetin-di-O-hexoside | Flavonoid | 21.51 | [M − H]− | 625.1418 | 625.1410 | −1.24 | 463.0810, 300.0246, 271.0240, 151.0020 |
23 | Coumaric acid-O-pentoside | Phenolic acid | 21.81 | [M − H]− | 295.0819 | 295.0823 | 1.44 | 163.0416, 149.0463, 119.0494 |
24 | Apigenin-C-hexoside-C-pentoside II | Flavonoid | 22.12 | [M − H]− | 563.1414 | 563.1406 | −1.37 | 443.1010, 383.0747, 353.0663, 325.0728, 297.0763 |
25 | Quercetin-O-deoxyhexoside-O-hexoside | Flavonoid | 23.15 | [M − H]− | 609.1476 | 609.1461 | −2.44 | 300.0167, 271.0154, 150.994 |
26 | Mearnsetin-O-hexoside | Flavonoid | 23.91 | [M − H]− | 493.0998 | 493.0988 | −2.10 | 331.0495, 315.0183, 287.0218, 271.0266 |
27 | Quercetin-O-hexoside | Flavonoid | 24.10 | [M − H]− | 463.0860 | 463.0882 | 4.74 | 300.0210, 255.0139, 150.9999 |
28 | Luteolin-O-deoxyhexoside-O-hexoside | Flavonoid | 24.79 | [M − H]− | 593.1540 | 593.1512 | −4.72 | 285.0443, 255.0292, 227.0355, 151.0042 |
29 | Eupatolitin-O-deoxyhexoside-O-hexoside | Flavonoid | 25.01 | [M − H]− | 653.1729 | 653.1723 | −0.88 | 345.0825, 330.0441, 301.0478, 287.0236 |
30 | Dicaffeoylquinic acid II | Phenolic acid | 25.92 | [M − H]− | 515.1198 | 515.1195 | −0.58 | 353.0763, 191.0485, 179.0265, 135.0373 |
31 | Tracheloside | Lignan | 26.38 | [M − H]− | 549.1985 | 549.1978 | −1.36 | 505.1054, 387.1727, 301.0335, 207.1026, 161.0258 |
32 | Dicaffeoylquinic acid III | Phenolic acid | 26.78 | [M − H]− | 515.1188 | 515.1195 | 1.36 | 353.0773, 191.0481, 179.0258, 173.0390 |
33 | Coumaroylcaffeoylquinic acid | Phenolic acid | 27.81 | [M − H]− | 499.1307 | 499.1246 | −1.63 | 353.0922, 337.0981, 191.0566, 163.0440 |
34 | Eupatolitin-di-O-hexoside | Flavonoid | 27.98 | [M − H]− | 669.1645 | 669.1672 | 4.09 | 345.0667, 330.0402, 301.0186, 179.0381, 161.0253 |
35 | Feruloylcaffeoylquinic acid I | Phenolic acid | 28.31 | [M − H]− | 529.1397 | 529.1351 | 0.85 | 367.1386, 353.1172, 191.0748, 179.0486, 161.0397 |
36 | Rhamnetin-di-O-hexoside | Flavonoid | 28.95 | [M − H]− | 639.1527 | 639.1567 | 6.21 | 413.1265, 315.0608, 300.0298, 284.0403, 271.0291, 255.0388 |
37 | Rhamnetin-O-hexoside | Flavonoid | 29.02 | [M − H]− | 477.1016 | 477.1038 | 4.71 | 433.1382, 315.0767, 161.0276, 153.0227, 109.0304 |
38 | Feruloylcaffeoylquinic acid II | Phenolic acid | 29.12 | [M − H]− | 529.1353 | 529.1351 | −0.28 | 367.1035, 353.0930, 191.0589, 179.0320, 173.0484 |
39 | Eriodictyol | Flavonoid | 29.39 | [M − H]− | 287.0567 | 287.0561 | −2.04 | 151.0046, 135.0479 |
40 | Artemisinin * | Sesquiterpene | 30.44 | [M − H]− | 281.1385 | 281.1394 | 3.36 | 263.1319, 237.1529, 193.1612 |
41 | Luteolin * | Flavonoid | 31.04 | [M − H]− | 285.0400 | 285.0405 | 1.61 | 175.0386, 133.0313 |
42 | Tetrahydroxydimethoxyflavone (e.g., eupatolitin) | Flavonoid | 31.49 | [M − H]− | 345.0602 | 345.0616 | 4.02 | 330.0402, 315.0188, 287.0296, 259.0301, 259.0301, 215.0351, 175.0091, 149.0308, 121.0326 |
43 | Tetrahydroxymethoxyflavone (e.g., rhamnetin) | Flavonoid | 31.55 | [M − H]− | 315.0509 | 315.0510 | 0.40 | 300.0327, 271.0269, 255.0312, 243.0322, 227.0356, 215.0350, 171.0409, 147.0202 |
44 | Trihydroxyoctadecadienoic acid | Fatty acid | 31.79 | [M − H]− | 327.2181 | 327.2177 | −1.43 | 229.1442, 211.1319 |
45 | Deoxyartemisinin I | Sesquiterpene | 32.09 | [M − H]− | 265.1435 | 265.1445 | 3.88 | 247.1335, 221.1582, 203.1459, 185.1346, 151.1148 |
46 | Santonin | Sesquiterpene | 32.42 | [M − H]− | 245.1174 | 245.1183 | 3.73 | 201.1282, 186.1064, 161.0962, 147.0805, 135.0841 |
47 | Deoxyartemisinin II | Sesquiterpene | 32.70 | [M − H]− | 265.1447 | 265.1445 | −1.00 | 247.1357, 221.1557, 203.1451, 151.1154 |
48 | Trihydroxymethoxyflavanone (e.g., homoeriodictyol) | Flavonoid | 32.98 | [M − H]− | 301.0724 | 301.0718 | −2.11 | 151.0049, 134.0413 |
49 | Trihydroxyoctadecenoic acid I | Fatty acid | 33.62 | [M − H]− | 329.2331 | 329.2333 | 0.75 | 229.1470, 211.1353, 199.1170 |
50 | Dihydroxydimethoxyflavone I (e.g., rhamnazin) | Flavonoid | 33.69 | [M − H]− | 329.0678 | 329.0667 | −3.40 | 314.0456, 299.0241, 271.0279, 271.0272, 243.0312, 227.0430, 215.0360, 199.0421, 185.0236, 161.0264, 151.0068, 133.0347 |
51 | Trihydroxyoctadecenoic acid II | Fatty acid | 34.05 | [M − H]− | 329.2338 | 329.2333 | −1.37 | 229.1433, 199.1155 |
52 | Dihydroxytrimethoxyflavone | Flavonoid | 34.72 | [M − H]− | 359.0772 | 359.0772 | 0.11 | 344.0575, 329.03351, 314.0086, 297.0051, 286.0162, 270.0287, 258.0184, 230.0225, 214.0302, 202.0280 |
53 | Trihydroxymethoxyflavone (e.g., diosmetin) | Flavonoid | 36.93 | [M − H]− | 299.0566 | 299.0561 | −1.63 | 284.0259, 255.0179, 239.0292, 227.0330, 151.0077, 133.0252 |
54 | Pseudosantonin | Sesquiterpene | 36.96 | [M − H]− | 263.1279 | 263.1289 | 3.72 | 245.1127, 219.1366, 201.1230, 159.1152 |
55 | Absinthin | Triterpene | 37.16 | [M + HCO2]− | 541.2801 | 541.2807 | 1.19 | 351.6359, 275.5226 |
56 | Hydroxydimethoxyflavone (e.g., cirsimaritin) | Flavonoid | 37.25 | [M − H]− | 313.0711 | 313.0718 | 2.11 | 298.0722, 283.0375, 269.0628 |
57 | Hydroxytrimethoxyflavone I (e.g., penduletin) | Flavonoid | 37.67 | [M − H]− | 343.0813 | 343.0823 | 2.98 | 328.0382, 313.0382, 298.0133, 285.0421, 270.0199, 255.0318, 242.0284 |
58 | Artemisinin C | Sesquiterpene | 37.72 | [M − H]− | 247.1329 | 247.1340 | 4.30 | 231.1403, 203.1469, 187.1442, 161.1372, 133.1030 |
59 | Dihydroxydimethoxyflavone II (e.g., eupalitin) | Flavonoid | 37.99 | [M − H]− | 329.0678 | 329.0667 | −3.40 | 314.0456, 299.0241, 271.0279, 271.0272, 243.0312, 227.0430, 215.0360, 199.0421, 185.0236, 161.0264, 151.0068, 133.0347 |
60 | Arteannuin B | Sesquiterpene | 38.36 | [M − H]− | 247.1341 | 247.1340 | −0.53 | 203.1449, 133.1019 |
61 | Dihydroxytetramethoxyflavone (e.g., casticin) | Flavonoid | 38.81 | [M − H]− | 373.0939 | 373.0929 | −2.70 | 358.0729, 343.0494, 300.0407, 285.0054, 269.0079, 257.0103, 241.0132, 229.0140, 213.0161, 201.0202, 185.0220 |
62 | Cnicin | Sesquiterpene | 39.38 | [M − H]− | 377.1617 | 377.1606 | −2.97 | 295.1213, 251.1322, 189.1257, 151.07060 |
63 | Artenolide | Triterpene | 40.18 | [M + HCO2]− | 573.2714 | 573.2705 | −1.66 | 527.2685, 325.1304, 263.1287, 185.1288 |
64 | Dihydroarteannuin B | Sesquiterpene | 40.28 | [M − H]− | 249.1496 | 249.1496 | 0.70 | 231.1415, 207.1742, 187.1523 |
65 | Dihydroxymethoxyflavone (e.g., genkwanin) | Flavonoid | 40.84 | [M − H]− | 283.0601 | 283.0612 | 3.86 | 268.0423, 240.0392, 211.0419 |
66 | Dihydrosantamarin | Sesquiterpene | 41.37 | [M − H]− | 249.1508 | 249.1496 | −4.72 | 231.1471, 205.1599, 187.1494 |
67 | Absinthin derivative I | Triterpene | 41.96 | [M + HCO2]− | 555.2582 | 555.2600 | 3.44 | 509.2392, 491.2392, 447.2558, 265.1365, 243.1047, 229.1237, 199.1137 |
68 | Hydroxytrimethoxyflavone II (e.g., eupatilin) | Flavonoid | 37.67 | [M − H]− | 343.0813 | 343.0823 | 2.98 | 328.0382, 313.0382, 298.0133, 285.0421, 270.0199, 255.0318, 242.0284 |
69 | Hydroperoxyoctadecadienoic acid | Fatty acid | 44.54 | [M − H]− | 311.2212 | 311.2228 | 5.07 | 293.2171, 211.1341, 171.0999 |
70 | Isoabsinthin | Triterpene | 44.67 | [M + HCO2]− | 541.2801 | 541.2807 | 1.19 | 495.2583, 351.6359, 275.5226 |
71 | Absinthin derivative II | Triterpene | 46.17 | [M + HCO2]− | 539.2672 | 539.2650 | −4.37 | 247.1212, 204.1637, 185.1479 |
72 | Hydroxyoctadecatrienoic acid | Fatty acid | 47.14 | [M − H]− | 293.2118 | 293.2122 | 1.42 | 275.1973, 224.1359, 195.1381 |
73 | Hydroxyoctadecadienoic acid | Fatty acid | 48.69 | [M − H]− | 295.2269 | 295.2279 | 3.27 | 277.2162, 195.1407, 171.1029 |
Artemisia Species | Part | Extraction Solvent | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | MCA (mg EDTAE/g) | PBD (mmol TE/g) |
---|---|---|---|---|---|---|---|---|
A. absinthium L. | Roots | MeOH | 43.59 ± 1.08 c | 47.67 ± 0.34 f | 82.69 ± 1.76 e | 52.80 ± 2.52 e | 7.25 ± 0.23 e | 1.20 ± 0.11 e |
CHCl3 | 5.11 ± 0.22 f | 7.54 ± 0.21 g | 24.24 ± 0.26 g | 12.40 ± 0.09 h | 8.33 ± 0.14 d | 0.84 ± 0.08 f | ||
Aerial parts | MeOH | 67.57 ± 3.55 cd | 95.95 ± 3.61 c | 188.11 ± 5.68 | 85.36 ± 1.20 c | 14.68 ± 0.91 cd | 2.10 ± 0.20 bc | |
CHCl3 | 10.52 ± 0.80 f | 27.35 ± 0.15 gh | 47.05 ± 0.94 | 26.45 ± 0.21 f | 11.25 ± 0.99 de | 2.46 ± 0.14 a | ||
A. annua L. | Roots | MeOH | 237.03 ± 5.93 a | 240.78 ± 1.27 a | 438.43 ± 10.59 a | 294.52 ± 8.32 a | 14.38 ± 0.60 c | 2.24 ± 0.08 a |
CHCl3 | 29.98 ± 0.55 d | 60.61 ± 0.62 d | 87.39 ± 4.62 e | 54.97 ± 0.08 e | n.a. | 2.37 ± 0.06 a | ||
Aerial parts | MeOH | 102.66 ± 2.15 b | 134.36 ± 2.28 b | 156.62 ± 4.15 | 58.67 ± 1.45 d | 17.46 ± 3.03 bc | 1.55 ± 0.02 f | |
CHCl3 | 13.04 ± 0.70 f | 32.49 ± 0.34 fg | 58.26 ± 1.33 | 24.79 ± 1.22 f | 20.91 ± 1.10 ab | 1.85 ± 0.06 de | ||
A. austriaca Jacq. | Roots | MeOH | 48.99 ± 0.07 c | 77.19 ± 0.06 c | 168.90 ± 2.70 c | 105.77 ± 3.02 c | 15.84 ± 0.19 b | 1.59 ± 0.05 c |
CHCl3 | 19.68 ± 0.22 e | 52.04 ± 2.09 e | 82.69 ± 1.76 e | 40.68 ± 1.77 f | 3.76 ± 0.46 g | 1.70 ± 0.05 c | ||
Aerial parts | MeOH | 64.85 ± 0.09 d | 75.19 ± 0.42 d | 143.59 ± 2.21 | 59.60 ± 0.61 d | 22.16 ± 0.88 a | 1.66 ± 0.17 ef | |
CHCl3 | 11.05 ± 0.07 f | 37.64 ± 0.55 f | 52.72 ± 0.55 | 25.57 ± 2.21 f | 12.76 ± 1.19 de | 1.56 ± 0.07 f | ||
A. pontica L. | Roots | MeOH | 179.63 ± 2.60 b | 176.12 ± 2.64 b | 263.94 ± 1.87 b | 165.55 ± 3.83 b | 22.93 ± 0.32 a | 1.97 ± 0.00 b |
CHCl3 | 31.34 ± 0.41 d | 51.69 ± 1.19 e | 80.33 ± 1.19 e | 45.77 ± 0.74 ef | 6.48 ± 0.28 ef | 1.53 ± 0.09 cd | ||
Aerial parts | MeOH | 71.65 ± 3.52 c | 98.45 ± 3.20 c | 290.14 ± 8.95 | 113.33 ± 1.15 b | 9.89 ± 0.99 e | 1.55 ± 0.07 f | |
CHCl3 | 10.55 ± 1.18 f | 25.86 ± 0.50 h | 49.99 ± 1.00 | 22.18 ± 1.39 f | 17.84 ± 0.44 bc | 1.52 ± 0.10 f | ||
A. vulgaris L. | Roots | MeOH | 48.83 ± 0.04 c | 49.36 ± 0.40 ef | 113.97 ± 2.77 d | 66.51 ± 2.80 d | 5.78 ± 0.13 f | 1.23 ± 0.02 e |
CHCl3 | 26.16 ± 0.50 d | 63.81 ± 1.19 d | 46.26 ± 4.81 f | 24.87 ± 2.41 g | n.a. | 1.35 ± 0.09 de | ||
Aerial parts | MeOH | 139.56 ± 3.19 a | 173.86 ± 3.66 a | 498.32 ± 4.02 | 198.51 ± 5.00 a | 12.35 ± 1.15 de | 2.33 ± 0.11 ab | |
CHCl3 | 33.74 ± 0.49 e | 56.54 ± 0.50 e | 111.48 ± 2.01 | 47.73 ± 1.66 e | 20.94 ± 1.65 ab | 1.89 ± 0.04 cd |
Artemisia Species | Part | Extraction Solvent | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|---|---|
A. absinthium L. | Roots | MeOH | 3.02 ± 0.05 a | 1.19 ± 0.11 d | 41.20 ± 0.73 ab | 0.30 ± 0.01 e | 0.88 ± 0.01 a |
CHCl3 | 2.18 ± 0.14 b | 2.91 ± 0.21 c | 19.44 ± 0.67 c | 0.32 ± 0.01 e | 0.87 ± 0.01 ab | ||
Aerial parts | MeOH | 2.33 ± 0.02 ab | 2.32 ± 0.16 bc | 37.09 ± 1.31 bcde | 0.40 ± 0.01 e | 11.18 ± 0.20 a | |
CHCl3 | 2.50 ± 0.00 a | 2.67 ± 0.43 ab | 35.78 ± 1.53 cde | 0.44 ± 0.00 cd | 10.85 ± 0.13 ab | ||
A. annua L. | Roots | MeOH | 2.00 ± 0.06 bc | n.a. | 49.42 ± 4.51 a | 0.31 ± 0.01 e | 0.81 ± 0.01 abc |
CHCl3 | 2.20 ± 0.02 b | 4.52 ± 0.18 a | 45.74 ± 0.56 ab | 0.50 ± 0.02 b | 0.87 ± 0.02 ab | ||
Aerial parts | MeOH | 1.97 ± 0.14 c | 2.14 ± 0.08 bc | 35.71 ± 2.04 cde | 0.41 ± 0.02 e | 5.93 ± 0.93 d | |
CHCl3 | 2.36 ± 0.08 ab | 3.11 ± 0.10 a | 36.39 ± 2.36 cde | 0.54 ± 0.01 a | 8.84 ± 1.08 bc | ||
A. austriaca Jacq. | Roots | MeOH | 1.86 ± 0.07 cd | n.a. | 47.27 ± 5.68 ab | 0.31 ± 0.00 e | 0.16 ± 0.03 f |
CHCl3 | 2.16 ± 0.05 b | 3.45 ± 0.39 b | 13.16 ± 2.73 c | 0.57 ± 0.03 a | 0.79 ± 0.01 bc | ||
Aerial parts | MeOH | 2.00 ± 0.08 c | 1.94 ± 0.55 bc | 39.37 ± 0.77 abc | 0.42 ± 0.00 de | 6.07 ± 0.40 d | |
CHCl3 | 2.16 ± 0.02 bc | 2.55 ± 0.22 abc | 39.37 ± 0.94 abcd | 0.54 ± 0.01 a | 9.84 ± 0.71 abc | ||
A. pontica L. | Roots | MeOH | 2.05 ± 0.12 cd | n.a. | 44.91 ± 5.05 ab | 0.30 ± 0.00 e | 0.65 ± 0.05 d |
CHCl3 | 1.82 ± 0.05 bc | 0.93 ± 0.06 d | 38.30 ± 1.69 b | 0.38 ± 0.01 d | 0.77 ± 0.01 c | ||
Aerial parts | MeOH | 1.92 ± 0.05 c | 1.82 ± 0.05 c | 44.64 ± 0.40 a | 0.46 ± 0.02 c | 6.21 ± 0.79 d | |
CHCl3 | 2.15 ± 0.13 bc | 2.34 ± 0.02 bc | 42.82 ± 2.30 ab | 0.50 ± 0.01 b | 8.54 ± 0.58 c | ||
A. vulgaris L. | Roots | MeOH | 1.72 ± 0.08 bc | 0.46 ± 0.08 e | 41.08 ± 0.68 ab | 0.31 ± 0.01 e | 0.30 ± 0.07 e |
CHCl3 | 1.98 ± 0.16 bc | 0.12 ± 0.01 ef | 13.79 ± 2.78 c | 0.44 ± 0.02 c | 0.87 ± 0.01 abc | ||
Aerial parts | MeOH | 2.04 ± 1.14 c | 1.86 ± 0.31 c | 31.38 ± 2.74 e | 0.40 ± 0.01 e | 11.32 ± 0.38 a | |
CHCl3 | 2.10 ± 0.12 bc | 2.14 ± 0.12 bc | 33.23 ± 4.15 de | 0.51 ± 0.01 ab | 10.01 ± 1.30 abc |
Artemisia Species | Part | Extraction Solvent | MIC (mg/L) |
---|---|---|---|
A. absinthium L. | Roots | MeOH | >256 |
CHCl3 | 256 | ||
Aerial parts | MeOH | 256 | |
CHCl3 | 128 | ||
A. annua L. | Roots | MeOH | 256 |
CHCl3 | 128 | ||
Aerial parts | MeOH | 256 | |
CHCl3 | 128 | ||
A. austriaca Jacq. | Roots | MeOH | >256 |
CHCl3 | 256 | ||
Aerial parts | MeOH | 128 | |
CHCl3 | 64 | ||
A. pontica L. | Roots | MeOH | 256 |
CHCl3 | 128 | ||
Aerial parts | MeOH | 256 | |
CHCl3 | 256 | ||
A. vulgaris L. | Roots | MeOH | >256 |
CHCl3 | 128 | ||
Aerial parts | MeOH | 256 | |
CHCl3 | 128 | ||
Etambutol | – | – | 2 |
Streptomycin | – | – | 0.5 |
Rifampicin | – | – | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Woźniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. https://doi.org/10.3390/antiox11051017
Trifan A, Zengin G, Sinan KI, Sieniawska E, Sawicki R, Maciejewska-Turska M, Skalikca-Woźniak K, Luca SV. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants. 2022; 11(5):1017. https://doi.org/10.3390/antiox11051017
Chicago/Turabian StyleTrifan, Adriana, Gokhan Zengin, Kouadio Ibrahime Sinan, Elwira Sieniawska, Rafal Sawicki, Magdalena Maciejewska-Turska, Krystyna Skalikca-Woźniak, and Simon Vlad Luca. 2022. "Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species" Antioxidants 11, no. 5: 1017. https://doi.org/10.3390/antiox11051017
APA StyleTrifan, A., Zengin, G., Sinan, K. I., Sieniawska, E., Sawicki, R., Maciejewska-Turska, M., Skalikca-Woźniak, K., & Luca, S. V. (2022). Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants, 11(5), 1017. https://doi.org/10.3390/antiox11051017