Effect of Alga Gelidium sp. Flour Extract on Lipid Damage Evolution in Heated Fish Muscle System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Fish, Starting Alga Flour, and Preparation of Flour Extract
2.2. Flour Extract/Mackerel Muscle Model System
2.3. Lipid Damage Detection
2.4. Interaction Compound Detection
2.5. Statistical Analysis
3. Results
3.1. Evolution of Primary and Secondary Lipid Oxidation
3.2. Fluorescent Compound Formation
3.3. Evolution of Lipid Hydrolysis
4. Discussion
4.1. Lipid Oxidation Development in the Present Study
4.2. Antioxidant Activity of Red Alga Extracts
4.3. Lipid Hydrolysis Development during the Present Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horner, W. Canning fish and fish products. In Fish Processing Technology, 2nd ed.; Hall, G., Ed.; Blackie Academic and Professional, Chapman and Hall: London, UK, 1997; pp. 119–159. [Google Scholar]
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Lukoshkina, M.; Odoeva, G. Kinetics of chemical reactions for prediction of quality of canned fish during storage. Appl. Biochem. Microbiol. 2003, 39, 321–327. [Google Scholar] [CrossRef]
- Aubourg, S.P. Practices and processing from catching or harvesting till packaging: Effect on canned product quality. In Quality Parameters in Canned Seafoods; Cabado, A.G., Vieites, J.M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2008; pp. 1–24. [Google Scholar]
- Tokur, B.; Korkmaz, K. Novel thermal sterilization technologies in seafood processing. In Innovative Technologies in Seafood Processing; Özoğul, Y., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2020; pp. 303–322. [Google Scholar]
- Aubourg, S.P. Effect of natural preservatives on chemical changes related to quality and shelf life in processed aquatic foods. In Innovative Technologies in Seafood Processing; Özoğul, Y., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2020; pp. 219–241. [Google Scholar]
- Swanson, S.; Block, R.; Mousa, S. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ofosu, F.K.; Daliri, E.B.M.; Lee, B.H.; Yu, X. Current trends and future perspectives on omega-3 fatty acids. Res. J. Biol. 2017, 5, 11–20. [Google Scholar]
- Richards, M.; Hultin, H. Contribution of blood and blood components to lipid oxidation in fish muscle. J. Agric. Food Chem. 2002, 53, 83–88. [Google Scholar] [CrossRef]
- Kolakowska, A. Lipid oxidation in food systems. In Chemical and Functional Properties of Food Lipids; Sikorski, Z., Kolakowska, A., Eds.; CRC Press: London, UK, 2003; pp. 133–165. [Google Scholar]
- Frankel, E.N. Antioxidants. In Lipid Oxidation; The Oily Press: Dundee, UK, 1998. [Google Scholar]
- Gokoglu, N. Novel natural food preservatives and applications in seafood preservation: A review. J. Sci. Food Agric. 2019, 99, 2068–2077. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef]
- Wang, F.; Kong, L.M.; Xie, Y.Y.; Wang, C.; Wang, X.L.; Wang, Y.B.; Fu, L.L.; Zhou, T. Purification, structural characterization, and biological activities of degraded polysaccharides from Porphyra yezoensis. J. Food Biochem. 2021, 45, e13661. [Google Scholar] [CrossRef]
- Agarwal, P.; Kayala, P.; Chandrasekaran, N.; Mukherjee, A.; Shah, S.; Thomas, J. Antioxidant and antibacterial activity of Gelidium pusillum (Stackhouse) against Aeromonas caviae and its applications in aquaculture. Aquac. Int. 2021, 29, 845–858. [Google Scholar] [CrossRef]
- Arulkumar, A.; Paramasivam, S.; Miranda, J.M. Combined effect of icing medium and red alga Gracilaria verrucosa on shelf life extension of Indian mackerel (Rastrelliger kanagurta). Food Bioprocess Technol. 2018, 11, 1911–1922. [Google Scholar] [CrossRef]
- Seedevi, P.; Moovendhan, M.; Viramani, S.; Shanmugam, A. Bioactive potential and structural characterization of sulfated polysaccharide from seaweed (Gracilaria corticata). Carbohydr. Polym. 2017, 155, 516–524. [Google Scholar] [CrossRef]
- Pei, R.; Zhai, H.; Qi, B.; Hao, S.; Huang, H.; Yang, X. Isolation, purification and monosaccharide composition analysis of polysaccharide from Gelidium amansii. Food Ferment. Ind. 2020, 7, 57–62. [Google Scholar]
- Mostafavi, F.S.; Zaeim, D. Agar-based edible films for food packaging applications—A review. Int. J. Biol. Macromol. 2020, 159, 1165–1176. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, Q.; Wang, Y.; Yang, Q.; Yu, H.; Li, H.; Chen, J.; Fu, L. Sulfated polysaccharides from red seaweed Gelidium amansii: Structural characteristics, antioxidant and antiglycation properties, and development of bioactive films. Food Hydrocoll. 2021, 119, 106820. [Google Scholar] [CrossRef]
- Ortiz, J.A.; Vivanco, J.P.; Aubourg, S.P. Lipid and sensory quality of canned Atlantic salmon (Salmo salar): Effect of the use of different seaweed extracts as covering liquids. Eur. J. Lipid Sci. Technol. 2014, 116, 596–605. [Google Scholar] [CrossRef]
- Ortiz-Viedma, J.; Aguilera, J.M.; Flores, M.; Lemus-Mondaca, R.; Larrazabal, M.J.; Miranda, J.M.; Aubourg, S.P. Protective effect of red algae (Rhodophyta) extracts on essential dietary components of heat-treated salmon. Antioxidants 2021, 10, 1108. [Google Scholar] [CrossRef] [PubMed]
- European Council Regulation. European Community (EC), No 258/97, 27 January 1997. Concerning Novel Foods and Novel Food Ingredients. CELEX-EUR Off. J. 1997, L–43, 1–7. [Google Scholar]
- Barbosa, R.G.; Trigo, M.; Campos, C.A.; Aubourg, S.P. Preservative effect of algae extracts on lipid composition and rancidity development in brine-canned Atlantic Chub mackerel (Scomber colias). Eur. J. Lipid Sci. Technol. 2019, 121, 1900129. [Google Scholar] [CrossRef]
- Bligh, E.; Dyer, W. A rapid method of total extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Herbes, S.E.; Allen, C.P. Lipid quantification of freshwater invertebrates: Method modification for microquantitation. Can. J. Fish. Aquat. Sci. 1983, 40, 1315–1317. [Google Scholar] [CrossRef]
- Kim, R.; Labella, F. Comparison of analytical methods for monitoring autoxidation profiles of authentic lipids. J. Lipid Res. 1987, 28, 1110–1117. [Google Scholar] [CrossRef]
- Chapman, R.; McKay, J. The estimation of peroxides in fats and oils by the ferric thiocyanate method. J. Am. Oil Chem. Soc. 1949, 26, 360–363. [Google Scholar] [CrossRef]
- Vyncke, W. Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Lowry, R.; Tinsley, I. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, S.P. Review: Recent advances in assessment of marine lipid oxidation by using fluorescence. J. Am. Oil Chem. Soc. 1999, 76, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Howell, N.K. Interaction of proteins with small molecules. In Ingredient Interactions—Effects on Food Quality; Gaonkar, A., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 269–289. [Google Scholar]
- Tironi, V.; Tomás, M.; Añón, M.C. Structural and functional changes in myofibrillar proteins of sea salmon (Pseudopercis semifasciata) by interaction with malondialdehyde (RI). J. Food Sci. 2002, 67, 930–935. [Google Scholar] [CrossRef]
- Barbosa, R.G.; Trigo, M.; Fett, R.; Aubourg, S.P. Impact of a packing medium with alga Bifurcaria bifurcata extract on canned Atlantic mackerel (Scomber scombrus) quality. J. Sci. Food Agric. 2018, 98, 3462–3467. [Google Scholar] [CrossRef] [Green Version]
- Kikugawa, K. Fluorescent products derived from the reaction of primary amines and compounds in peroxidised lipids. Adv. Free Radic. Biol. Med. 1986, 2, 389–417. [Google Scholar] [CrossRef]
- Iio, T.; Yoden, K. Fluorescence formation from hydroperoxide of phosphatidylcholine with amino compound. Lipids 1988, 23, 65–67. [Google Scholar] [CrossRef]
- Castrillón, A.M.; Navarro, M.P.; García-Arias, M.T. Tuna protein nutritional quality changes after canning. J. Food Sci. 1996, 61, 1250–1253. [Google Scholar] [CrossRef]
- Jassbi, A.R.; Mohabati, M.; Eslami, S.; Sohrabipour, J.; Miri, R. Biological activity and chemical constituents of red and brown algae from the Persian Gulf. Iran. J. Pharm. Res. 2013, 12, 339–348. [Google Scholar] [PubMed]
- Widowati, I.; Lubac, D.; Puspita, M.; Bourgougnon, N. Antibacterial and antioxidant properties of the red alga Gracilaria verrucosa from the North coast of Java, Semarang, Indonesia. Int. J. Latest Res. Sci. Technol. 2014, 3, 179–185. [Google Scholar]
- Reboleira, J.; Ganhão, R.; Mendes, S.; Adão, P.; Andrade, M.; Vilarinho, F.; Sanches-Silva, A.; Sousa, D.; Mateus, A.; Bernardino, S. Optimization of extraction conditions for Gracilaria gracilis extracts and their antioxidative stability as part of microfiber food coating additives. Molecules 2020, 25, 4060. [Google Scholar] [CrossRef]
- Arulkumar, K.; Raja, R.; Sameer Kumar, V.B.; Joseph, A.; Shilpa, T.; Carvalho, I.S. Antioxidant and cytotoxic activities of sulfated polysaccharides from five diferent edible seaweeds. J. Food Meas. Charact. 2021, 15, 567–576. [Google Scholar] [CrossRef]
- Zeid, A.H.A.; Aboutabl, E.A.; Sleem, A.A.; El-Rafie, H.M. Water soluble polysaccharides extracted from Pterocladia capillacea and Dictyopteris membranacea and their biological activities. Carbohydr. Polym. 2014, 113, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Olasehinde, T.A.; Olaniran, A.O.; Okoh, A.I. Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. J. Food Biochem. 2021, 45, e13395. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, K.; Tagagi, T. Study on the oxidative rate and prooxidant activity of free fatty acids. J. Am. Oil Chem. Soc. 1986, 63, 1380–1384. [Google Scholar] [CrossRef]
Quality Index | RAE Concentration | Heating Time (Days) | ||||
---|---|---|---|---|---|---|
0 | 1 | 4 | 7 | 11 | ||
Conjugated dienes ** | CTR | 1.08 a (0.01) | 1.20 bA (0.04) | 1.29 cA (0.04) | 1.39 cA (0.06) | 1.49 dA (0.01) |
RAE-1 | 1.08 a (0.01) | 1.28 bA (0.05) | 1.31 bA (0.03) | 1.49 cAB (0.08) | 1.67 cA (0.26) | |
RAE-2 | 1.08 a (0.01) | 1.22 bA (0.02) | 1.36 cA (0.06) | 1.57 dB (0.06) | 2.10 eB (0.06) | |
RAE-3 | 1.08 a (0.01) | 1.17 bA (0.03) | 1.38 cA (0.10) | 1.92 dC (0.25) | 2.25 eB (0.15) | |
Conjugated trienes ** | CTR | 0.05 a (0.00) | 0.07 abA (0.01) | 0.10 bA (0.00) | 0.10 bcA (0.01) | 0.13 cA (0.01) |
RAE-1 | 0.05 a (0.00) | 0.07 bA (0.00) | 0.13 bcA (0.07) | 0.20 cAB (0.09) | 0.22 cA (0.11) | |
RAE-2 | 0.05 a (0.00) | 0.08 bAB (0.01) | 0.22 cA (0.01) | 0.30 dBC (0.04) | 0.45 eB (0.02) | |
RAE-3 | 0.05 a (0.00) | 0.10 bB (0.01) | 0.23 cA (0.02) | 0.37 dC (0.09) | 0.47 dB (0.09) |
Quality Index | RAE Concentration | Heating Time (Days) | ||||
---|---|---|---|---|---|---|
0 | 1 | 4 | 7 | 11 | ||
PV (meq. active oxygen·kg−1 lipids) | CTR | 0.39 a (0.18) | 1.51 cA (0.11) | 0.95 bA (0.18) | 1.81 cA (0.60) | 1.38 cA (0.10) |
RAE-1 | 0.39 a (0.18) | 1.19 bA (0.30) | 0.72 abA (0.14) | 1.54 bA (0.37) | 1.07 abA (0.53) | |
RAE-2 | 0.39 a (0.18) | 1.36 bcA (0.30) | 0.81 abA (0.30) | 1.68 cA (0.18) | 1.14 bA (0.12) | |
RAE-3 | 0.39 a (0.18) | 1.32 cdA (0.21) | 0.80 bA (0.04) | 1.89 dA (0.34) | 0.92 bcA (0.24) | |
TBA-i (mg malondi-aldehyde·kg−1 muscle) | CTR | 1.29 a (0.67) | 2.79 bcAB (0.66) | 3.63 bcBC (0.70) | 2.83 cA (0.12) | 2.45 bA (0.21) |
RAE-1 | 1.29 a (0.67) | 2.61 cA (0.19) | 2.69 cA (0.17) | 2.61 bcA (0.36) | 2.07 bA (0.16) | |
RAE-2 | 1.29 a (0.67) | 3.02 bB (0.58) | 3.55 bC (0.36) | 2.85 bA (0.39) | 2.50 abAB (0.99) | |
RAE-3 | 1.29 a (0.67) | 2.51 bA (0.38) | 2.90 bcAB (0.19) | 3.15 cA (0.56) | 3.17 cB (0.18) |
RAE Concentration | Heating Time (Days) | ||||
---|---|---|---|---|---|
0 | 1 | 4 | 7 | 11 | |
CTR | 0.01 a (0.00) | 0.01 aA (0.00) | 0.02 aA (0.01) | 0.11 bA (0.05) | 0.96 cA (0.22) |
RAE -1 | 0.01 a (0.00) | 0.01 aA (0.00) | 0.01 aA (0.00) | 1.22 bB (0.26) | 2.19 cB (0.25) |
RAE -2 | 0.01 a (0.00) | 0.01 aA (0.00) | 0.02 aA (0.00) | 2.36 bC (0.39) | 4.30 cC (0.95) |
RAE -3 | 0.01 a (0.00) | 0.01 aA (0.00) | 1.11 bB (0.19) | 3.72 cD (0.45) | 5.56 dC (1.16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, R.G.; Trigo, M.; Zhang, B.; Aubourg, S.P. Effect of Alga Gelidium sp. Flour Extract on Lipid Damage Evolution in Heated Fish Muscle System. Antioxidants 2022, 11, 807. https://doi.org/10.3390/antiox11050807
Barbosa RG, Trigo M, Zhang B, Aubourg SP. Effect of Alga Gelidium sp. Flour Extract on Lipid Damage Evolution in Heated Fish Muscle System. Antioxidants. 2022; 11(5):807. https://doi.org/10.3390/antiox11050807
Chicago/Turabian StyleBarbosa, Roberta G., Marcos Trigo, Bin Zhang, and Santiago P. Aubourg. 2022. "Effect of Alga Gelidium sp. Flour Extract on Lipid Damage Evolution in Heated Fish Muscle System" Antioxidants 11, no. 5: 807. https://doi.org/10.3390/antiox11050807
APA StyleBarbosa, R. G., Trigo, M., Zhang, B., & Aubourg, S. P. (2022). Effect of Alga Gelidium sp. Flour Extract on Lipid Damage Evolution in Heated Fish Muscle System. Antioxidants, 11(5), 807. https://doi.org/10.3390/antiox11050807