Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents–Chemicals
2.2. Preparation of Standards
2.3. EBC Samples Preparation
2.4. Analytical Procedure
2.4.1. Sample Preparation
2.4.2. Assessment of Type of Sample Concentration Process
2.4.3. EBC Material Surface Adsorption and Protein Interferences
2.4.4. Analytical Conditions
2.5. Method Validation and Applicability
2.5.1. Method Validation
2.5.2. Study Population
2.6. Statistical Analysis
3. Results
3.1. 8-OHdG and 8-Isoprostane Analytical Performance
3.2. Sample Preparation
3.2.1. Influence of Sample Concentration Process
3.2.2. Effect of Protein Purification
3.2.3. Effect of the Coating on Material Surface
3.3. Method Validation
3.4. Concentrations Measured in EBC Samples
4. Discussion
4.1. Method Optimization
4.2. Possible Reasons for Non-Detection of 8-OHdG and 8-Isoprostane in this Study
4.2.1. Storage and Collection Time
4.2.2. Protein Interferences
4.2.3. Analytical Issues
4.3. Variability in the Literature
4.3.1. 8-Isoprostane
4.3.2. 8-OHdG
4.4. Recommendations
- Use a sensitive alpha-amylase detection to quantify possible saliva contamination;
- Pre-concentrate the samples, drastically (by at least a factor of 10), prior to LC-MS analysis;
- Include a possible purification step prior to analysis;
- Control the adsorption phenomena on sampling and material surfaces;
- Have instruments capable of targeting LOD of the order of 0.1 pg/mL to expect to detect both components;
- Conduct inter-laboratory studies (round-robins);
- Standardize EBC collection devices for analysis of 8-OHdG and 8-isoprostane.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, N.; Xia, T.; Nel, A.E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008, 44, 1689–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvain, J.-J.; Hemmendinger, M.; Suárez, G.; Creze, C.; Hopf, N.B.; Jouannique, V.; Debatisse, A.; Pralong, J.A.; Wild, P.; Canu, I.G. Malondialdehyde and anion patterns in exhaled breath condensate among subway workers. Part. Fibre Toxicol. 2022, 19, 16. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Nilsson, L.; Möller, L. Subway Particles Are More Genotoxic than Street Particles and Induce Oxidative Stress in Cultured Human Lung Cells. Chem. Res. Toxicol. 2005, 18, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef]
- Horváth, I.; Hunt, J.; Barnes, P.J. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005, 26, 523. [Google Scholar] [CrossRef] [Green Version]
- Fireman, E.; Lerman, Y.; Stark, M.; Pardo, A.; Schwarz, Y.; Van Dyke, M.V.; Elliot, J.; Barkes, B.; Newman, L.; Maier, L. A novel alternative to environmental monitoring to detect workers at risk for beryllium exposure-related health effects. J. Occup. Environ. Hyg. 2014, 11, 809–818. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Biomarkers in Risk Assessment: Validity and Validation. 2001. Available online: http://www.inchemorg/documents/ehc/ehc/ehc222htm (accessed on 8 April 2022).
- Schulte, P.A.; Hauser, J.E. The use of biomarkers in occupational health research, practice, and policy. Toxicol. Lett. 2012, 213, 91–99. [Google Scholar] [CrossRef]
- Heffernan, A.L.; Gomez-Ramos, M.J.; Symeonides, C.; Hare, D.J.; Vijayasarathy, S.; Thompson, K.; Mueller, J.F.; Ponsonby, A.L.; Sly, P.D. Harmonizing analytical chemistry and clinical epidemiology for human biomonitoring studies. A case-study of plastic product chemicals in urine. Chemosphere 2020, 238, 124631. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.T.; Price, P.V.; Christman, B.W. Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest 1998, 114, 1653–1659. [Google Scholar] [CrossRef] [Green Version]
- Sanak, M.; Gielicz, A.; Nagraba, K.; Kaszuba, M.; Kumik, J.; Szczeklik, A. Targeted eicosanoids lipidomics of exhaled breath condensate in healthy subjects. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 1796–1800. [Google Scholar] [CrossRef]
- Tufvesson, E.; Bjermer, L. Methodological improvements for measuring eicosanoids and cytokines in exhaled breath condensate. Respir. Med. 2006, 100, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Morrow, J.D.; Hill, K.E.; Burk, R.F.; Nammour, T.M.; Badr, K.F.; Roberts, L.J., II. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 1990, 87, 9383–9387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, S. F2-isoprostanes in human health and diseases: From molecular mechanisms to clinical implications. Antioxid Redox Signal 2008, 10, 1405–1434. [Google Scholar] [CrossRef]
- Montuschi, P. 15 Exhaled breath condensate: 8-isoprostane and eicosanoids. Eur. Respir. Monogr. 2010, 196, 196–206. [Google Scholar]
- Montuschi, P.; Collins, J.V.; Ciabattoni, G.; Lazzeri, N.; Corradi, M.; Kharitonov, S.A.; Barnes, P.J. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am. J. Respir. Crit. Care Med. 2000, 162, 1175–1177. [Google Scholar] [CrossRef] [Green Version]
- Montuschi, P.; Kharitonov, S.A.; Ciabattoni, G.; Corradi, M.; van Rensen, L.; Geddes, D.M.; Hodson, M.E.; Barnes, P.J. Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 2000, 55, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Montuschi, P.; Corradi, M.; Ciabattoni, G.; Nightingale, J.; Kharitonov, S.A.; Barnes, P.J. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am. J. Respir. Crit. Care Med. 1999, 160, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraldi, E.; Carraro, S.; Alinovi, R.; Pesci, A.; Ghiro, L.; Bodini, A.; Piacentini, G.; Zacchello, F.; Zanconato, S. Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax 2003, 58, 505–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigenaga, M.K.; Gimeno, C.J.; Ames, B.N. Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. USA 1989, 86, 9697–9701. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.L.; Chiou, C.C.; Chang, P.Y.; Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 2004, 339, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shoman, Y.; Wild, P.; Hemmendinger, M.; Graille, M.; Sauvain, J.J.; Hopf, N.B.; Guseva Canu, I. Reference Ranges of 8-Isoprostane Concentrations in Exhaled Breath Condensate (EBC): A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 3822. [Google Scholar] [CrossRef] [PubMed]
- Hemmendinger, M.; Wild, P.; Shoman, Y.; Graille, M.; Bergamaschi, E.; Hopf, N.; Guseva Canu, I. Reference ranges of oxidative stress biomarkers selected for non-invasive biological surveillance of nanotechnology workers: Study protocol and meta-analysis results for 8-OHdG in exhaled breath condensate. Toxicol. Lett. 2020, 327, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Qualls, C.; Seagrave, J.; McDonald, J.; Shohreh, R.; Chiavaroli, A.; Schuyler, M. Effect of allergen inhalation on airway oxidant stress, using exhaled breath condensate 8-isoprostane, in mild asthma. J. Asthma 2013, 50, 449–456. [Google Scholar] [CrossRef]
- Mickleborough, T.D.; Vaughn, C.L.; Shei, R.-J.; Davis, E.M.; Wilhite, D.P. Marine lipid fraction PCSO-524™ (lyprinol®/omega XL®) of the New Zealand green lipped mussel attenuates hyperpnea-induced bronchoconstriction in asthma. Respir. Med. 2013, 107, 1152–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carraro, S.; Cogo, P.E.; Isak, I.; Simonato, M.; Corradi, M.; Carnielli, V.P.; Baraldi, E. EIA and GC/MS analysis of 8-isoprostane in EBC of children with problematic asthma. Eur. Respir. J. 2010, 35, 1364. [Google Scholar] [CrossRef]
- Montuschi, P.; Ragazzoni, E.; Valente, S.; Corbo, G.; Mondino, C.; Ciappi, G.; Ciabattoni, G. Validation of 8-isoprostane and prostaglandin E(2) measurements in exhaled breath condensate. Inflamm. Res. 2003, 52, 502–507. [Google Scholar] [CrossRef]
- Murphy, R.C.; Fiedler, J.; Hevko, J. Analysis of Nonvolatile Lipids by Mass Spectrometry. Chem. Rev. 2001, 101, 479–526. [Google Scholar] [CrossRef]
- Tsikas, D.; Zoerner, A.A. Analysis of eicosanoids by LC-MS/MS and GC-MS/MS: A historical retrospect and a discussion. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 964, 79–88. [Google Scholar] [CrossRef]
- Wang, C.J.; Yang, N.H.; Liou, S.H.; Lee, H.L. Fast quantification of the exhaled breath condensate of oxidative stress 8-iso-prostaglandin F2alpha using on-line solid-phase extraction coupled with liquid chromatography/electrospray ionization mass spectrometry. Talanta 2010, 82, 1434–1438. [Google Scholar] [CrossRef]
- Laumbach, R.J.; Kipen, H.M.; Ko, S.; Kelly-McNeil, K.; Cepeda, C.; Pettit, A.; Ohman-Strickland, P.; Zhang, L.; Zhang, J.; Gong, J.; et al. A controlled trial of acute effects of human exposure to traffic particles on pulmonary oxidative stress and heart rate variability. Part Fibre Toxicol. 2014, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Syslová, K.; Kacer, P.; Kuzma, M.; Klusâ ková, P.; Fenclová, Z.; Lebedová, J.; Pelclova, D. Determination of 8-iso-prostaglandin F(2alpha) in exhaled breath condensate using combination of immunoseparation and LC-ESI-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 867, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Guseva Canu, I.; Crézé, C.; Hemmendinger, M.; Ben Rayana, T.; Besançon, S.; Jouannique, V.; Debatisse, A.; Wild, P.; Sauvain, J.J.; Suárez, G.; et al. Particle and metal exposure in Parisian subway: Relationship between exposure biomarkers in air, exhaled breath condensate, and urine. Int. J. Hyg. Environ. Health 2021, 237, 113837. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Hemmendinger, M.; Sauvain, J.J.; Suarez, G.; Hopf, N.B.; Pralong, J.A.; Ben Rayana, T.; Besançon, S.; Sakthithasan, K.; Jouannique, V.; et al. Respiratory Disease Occupational Biomonitoring Collaborative Project (ROBoCoP): A longitudinal pilot study and implementation research in the Parisian transport company. J. Occup. Med. Toxicol. 2021, 16, 22. [Google Scholar] [CrossRef]
- Carter, S.R.; Davis, C.S.; Kovacs, E.J. Exhaled breath condensate collection in the mechanically ventilated patient. Respir. Med. 2012, 106, 601–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milatovic, D.; Montine, T.J.; Aschner, M. Measurement of isoprostanes as markers of oxidative stress. Methods Mol. Biol. 2011, 758, 195–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syslová, K.; Kačer, P.; Kuzma, M.; Pankrácová, A.; Fenclová, Z.; Vlčková, Š.; Lebedová, J.; Pelclová, D. LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J. Breath Res. 2010, 4, 017104. [Google Scholar] [CrossRef]
- Peel, A.M.; Crossman-Barnes, C.J.; Tang, J.; Fowler, S.J.; Davies, G.A.; Wilson, A.M.; Loke, Y.K. Biomarkers in adult asthma: A systematic review of 8-isoprostane in exhaled breath condensate. J. Breath Res. 2017, 11, 016011. [Google Scholar] [CrossRef] [Green Version]
- Cruickshank-Quinn, C.; Armstrong, M.; Powell, R.; Gomez, J.; Elie, M.; Reisdorph, N. Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate. Respir. Res. 2017, 18, 57. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, K.; PÉRez-Sala, D. Prostanoids with Cyclopentenone Structure as Tools for the Characterization of Electrophilic Lipid–Protein Interactomes. Ann. N. Y. Acad. Sci. 2006, 1091, 548–570. [Google Scholar] [CrossRef]
- FDA. U.S. Bioanalytical Method Validation Guidance for Industry; United States Food & Drug Administration: Silver Spring, MD, USA, 2018; p. 44.
- Fabbri, L.M.; Hurd, S.S. Global Strategy for the Diagnosis, Management and Prevention of COPD: 2003 update. Eur. Respir. J. 2003, 22, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948. [Google Scholar] [CrossRef]
- Scheideler, L.; Manke, H.G.; Schwulera, U.; Inacker, O.; Hämmerle, H. Detection of nonvolatile macromolecules in breath. A possible diagnostic tool? Am. Rev. Respir. Dis. 1993, 148, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Liu, Q.; Ding, Y. Paper-based solid-phase microextraction for analysis of 8-hydroxy-2′-deoxyguanosine in urine sample by CE-LIF. Electrophoresis 2017, 38, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Janicka, M.; Kubica, P.; Kot-Wasik, A.; Kot, J.; Namieśnik, J. Sensitive determination of isoprostanes in exhaled breath condensate samples with use of liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 893–894, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Reche, L.; Schaefer, D.; Göen, T.; Kraus, T. Validity Assessment for the Results of Three Inflammatory Markers in Exhaled Breath Condensate: A Pilot Study. Chromatographia 2012, 70, 1387–1392. [Google Scholar] [CrossRef]
- Sanak, M.; Gielicz, A.; Bochenek, G.; Kaszuba, M.; Niżankowska-Mogilnicka, E.; Szczeklik, A. Targeted eicosanoid lipidomics of exhaled breath condensate provide a distinct pattern in the aspirin-intolerant asthma phenotype. J. Allergy Clin. Immunol. 2011, 127, 1141–1147.e1142. [Google Scholar] [CrossRef] [PubMed]
- Fritscher, L.G.; Post, M.; Rodrigues, M.T.; Silverman, F.; Balter, M.; Chapman, K.R.; Zamel, N. Profile of eicosanoids in breath condensate in asthma and COPD. J. Breath Res. 2012, 6, 026001. [Google Scholar] [CrossRef]
- Liou, S.-H.; Wu, W.-T.; Liao, H.-Y.; Chen, C.-Y.; Tsai, C.-Y.; Jung, W.-T.; Lee, H.-L. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard. Mater. 2017, 331, 329–335. [Google Scholar] [CrossRef]
- Wu, W.-T.; Jung, W.-T.; Lee, H.-L. Lipid peroxidation metabolites associated with biomarkers of inflammation and oxidation stress in workers handling carbon nanotubes and metal oxide nanoparticles. Nanotoxicology 2021, 15, 577–587. [Google Scholar] [CrossRef]
- Santini, G.; Mores, N.; Shohreh, R.; Valente, S.; Dabrowska, M.; Trové, A.; Zini, G.; Cattani, P.; Fuso, L.; Mautone, A.; et al. Exhaled and non-exhaled non-invasive markers for assessment of respiratory inflammation in patients with stable COPD and healthy smokers. J. Breath Res. 2016, 10, 017102. [Google Scholar] [CrossRef] [Green Version]
- Lucidi, V.; Ciabattoni, G.; Bella, S.; Barnes, P.J.; Montuschi, P. Exhaled 8-isoprostane and prostaglandin E2 in patients with stable and unstable cystic fibrosis. This work was performed at the Catholic University of the Sacred Heart, Rome, Italy, and Ospedale Pediatrico Bambino Gesù, Rome, Italy. This work was funded by the Catholic University of the Sacred Heart. Free Radic. Biol. Med. 2008, 45, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Mastalerz, L.; Sanak, M.; Kumik, J.; Gawlewicz-Mroczka, A.; Celejewska-Wójcik, N.; Ćmiel, A.; Szczeklik, A. Exhaled Eicosanoids following Bronchial Aspirin Challenge in Asthma Patients with and without Aspirin Hypersensitivity: The Pilot Study. J. Allergy 2012, 2012, 696792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fireman Klein, E.; Adir, Y.; Krencel, A.; Peri, R.; Vasserman, B.; Fireman, E.; Kessel, A. Ultrafine particles in airways: A novel marker of COPD exacerbation risk and inflammatory status. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelclova, D.; Ždímal, V.; Fenclova, Z.; Vlckova, S.; Schwarz, J.; Pusman, J.; Zíková, N.; Syslová, K.; Kuzma, M.; Navrátil, T.; et al. Markers of oxidative stress are elevated in workers exposed to nanoparticles. In Proceedings of the 4th International Conference on Nanocon, Brno, Czech Republic, 23–25 October 2012. [Google Scholar]
- Pelclova, D.; Zdimal, V.; Kacer, P.; Vlckova, S.; Fenclova, Z.; Navratil, T.; Komarc, M.; Schwarz, J.; Zikova, N.; Makes, O.; et al. Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano)TiO2 particles. Neuro Endocrinol. Lett. 2016, 37, 13–16. [Google Scholar] [PubMed]
- Pelclova, D.; Navratil, T.; Vlckova, S.; Fenclova, Z.; Pelcl, T.; Kacerova, T.; Kacer, P. Exhaled breath condensate biomarkers reflect systemic changes in patients with chronic dioxin intoxication. Mon. Für Chem.-Chem. Mon. 2018, 149, 1579–1586. [Google Scholar] [CrossRef]
- Doruk, S.; Ozyurt, H.; Inonu, H.; Erkorkmaz, U.; Saylan, O.; Seyfikli, Z. Oxidative status in the lungs associated with tobacco smoke exposure. Clin. Chem. Lab. Med. CCLM 2011, 49, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, H.; Lewinski, N.; Zhao, J.; Sauvain, J.J.; Suarez, G.; Wild, P.; Danuser, B.; Riediker, M. Increase in oxidative stress levels following welding fume inhalation: A controlled human exposure study. Part Fibre Toxicol. 2016, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Sambiagio, N.; Sauvain, J.-J.; Berthet, A.; Auer, R.; Schoeni, A.; Hopf, N.B. Rapid Liquid Chromatography-Tandem Mass Spectrometry Analysis of Two Urinary Oxidative Stress Biomarkers: 8-oxodG and 8-isoprostane. Antioxidants 2020, 10, 38. [Google Scholar] [CrossRef]
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef] [Green Version]
- Havet, A.; Zerimech, F.; Sanchez, M.; Siroux, V.; Le Moual, N.; Brunekreef, B.; Stempfelet, M.; Künzli, N.; Jacquemin, B.; Matran, R.; et al. Outdoor air pollution, exhaled 8-isoprostane and current asthma in adults: The EGEA study. Eur. Respir. J. 2018, 51, 1702036. [Google Scholar] [CrossRef] [Green Version]
- Arnett, S.D.; Osbourn, D.M.; Moore, K.D.; Vandaveer, S.S.; Lunte, C.E. Determination of 8-oxoguanine and 8-hydroxy-2′-deoxyguanosine in the rat cerebral cortex using microdialysis sampling and capillary electrophoresis with electrochemical detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 827, 16–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, Y.; Ogawa, Y.; Yoshida, R.; Shimamori, A.; Kasai, H.; Ohta, H. The stability of the oxidative stress marker, urinary 8-hydroxy-2′- deoxyguanosine (8-OHdG), when stored at room temperature. J. Occup. Health 2008, 50, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Goldoni, M.; Caglieri, A.; Andreoli, R.; Poli, D.; Manini, P.; Vettori, M.V.; Corradi, M.; Mutti, A. Influence of condensation temperature on selected exhaled breath parameters. BMC Pulm. Med. 2005, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czebe, K.; Barta, I.; Antus, B.; Valyon, M.; Horváth, I.; Kullmann, T. Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations. Respir. Med. 2008, 102, 720–725. [Google Scholar] [CrossRef] [Green Version]
- Zamuruyev, K.O.; Borras, E.; Pettit, D.R.; Aksenov, A.A.; Simmons, J.D.; Weimer, B.C.; Schivo, M.; Kenyon, N.J.; Delplanque, J.P.; Davis, C.E. Effect of temperature control on the metabolite content in exhaled breath condensate. Anal. Chim. Acta 2018, 1006, 49–60. [Google Scholar] [CrossRef]
- Rosias, P.P.; Robroeks, C.M.; Niemarkt, H.J.; Kester, A.D.; Vernooy, J.H.; Suykerbuyk, J.; Teunissen, J.; Heynens, J.; Hendriks, H.J.; Jöbsis, Q.; et al. Breath condenser coatings affect measurement of biomarkers in exhaled breath condensate. Eur. Respir. J. 2006, 28, 1036. [Google Scholar] [CrossRef]
- Gonzalez-Reche, L.M.; Musiol, A.K.; Müller-Lux, A.; Kraus, T.; Göen, T. Method optimization and validation for the simultaneous determination of arachidonic acid metabolites in exhaled breath condensate by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Occup. Med. Toxicol. 2006, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Il’yasova, D.; Morrow, J.D.; Ivanova, A.; Wagenknecht, L.E. Epidemiological marker for oxidant status: Comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6-dihydro-15-F2t-isoprostane. Ann. Epidemiol. 2004, 14, 793–797. [Google Scholar] [CrossRef]
- Simpson, J.L.; Wood, L.G.; Gibson, P.G. Inflammatory mediators in exhaled breath, induced sputum and saliva. Clin. Exp. Allergy 2005, 35, 1180–1185. [Google Scholar] [CrossRef]
- Van Hoydonck, P.G.; Wuyts, W.A.; Vanaudenaerde, B.M.; Schouten, E.G.; Dupont, L.J.; Temme, E.H. Quantitative analysis of 8-isoprostane and hydrogen peroxide in exhaled breath condensate. Eur. Respir. J. 2004, 23, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Komakula, S.; Khatri, S.; Mermis, J.; Savill, S.; Haque, S.; Rojas, M.; Brown, L.; Teague, G.W.; Holguin, F. Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respir. Res. 2007, 8, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglia, S.; den Hertog, H.; Timmers, M.C.; Lazeroms, S.P.; Vignola, A.M.; Rabe, K.F.; Bellia, V.; Hiemstra, P.S.; Sterk, P.J. Small airways function and molecular markers in exhaled air in mild asthma. Thorax 2005, 60, 639–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holder, C.; Adams, A.; McGahee, E.; Xia, B.; Blount, B.C.; Wang, L. High-Throughput and Sensitive Analysis of Free and Total 8-Isoprostane in Urine with Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry. ACS Omega 2020, 5, 10919–10926. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Mas, E.; Mori, T.A.; Croft, K.D.; Barden, A.E. A significant proportion of F2-isoprostanes in human urine are excreted as glucuronide conjugates. Anal. Biochem. 2010, 403, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Dodig, S.; Cepelak, I. Exhaled breath condensate--from an analytical point of view. Biochem. Med. 2013, 23, 281–295. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef]
- Wang, J.; Schipper, H.M.; Velly, A.M.; Mohit, S.; Gornitsky, M. Salivary biomarkers of oxidative stress: A critical review. Free Radic. Biol. Med. 2015, 85, 95–104. [Google Scholar] [CrossRef]
- Effros, R.M.; Hoagland, K.W.; Bosbous, M.; Castillo, D.; Foss, B.; Dunning, M.; Gare, M.; Lin, W.; Sun, F. Dilution of respiratory solutes in exhaled condensates. Am. J. Respir. Crit. Care Med. 2002, 165, 663–669. [Google Scholar] [CrossRef]
Compounds | Polarity | Mass Transitions (m/z) | Spray Voltage (V) | Collision Energy (V) | RF Lens (V) |
---|---|---|---|---|---|
8-OHdG | positive | 284 → 140 | 3700 | 28.8 | 37 |
284 → 168 | 10 | 37 | |||
284 → 243 | 10.2 | 37 | |||
[15N5]-8-OHdG | positive | 289 → 173 | 3700 | 10 | 40 |
8-isoprostane | negative | 353 → 193 | 3400 | 25 | 80 |
353 → 291 | 20 | 80 | |||
353 → 309 | 20 | 80 | |||
8-isoprostane-d4 | negative | 357 → 197 | 3400 | 25 | 78 |
Healthy | Asthmatic | COPD | |
---|---|---|---|
Number of subjects (male/female) | 10 (6/4) | 7 (3/4) | 9 (6/3) |
Age mean years ± SD (range) | 51 ± 5.2 (44–60) | 47 ± 5.2 (40–57) | 54 ± 5.8 (41–60) |
BMI mean kg/m2 ± SD (range) | 25 ± 3.7 (20–32) | 25 ± 2.4 (22–28) | 24 ± 4.9 (19–34) |
FEV1/FVC1 ratio | 0.771 ± 0.04 (0.713–0.825) | 0.665 ± 0.04 (0.597–0.697) | 0.611 ± 0.06 (0.501–0.675) |
Smokers (%) | 30% | 28% | 66% |
Reference | Year | Study Group | Analytical Method | Collection Apparatus | Concentration of EBC | Lod | Basal Concentration |
---|---|---|---|---|---|---|---|
Janicka [46] | 2012 | healthy individuals | LC–MS/MS | TurboDeccs | lyophilized | 1 pg/mL | not detectable |
Gonzalez [47] | 2009 | healthy individuals | LC–MS/MS | Ecoscreen | - | 5 pg/mL | not detectable |
Laumbach [31] | 2014 | healthy individuals | affinity sorbant + LC–MS/MS | Ecoscreen | drying under nitrogen | 2.5 pg/mL | not detectable |
Carpenter [10] | 1998 | healthy individuals | GC–MS | Teflon-lined tubing (Tygon) | - | 0.02 pg/mL * | detectable in 3 of 10 control subjects (30%)7 ± 4 pg/mL e |
Sanak [11] | 2010 | healthy individuals | GC–MS | Ecoscreen | drying under nitrogen | - | 0.19 (0.14–0.29) pg/mL a |
Sanak [48] | 2011 | healthy individuals | GC–MS | Ecoscreen | drying under nitrogen | - | 0.26 (0.2–0.47) pg/mL a |
Fritscher [49] | 2012 | healthy individuals | LC–MS/MS | RTube | drying under nitrogen | 0.05–0.1 pg | 0.9 (0.2–1.7) pg/mL d |
Syslova [37] | 2010 | healthy individuals | LC–MS/MS | Ecoscreen | lyophilized | 8 pg/mL | 86.7 (65.8–105.8) pg/mL a |
Liou [50] | 2017 | healthy individuals | affinity sorbant + LC–MS/MS | Ecoscreen | drying under nitrogen | 1 pg/mL | 3.14 (2.07) pg/mL c |
Wu [51] | 2021 | healthy individuals | affinity sorbant + LC–MS/MS | Ecoscreen | drying under nitrogen | 1 pg/mL | 3.930 (3.655) pg/mL c |
Wang [30] | 2010 | healthy individuals | affinity sorbant + LC–MS/MS | Ecoscreen | drying under nitrogen | 1 pg/mL | 4.44 ± 2.01 pg/mL b |
Syslova [32] | 2008 | healthy individuals | affinity sorbant + LC–MS/MS | Ecoscreen | drying under nitrogen | 1 pg/mL | 36 (20–55) pg/mL b |
Santini [52] | 2016 | healthy ex-smokers | RIA | Ecoscreen | - | 2 pg/mL | 8 (6.0–8.8) pg/mL e |
Montuschi [16] | 2000 | healthy individuals | RIA | Ecoscreen | - | 4 pg/mL | 10.8 ± 0.8 pg/mL b |
Lucidi [53] | 2008 | healthy individuals | RIA | Ecoscreen | - | 10 pg/mL | 15.5 (11.5–17.0) pg/mL d |
Wu [51] | 2021 | exposed people to carbon nanotubes | affinity sorbant + LC–MS/MS | Ecoscreen | drying under nitrogen | 1 pg/mL | 5.920 (9.040) pg/mL c |
Liou [50] | 2017 | exposed people to metal oxidenanoparticles | affinity sorbant + LC–MS/MS | Ecoscreen | drying under nitrogen | 1 pg/mL | 7.13 (8.21) pg/mL c |
Syslova [32] | 2008 | exposed people to asbestos | affinity sorbant + LC–MS/MS | Ecoscreen | drying under nitrogen | 1 pg/mL | 60 (50–70) pg/mL b |
Santini [52] | 2016 | smokers | RIA | Ecoscreen | - | 2 pg/mL | 11.2 (6.4–18.8) pg/mL e |
Janicka [46] | 2012 | smokers | LC–MS/MS | TurboDeccs | lyophilized | 1 pg/mL | 13–35 pg/mL |
Carpenter [10] | 1998 | patients with ALI/ARDS | GC–MS | Teflon-lined tubing (Tygon) | - | 0.02 pg/mL * | detectable in 14 of 22 study patients (64%)87 ± 28 pg/mL e |
Mastalerz [54] | 2011 | asthma patients | GC–MS | Ecoscreen | drying under nitrogen | - | 0.25 ± 0.12 pg/mL b |
Sanak [48] | 2011 | asthma patients | GC–MS | Ecoscreen | drying under nitrogen | - | 0.32 (0.15–0.3) pg/mL a |
Corraro [26] | 2010 | asthma patients | GC–MS | TurboDeccs | drying under nitrogen | 3.9 pg/mL | 68 (10.3) pg/mL e |
Santini [52] | 2016 | COPD patients | RIA | Ecoscreen | - | 2 pg/mL | 17.8 (8.8–31.2) pg/mL e |
Reference | Year | Study Group | Analytical Method Approach | Collection Apparatus | Concentration of Ebc | Lod | Basal Concentration |
---|---|---|---|---|---|---|---|
Fireman [55] | 2019 | healthy individuals | ELISA kit | TurboDeccs | - | - | 3 pg/mL |
Pelclova [56] | 2012 | healthy individuals | LC–MS/MS | EcoScreen | - | 7 pg/mL | 10 (9.0–11.0) pg/mL c |
Pelclova [57] | 2016 | healthy individuals | LC–MS/MS | EcoScreen | - | 7 pg/mL | 13 (11.5–14.5) pg/mL c |
Syslova [37] | 2010 | healthy individuals | LC–MS/MS | EcoScreen | - | 7 pg/mL | 14.8 (12.8–19.9) pg/mL a |
Pelclova [58] | 2018 | healthy individuals | LC–MS/MS | EcoScreen | - | 7 pg/mL | 18 (15.0–21.0) pg/mL c |
Doruk [59] | 2011 | healthy individuals | ELISA kit | EcoScreen | - | 41 pg/mL | 360 ± 90 pg/mL b |
Graczyk [60] | 2017 | exposed welders | ELISA kit | R-tube | - | not detectable | |
Doruk [59] | 2011 | smokers | ELISA kit | EcoScreen | - | 41 pg/mL | 520 ± 150 pg/mL b |
Doruk [59] | 2011 | passive smokers | ELISA kit | EcoScreen | - | 41 pg/mL | 310 ± 100 pg/mL b |
Fireman [55] | 2019 | COPD patients | ELISA kit | TurboDeccs | - | - | 36 pg/ml |
Syslova [37] | 2010 | silica- or asbestos-disorders due to occupational exposure patients | LC–ESI–MS/MS | EcoScreen | - | 7 pg/mL | 46.5 (39.4–49.9) pg/mL a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemmendinger, M.; Sauvain, J.-J.; Hopf, N.B.; Suárez, G.; Guseva Canu, I. Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate. Antioxidants 2022, 11, 830. https://doi.org/10.3390/antiox11050830
Hemmendinger M, Sauvain J-J, Hopf NB, Suárez G, Guseva Canu I. Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate. Antioxidants. 2022; 11(5):830. https://doi.org/10.3390/antiox11050830
Chicago/Turabian StyleHemmendinger, Maud, Jean-Jacques Sauvain, Nancy B. Hopf, Guillaume Suárez, and Irina Guseva Canu. 2022. "Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate" Antioxidants 11, no. 5: 830. https://doi.org/10.3390/antiox11050830
APA StyleHemmendinger, M., Sauvain, J. -J., Hopf, N. B., Suárez, G., & Guseva Canu, I. (2022). Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate. Antioxidants, 11(5), 830. https://doi.org/10.3390/antiox11050830