Bioactive Compounds, Antioxidant, Anti-Inflammatory, Anti-Cancer, and Toxicity Assessment of Tribulus terrestris—In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Solvents and Reagents
2.3. Animals
2.4. Extraction Procedure
2.5. Determination of Total Phenolic and Flavonoid Content
2.6. Determination of Antioxidant Activity Using Spectrophotometric Assays
2.7. In Vitro Anti-Inflammatory Activity
2.7.1. Membrane Stabilization Assay
2.7.2. Egg Albumin Denaturation Assay
2.7.3. Bovine Serum Albumin Denaturation Assay
2.8. In Vivo Anti-Inflammatory Activity
2.8.1. Inhibition of Carrageenan-Induced Paw Edema in Wistar Rats
2.8.2. Inhibition of Formaldehyde-Induced Hind Paw Edema in Albino Mice
2.9. Acute and Sub-Acute Toxicity Assessment
2.10. Histopathological Analysis
2.11. Liquid–Liquid Partitioning of the Active Crude Extract
2.12. Reversed-Phase (RP)-HPLC of Fraction B and Its Sub-Fractions
2.12.1. Analytical Measurements of Fraction B (Ethyl Acetate)
2.12.2. Semi-Preparative Chromatography of Fraction B (Ethyl Acetate)
2.13. LC-ESI-MS/MS Analysis of Sub-Fraction TBTMF3
2.14. Quantification of Compounds in Sub-Fraction TBTMF3 Using Analytical HPLC-DAD
2.15. Statistical Analysis
3. Results
3.1. Extraction Efficiency, Phytochemical Contents, and In Vitro Antioxidant Activity of T. terrestris Extracts
3.2. In Vitro Anti-Inflammatory Activity of T. terrestris Sequential Crude Extracts
3.3. In Vivo Anti-Inflammatory Activity of T. terrestris Sequential Crude Extracts
3.4. In Vitro Anticancer Activity of T. terrestris Crude Extracts
3.5. In Vivo Acute and Subacute Toxicity Assessment
3.6. Bioassay-Guided Approach
3.6.1. Liquid–Liquid Partitioning of Crude Extracts
3.6.2. Preparative HPLC Sub-Fractionation of the Liquid–Liquid Partitioned Fraction B
3.7. ESI-MS/MS and HPLC Analysis of TBTMF3 Fraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, V.L.; Davoudian, T. Clinical Measurement of Pain, Opioid Addiction, and Functional Status. In Treating Comorbid Opioid Use Disorder in Chronic Pain; Springer: Cham, Switzerland, 2016; pp. 47–56. [Google Scholar]
- Shirzad, H.; Rafieian-Kopaei, M. Recent findings in molecular basis of inflammation and anti-inflammatory plants. Curr. Pharm. Des. 2018, 24, 1551–1562. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J.K.P. Eugenia jambolana (Java Plum) fruit extract exhibits anti-cancer activity against early stage human hct-116 colon cancer cells and colon cancer stem cells. Cancers 2016, 8, 29. [Google Scholar] [CrossRef]
- Stanković, N.; Mihajilov-Krstev, T.; Zlatković, B.; Stankov-Jovanović, V.; Mitić, V.; Jović, J.; Čomić, L.; Kocić, B.; Bernstein, N. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS—Wagening. J. Life Sci. 2016, 78, 21–28. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar] [CrossRef]
- Samuelsson, G. Drugs of Natural Origin. A Textbook of Pharmacognosy; Swedish Pharmaceutical Press: Stockholm, Sweden, 2004; p. 68. [Google Scholar]
- Debjit, B.; Pawan, D.; Margret, C.; Kumar, K.P.S. Herbal drug toxicity and safety evaluation of traditional medicines. Arch. Appl. Sci. Res. 2009, 1, 32–56. [Google Scholar]
- Thelingwani, R.; Masimirembwa, C. Evaluation of herbal medicines: Value addition to traditional medicines through metabolism, pharmacokinetic and safety studies. Curr. Drug Metabol. 2014, 15, 942–952. [Google Scholar] [CrossRef]
- Chhatre, S.; Nesari, T.; Kanchan, D.; Somani, G.; Sathaye, S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn. Rev. 2014, 8, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Neychev, V.; Mitev, V. Pro-sexual and androgen enhancing effects of Tribulus terrestris L.: Fact or fiction. J. Ethnopharmacol. 2015, 179, 345–355. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2015; Volume 1, pp. 191–193.
- Mohammed, M.S.; Alajmi, M.F.; Alam, P.; Ali, M.M.; Mahmoud, A.M.; Ahmed, W.J. Chromatographic finger print analysis of anti–inflammatory active extract fractions of aerial parts of Tribulus terrestris by HPTLC technique. Asian Pac. J. Trop. Biomed. 2014, 4, 203–208. [Google Scholar] [CrossRef]
- Akram, M.; Asif, H.M.; Akhtar, N.; Shah, P.A.; Uzair, M.; Shaheen, G.; Shah, S.A. Tribulus terrestris Linn.: A review article. J. Med. Plant Res. 2011, 5, 3601–3605. [Google Scholar]
- Nam, J.; Jung, H.W.; Chin, Y.-W.; Kim, W.K.; Bae, H.S. Modulatory effects of the fruits of Tribulus terrestris L. on the function of atopic dermatitis-related calcium channels, Orai1 and TRPV3. Asian Pac. J. Trop. Biomed. 2016, 6, 580–585. [Google Scholar] [CrossRef]
- Zhang, N.; Jia, Y.; Chen, G.; Cabrales, P.; Palmer, A.F. Biophysical properties and oxygenation potential of high-molecular-weight glutaraldehyde-polymerized human hemoglobins maintained in the tense and relaxed quaternary states. Tissue Eng. Part A 2011, 17, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, J.C.; Min, J.S.; Kim, M.J.; Kim, J.A.; Kor, M.H.; Ahn, J.K. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells. J. Ethnopharmacol. 2011, 136, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, V.; MubarakAli, D.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces 2012, 96, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Sailaja, K.; Shivaranjani, V.L.; Poornima, H.; Rahamathulla, S.; Devi, K.L. Protective effect of Tribulus terrestris L. fruit aqueous extracton lipid profile and oxidative stress in isoproterenol induced myocardial necrosis in male albino Wistar rats. EXCLI J. 2013, 12, 373–383. [Google Scholar]
- Fatima, L.; Sultana, A. Efficacy of Tribulus terrestris L. (fruits) in menopausal transition symptoms: A randomized placebo controlled study. Adv. Integr. Med. 2017, 4, 56–65. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Z.; Wang, X. Tribulus terrestris extracts alleviate muscle damage and promote anaerobic performance of trained male boxers and its mechanisms: Roles of androgen, IGF-1, and IGF binding protein-3. J. Sport Health Sci. 2015, 6, 474–481. [Google Scholar] [CrossRef]
- Kang, S.Y.; Jung, H.W.; Nam, J.H.; Kim, W.K.; Kang, J.S.; Kim, Y.H.; Bae, H.S. Effects of the fruit extract of Tribulus terrestris on skin inflammation in mice with oxazolone-induced atopic dermatitis through regulation of calcium channels, orai-1 and TRPV3, and mast cell activation. Evid. Based Complement. Altern. 2017, 2017, 8312946. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Alara, O.; Abdurahman, N.; Mudalip, S.A.; Olalere, O. Effect of drying methods on the free radicals scavenging activity of Vernonia amygdalina growing in Malaysia. J. King Saud Univ. Sci. 2019, 31, 495–499. [Google Scholar] [CrossRef]
- Zahin, M.; Aqil, F.; Ahmad, I. Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutat. Res. Toxicol. Environ. Mutagen. 2010, 703, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Sadique, J.; Al-Rqobahs, W.A.; Bughaith, E.I.; Gindi, A.R. The bioactivity of certain medicinal plants on the stabilization of RBC membrane system. Fitoterapia 1989, 60, 525–532. [Google Scholar]
- Sakat, S.; Juvekar, A.R.; Gambhire, M.N. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int. J. Pharm. Pharm. Sci. 2010, 2, 146–155. [Google Scholar]
- Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol. 1968, 20, 169–173. [Google Scholar] [CrossRef]
- Morris, C.J. Carrageenan-induced paw edema in the rat and mouse. Methods Mol. Biol. 2003, 225, 115–121. [Google Scholar] [CrossRef]
- Brownlee, G. Effect of deoxycortone and ascorbic acid on formaldehyde-induced arthritis in normal and adrenalectomised rats. Lancet 1950, 255, 157–159. [Google Scholar] [CrossRef]
- OECD. OECD Guideline for Testing of Chemicals. Repeated Dose 28-day Oral Toxicity in Rodents, Test No. 407; OECD: Paris, France, 2008. [Google Scholar]
- OECD. OECD Guidelines for Testing of Chemicals: Acute Oral Toxicity—Acute Toxic Class Method. Test No. 423, Adopted 22nd March 1996, and Revised Method Adopted 17th December 2001; OECD: Paris, France, 2001. [Google Scholar]
- Steinmann, D.; Ganzera, M. Recent advances on HPLC/MS in medicinal plant analysis. J. Pharm. Biomed. Anal. 2011, 55, 744–757. [Google Scholar] [CrossRef]
- Gates, P.J.; Lopes, N.P. Characterisation of Flavonoid Aglycones by Negative Ion Chip-Based Nanospray Tandem Mass Spectrometry. Int. J. Anal. Chem. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Khan, I.; Hussain, A.; Shahat, A.A.; Tawab, A.; Qasim, M.; Adnan, M.; Al-Said, M.S.; Ullah, R.; Khan, S.N. Glycyrrhiza glabra HPLC fractions: Identification of aldehydo isoophiopogonone and liquirtigenin having activity against multidrug resistant bacteria. BMC Complement. Altern. Med. 2018, 18, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, X.; Saleri, F.; Guo, M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules 2016, 21, 1275. [Google Scholar] [CrossRef] [PubMed]
- Angelova, S.; Gospodinova, Z.; Krasteva, M.; Antov, G.; Lozanov, V.; Markov, T.; Bozhanov, S.; Georgieva, E.; Mitev, V. Antitumor activity of Bulgarian herb Tribulus terrestris L. on human breast cancer cells. J. Biosci. Biotechnol. 2013, 2, 25–32. [Google Scholar]
- Said, I.H.; Shah, R.L.; Ullrich, M.S.; Kuhnert, N. Quantification of microbial uptake of quercetin and its derivatives using an UHPLC-ESI-QTOF mass spectrometry assay. Food Funct. 2016, 7, 4082–4091. [Google Scholar] [CrossRef]
- Tian, C.; Chang, Y.; Zhang, Z.; Wang, H.; Xiao, S.; Cui, C.; Liu, M. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon 2019, 5, e02234. [Google Scholar] [CrossRef]
- Naz, R.; Ayub, H.; Nawaz, S.; Islam, Z.U.; Yasmin, T.; Bano, A.; Wakeel, A.; Zia, S.; Roberts, T.H. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement. Altern. Med. 2017, 17, 302. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Methods to measure the antioxidant activity of phytochemicals and plant extracts. J. Agric. Food Chem. 2018, 66, 3324–3329. [Google Scholar] [CrossRef]
- Arshad, M.; Rahman, A.; Qayyum, A.; Hussain, K.; Khan, M.A.; Hussain, T.; Abbas, M.; Shar, G.A.; Zahoor, M.K.; Nazir, A.; et al. Environmental applications and bio-profiling of tribulus terrestris: An ecofriendly approach. Pol. J. Environ. Stud. 2020, 29, 2981–2986. [Google Scholar] [CrossRef]
- Kumari, C.S.; Yasmin, N.; Hussain, M.R.; Babuselvam, M. In vitro anti-inflammatory and anti-arthritic property of Rhizopora mucronata leaves. Intern. J. Pharm. Sci. Res. 2015, 6, 482–485. [Google Scholar]
- Ghareeb, D.A.; El Ahwany, A.; El-Mallawany, S.; Saif, A.A. In vitro screening for anti-acetylcholiesterase, anti-oxidant, anti-glucosidase, anti-inflammatory and anti-bacterial effect of three traditional medicinal plants. Biotechnol. Biotechnol. Equip. 2014, 28, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Opie, E.L. On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med. 1962, 115, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.A.D.; O’Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; Whittaker, J.A.; Conrad, J.; Vogler, B.; Rosner, H.; Kraus, W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J. 2008, 57, 327–331. [Google Scholar]
- Huang, Y.-C.; Hwang, T.-L.; Chang, C.-S.; Yang, Y.-L.; Shen, C.-N.; Liao, W.-Y.; Chen, S.-C.; Liaw, C.-C. Anti-inflammatory Flavonoids from the Rhizomes of Helminthostachys zeylanica. J. Nat. Prod. 2009, 72, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Anosike, C.A.; Igboegwu, O.N.; Nwodo, O.F.C. Antioxidant properties and membrane stabilization effects of methanol extract of Mucuna pruriens leaves on normal and sickle erythrocytes. J. Tradit. Complement. Med. 2018, 9, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Sudheendran, A.; Shajahan, M.A. Anti-inflammatory activity of root and fruit of gokshura (Tribulus terrestris Linn.) In albino rats. Int. J. Ayurveda Phar. Res. 2017, 5, 902–910. [Google Scholar]
- Ahmad, S.; Ansari, J.A.; Jamil, M.; Qamruzzama, Q. Wound healing potential of methanolic extract of Tribulus terrestris L. Fruits. J. Drug Deliv. Ther. 2012, 2, 71–74. [Google Scholar] [CrossRef]
- Baburao, B.; Rajyalakshmi, G.; Venkatesham, A.; Kiran, G.; Shyamsunder, A.; Gangarao, B. Anti-inflammatory and antimicrobial activities of methanolic extract of Tribulus terrestris Linn plant. Int. J. Chem. Sci. 2009, 7, 1867–1872. [Google Scholar]
- Ahmad, N.; Qamar, M.; Yuan, Y.; Nazir, Y.; Wilairatana, P.; Mubarak, M.S. Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers. Molecules 2022, 27, 2831. [Google Scholar] [CrossRef]
- Bedir, E.; Khan, I.A.; Walker, L.A. Biologically active steroidal glycosides from Tribulus terrestris. Pharmazie 2002, 57, 491–493. [Google Scholar]
- Tan, Y.-J.; Ren, Y.-S.; Gao, L.; Li, L.-F.; Cui, L.-J.; Li, B.; Li, X.; Yang, J.; Wang, M.-Z.; Lv, Y.-Y.; et al. 28-Day Oral Chronic Toxicity Study of Arctigenin in Rats. Front. Pharmacol. 2018, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Goshwami, D.; Hasan, S.; Raihan, S.Z. Evaluation of acute and subacute toxicity induced by methanol extract of Terminalia citrina leaves in Sprague Dawley rats. J. Acute Dis. 2015, 4, 316–321. [Google Scholar] [CrossRef]
- Nalawade, S.A.; Pingale, S.S.; Chaskar, M.G. Study of acute toxicity of Tribulus terristris. JCPR 2019, 9, 2947–2954. [Google Scholar]
- Mukhi, S.; Bose, A.; Das, D.K.; Panda, S.K.; Mohapatra, D.; Latha, S.; Balaraman, A.K. Acute and Sub-acute Toxicity study of Amrtadi Churna. Res. J. Pharm. Technol. 2021, 14, 3111–3118. [Google Scholar] [CrossRef]
- Raoofi, A.; Khazaei, M.; Ghanbari, A. Protective effect of hydroalcoholic extract of Tribulus terrestris on cisplatin induced renal tissue damage in mal e mice. Int. J. Prev. Med. 2015, 6, 11. [Google Scholar]
- Malheiros, A.; Filho, V.C.; Schmitt, C.B.; Yunes, R.A.; Escalante, A.; Svetaz, L.; Zacchino, S.; Monache, F.D. Antifungal activity of drimane sesquiterpenes from Drimys brasiliensis using bioassay-guided fractionation. J. Pharm. Pharm. Sci. 2005, 8, 335–339. [Google Scholar]
- Zhang, X.; Han, F.; Gao, P.; Yu, D.; Liu, S. Bioassay-guided fractionation of antifertility components of castorbean (Ricinus communis L.) seed extracts. Nat. Prod. Res. 2007, 21, 982–989. [Google Scholar] [CrossRef]
- Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R.; Thabrew, I.; De Silva, E.D. A study of the potential anticancer activity of Mangifera zeylanica bark: Evaluation of cytotoxic and apoptotic effects of the hexane extract and bioassay-guided fractionation to identify phytochemical constituents. Oncol. Lett. 2016, 11, 1335–1344. [Google Scholar] [CrossRef]
- Qamar, M.; Akhtar, S.; Ismail, T.; Yuan, Y.; Ahmad, N.; Tawab, A.; Ismail, A.; Barnard, R.T.; Cooper, M.A.; Blaskovich, M.A.; et al. Syzygium cumini(L.), Skeels fruit extracts: In vitro and in vivo anti-inflammatory properties. J. Ethnopharmacol. 2021, 271, 113805. [Google Scholar] [CrossRef]
- Qamar, M.; Akhtar, S.; Barnard, R.T.; Sestili, P.; Ziora, Z.M.; Lazarte, C.E.; Ismail, T. Antiinflammatory and Anticancer Properties of Grewia asiatica Crude Extracts and Fractions: A Bioassay-Guided Approach. BioMed Res. Int. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Abbas, M.W.; Hussain, M.; Qamar, M.; Ali, S.; Shafiq, Z.; Wilairatana, P.; Mubarak, M.S. Antioxidant and Anti-Inflammatory Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study. Molecules 2021, 26, 6084. [Google Scholar] [CrossRef]
- Liu, J.Y.; Hou, Y.L.; Cao, R.; Qiu, H.X.; Cheng, G.H.; Tu, R.; Wang, L.; Zhang, J.L.; Liu, D. Protodioscin ameliorates oxidative stress, inflammation and histology outcome in Complete Freund’s adjuvant induced arthritis rats. Apoptosis 2017, 22, 1454–1460. [Google Scholar] [CrossRef]
- Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFκB/MAPK pathway. Chem. Interact. 2015, 231, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Tong, Y.; Lu, S.; Yang, R.; Liao, X.; Xu, Y.F.; Li, X. Anti-inflammatory activity of myricetin isolated from Myrica rubra Sieb. et Zucc. leaves. Planta Med. 2010, 76, 1492–1496. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Zhao, R.J.; Park, S.J.; Lee, J.R.; Cho, I.J.; Yang, C.H.; Kim, S.G. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-κB-dependent iNOS and proinflammatory cytokines production. J. Cereb. Blood Flow Metab. 2008, 154, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Jiao, D.; Zhang, X.D. Myricetin suppresses p21-activated kinase 1 in human breast cancer MCF-7 cells through downstream signaling of the β-catenin pathway. Oncol Rep. 2016, 36, 342–348. [Google Scholar] [CrossRef]
- Sajedi, N.; Homayoun, M.; Mohammadi, F.; Soleimani, M. Myricetin exerts its apoptotic effects on MCF-7 breast cancer cells through evoking the BRCA1-GADD45 pathway. Asian Pac. J. Cancer Prev. 2020, 21, 3461–3468. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, H.; Gao, H.; Cheng, D.; Zhang, N.; Du, J.; Yue, J.; Du, P.; Zhao, B.; Yin, L. Liquiritigenin decreases tumorigenesis by inhibiting DNMT activity and increasing BRCA1 transcriptional activity in triple-negative breast cancer. Exp. Biol. Med. 2020, 246, 459–466. [Google Scholar] [CrossRef]
- Iriti, M.; Kubina, R.; Cochis, A.; Sorrentino, R.; Varoni, E.M.; Kabała-Dzik, A.; Azzimonti, B.; Dziedzic, A.; Rimondini, L.; Wojtyczka, R.D. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells. Phytother. Res. 2017, 31, 1529–1538. [Google Scholar] [CrossRef]
- Elsayed, H.E.; Ebrahim, H.Y.; Mohyeldin, M.M.; Siddique, A.B.; Kamal, A.M.; Haggag, E.; El Sayed, K.A. Rutin as a novel c-Met inhibitory lead for the control of triple negative breast malignancies. Nutr. Cancer 2017, 69, 1256–1271. [Google Scholar] [CrossRef]
- Dinchev, D.; Janda, B.; Evstatieva, L.; Oleszek, W.; Aslani, M.R.; Kostova, I. Distribution of steroidal saponins in Tribulus terrestris from different geographical regions. Phytochemistry 2008, 69, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.; Ivanov, K.; Mladenov, R.; Papanov, S.; Ivanova, S.; Obreshkova, D.; Atanasov, P.P.V.; Petkova, V. Food supplements with anabolic and androgenic activity-UHPLC analysis of food additives, containing Tribulus terrestris extract. World J. Pharma. Res. 2016, 5, 6–13. [Google Scholar]
- Kumar, A. Comparative and quantitative determination of quercetin and other flavonoids in North Indian populations of Tribulus terrestris Linn, by HPLC. Int. J. Pharm. Bio. Sci. 2012, 3, 69–79. [Google Scholar]
Assay | DCM | Methanol | 70% Aqueous Methanol | Ascorbic Acid | Quercetin |
---|---|---|---|---|---|
FRAP (Fe mmol/g) | 4.10 ± 0.2 | 35.3 ± 0.5 | 21.5 ± 1.01 | 51.0 ± 0.02 | 62.0 ± 0.02 |
DPPH (IC50 µg/mL) | 332.3 ± 2.5 | 71.4 ± 1.1 | 141.2 ± 0.01 | 29.1 ± 0.02 | 25.4 ± 0.01 |
H2O2 (% inhibition) | 12.5 ± 0.66 | 65.3 ± 0.53 | 34.6 ± 0.83 | 79 ± 0.02 | 84 ± 0.05 |
Treatment | Membrane Stabilization | Serum Albumin Denaturation | Egg Albumin Denaturation |
---|---|---|---|
% Inhibition | |||
Control (phosphate buffer) | NI | NI | NI |
Methanol extract (crude extract) | 68.5 *** | 80.2 *** | 75.6 *** |
70% aqueous methanol extract (crude extract) | 35.9 * | 48.3 ** | 43.2 ** |
Dichloromethane extract (crude extract) | NA | NA | NA |
Diclofenac sodium (standard drug) | 89.3 **** | 97.8 **** | 91.5 **** |
MCF-7 | HeLa | SK-OV-3 | NCI-H522 | |
---|---|---|---|---|
Methanol | 74.1 | 221.2 | 89.4 | 102.1 |
70% aqueous methanol | 176.4 | 343.1 | 256.2 | 441.8 |
Dichloromethane | NA | NA | NA | NA |
Methotrexate (standard drug) | 0.87 | 0.92 | 0.91 | 0.88 |
Parameters | Control Group | Acute Toxicity (14 days) | Subacute Toxicity (28 days) | ||
---|---|---|---|---|---|
Normal Saline | 2000 mg/kg TBTME | 3000 mg/kg TBTME | 500 mg/kg TBTME | 1000 mg/kg TBTME | |
Body weight (g) | 197.00 ± 8.00 | 210 ± 3.59 | 205 ± 4.50 | 194 ± 10.2 | 223 ± 11.6 |
Organ weights | |||||
Heart (g) | 0.59 ± 0.22 | 0.66 ± 0.20 | 0.64 ± 0.05 | 0.58 ± 0.20 | 0.73 ± 0.10 |
Paired Lungs (g) | 2.12 ± 1.10 | 2.22 ± 0.82 | 2.15 ± 0.80 | 2.09 ± 1.18 | 2.42 ± 1.22 |
Liver (g) | 7.89 ± 1.35 | 8.10 ± 2.90 | 7.92 ± 1.22 | 7.79 ± 2.15 | 8.50 ± 2.90 |
Spleen (g) | 0.44 ± 0.05 | 0.52 ± 0.01 | 0.49 ± 0.10 | 0.42 ± 0.20 | 0.62 ± 0.30 |
Hematological parameters | |||||
White blood cells (105/µL) | 3.35 ± 0.22 | 4.29 ± 0.30 | 4.53 ± 0.14 | 3.69 ± 0.32 | 3.99 ± 1.89 |
Neutrophils (%) | 38.91 ± 1.10 | 62.91 ± 2.22 | 64.01 ± 2.40 | 60.61 ± 2.34 | 55.52 ± 27.21 |
Lymphocytes (%) | 43.39 ± 2.30 | 74.91 ± 4.30 | 78.60 ± 3.40 | 63.96 ± 4.93 | 66.87 ± 33.48 |
Eosinophils (%) | 0.92 ± 0.11 | 1.46 ± 0.10 | 1.63 ± 0.08 | 1.19 ± 0.11 | 1.70 ± 0.67 |
Red blood cells (106/µL) | 8.90 ± 1.05 | 16.05 ± 1.20 | 17.00 ± 1.65 | 12.91 ± 2.40 | 17.03 ± 7.80 |
Hemoglobin (g/dl) | 12.92 ± 1.20 | 26.05 ± 1.95 | 24.92 ± 2.10 | 20.02 ± 2.79 | 22.90 ± 12.49 |
Hematocrit (%) | 46.50 ± 3.60 | 70.83 ± 3.70 | 70.43 ± 2.92 | 59.77 ± 4.24 | 64.72 ± 30.80 |
MCV (f/L) | 56.20 ± 7.51 | 99.09 ± 7.50 | 97.62 ± 5.93 | 77.66 ± 8.59 | 85.27 ± 43.41 |
MCH (pg) | 17.91 ± 1.55 | 28.78 ± 0.25 | 27.10 ± 2.10 | 22.90 ± 0.80 | 25.76 ± 12.18 |
MCHC (%) | 30.93 ± 1.04 | 43.92 ± 1.10 | 48.90 ± 0.70 | 40.06 ± 1.10 | 43.01 ± 17.80 |
Platelets (105/µL) | 7.45 ± 0.10 | 11.05 ± 0.40 | 10.91 ± 1.25 | 9.12 ± 1.25 | 11.35 ± 6.20 |
Serum biological parameters | |||||
Total Protein (g/dL) | 6.59 ± 2.25 | 7.31 ± 1.20 | 8.01 ± 0.90 | 5.69 ± 2.16 | 7.50 ± 4.02 |
Albumin (g/dL) | 3.01 ± 1.25 | 3.70 ± 0.71 | 3.91 ± 0.45 | 3.15 ± 0.80 | 3.72 ± 1.95 |
Albumin/Globulin ratio | 1.80 ± 0.28 | 3.55 ± 0.20 | 3.20 ± 0.25 | 3.60 ± 0.5 | 3.19 ± 0.75 |
Lactate Dehydrogenase (U/L) | 2230 ± 0.26 | 3166 ± 271.0 | 3085.8 ± 214.1 | 2975.7 ± 310.4 | 3290.4 ± 231.5 |
Asparate Transaminase (U/L) | 142.0 ± 271.0 | 191.3 ± 10.10 | 187.4 ± 7.98 | 175.1 ± 11.57 | 179.2 ± 29.34 |
Alanine Transaminase (U/L) | 25.30 ± 10.10 | 59.51 ± 5.50 | 57.66 ± 4.35 | 48.47 ± 6.30 | 53.80 ± 7.96 |
Alkaline Phosphatase (U/L) | 379.0 ± 9.10 | 418.0 ± 13.10 | 417.0 ± 10.82 | 391.2 ± 16.91 | 397.5 ± 19.02 |
Total bilirubin (mg/dL) | 0.34 ± 0.12 | 0.70 ± 0.10 | 1.42 ± 0.04 | 0.39 ± 0.06 | 2.19 ± 1.29 |
Creatinine (mg/dL) | 1.91 ± 0.09 | 3.14 ± 0.20 | 3.43 ± 0.24 | 2.59 ± 0.07 | 3.26 ± 0.79 |
Uric Acid (mg/dl) | 0.91 ± 12.3 | 1.62 ± 0.12 | 2.19 ± 0.04 | 1.36 ± 0.12 | 2.91 ± 35.02 |
Total Cholesterol (mg/dl) | 50.91 ± 3.15 | 85.00 ± 4.20 | 84.01 ± 2.90 | 70.12 ± 6.13 | 77.02 ± 67.31 |
Triglycerides (mg/dl) | 117.2 ± 5.12 | 189.2 ± 8.12 | 182.6 ± 9.03 | 155.0 ± 9.71 | 154.2 ± 80.19 |
Potassium (mmol/L) | 2.54 ± 1.42 | 5.39 ± 2.20 | 5.53 ± 2.43 | 4.54 ± 0.13 | 5.19 ± 1.11 |
Chloride (mmol/L) | 70.24 ± 18.31 | 144.2 ± 19.22 | 145.2 ± 14.70 | 111.4 ± 21.81 | 152.0 ± 12.40 |
Sodium (mmol/L) | 136.1 ± 17.20 | 190.4 ± 17.22 | 192.0 ± 13.42 | 150.0 ± 21.52 | 183.0 ± 64.61 |
Assays | Fraction (A) | Fraction (B) | Fraction (C) | Ascorbic Acid | Quercetin | Diclofenac Sodium | Methotrexate |
---|---|---|---|---|---|---|---|
Antioxidant activity | |||||||
FRAP (mmol/g) | NA | 45.2 ± 0.1 | 17.2 ± 0.10 | 50.9 ± 0.20 | 61.9 ± 0.05 | - | - |
DPPH (IC50 µg/mL) | NA | 56.2 ± 1.1 | 91.9 ± 0.01 | 30.2 ± 0.05 | 24.9 ± 0.10 | - | - |
H2O2 (%) | NA | 68.0 ± 0.2 | 32.1 ± 0.5 | 79.0 ± 0.02 | 84.0 ± 0.05 | - | - |
Anti-inflammatory activity (% inhibition at 400 µg/mL) | |||||||
Heat-induced hemolysis | NA | 74.1 *** | 36.9 ± 0.10 * | - | - | 89.3 **** | - |
Egg albumin denaturation | NA | 77.9 *** | 39.6 ± 0.2 * | - | - | 91.5 **** | - |
Serum albumin denaturation | NA | 83.5 *** | 52.1 ± 0.10 * | - | - | 97.8 **** | - |
Anti-cancer activity (IC50 µg/mL) | |||||||
MCF-7 Breast cancer | NA | 65.2 | 122.8 | - | - | - | 0.80 |
HeLa Cervical cancer | NA | 223.6 | NA | - | - | - | 0.92 |
SK-OV-3 Ovary carcinoma | NA | 81.3 | 231.8 | - | - | - | 0.92 |
NCI-H522 Lung cancer | NA | 111.9 | 174.9 | - | - | - | 0.88 |
Assays | TBTMF1 | TBTMF2 | TBTMF3 | TBTMF4 | Ascorbic Acid | Quercetin | Diclofenac Sodium | Methotrexate |
---|---|---|---|---|---|---|---|---|
Antioxidant activity | ||||||||
FRAP (mmol/g) | NA | 26.1 ± 0.3 | 49.1 ± 0.1 | 38.8 ± 1.1 | 51 ± 0.02 | 62 ± 0.02 | - | - |
DPPH (IC50 µg/mL) | NA | 96.6 ± 0.2 | 41.9 ± 1.1 | 104.6 ± 0.1 | 29.1 ± 0.02 | 25.4 ± 0.01 | - | - |
H2O2 (%) | NA | 28.1 ± 1.1 | 71.2 ± 0.5 | 17.3 ± 0.2 | 79 ± 0.02 | 84 ± 0.05 | - | - |
Anti-inflammatory activity (% inhibition at 400 µg/mL) | ||||||||
Membrane stabilization | NA | 33.2 | 76.1 | 29.5 | - | - | 89.3 | - |
Egg albumin denaturation | NA | 37.8 | 81.9 | 30.8 | - | - | 91.5 | - |
Serum albumin denaturation | NA | 44.8 | 85.2 | 34.5 | - | - | 97.8 | - |
Anticancer activity (IC50 µg/mL) | ||||||||
Breast cancer (MCF-7) | NA | 281.4 | 43.2 | 331.9 | - | - | - | 0.87 |
Cervical cancer (HeLa) | NA | 441.9 | 142.5 | NA | - | - | - | 0.92 |
Ovary carcinoma (SK-OV-3) | NA | NA | 88.4 | 241.9 | - | - | - | 0.96 |
Lung cancer (NCI-H522) | NA | 321.4 | 298.6 | NA | - | - | - | 0.88 |
Compound Name | LOD (µg/mg) | LOQ (µg/mg) | r2 | Rt min | Concentration (µg/mg) |
---|---|---|---|---|---|
Rutin | 1.70 | 4.90 | 0.9998 | 4.9 | 2.19 |
Protodioscin | 1.10 | 3.20 | 0.9986 | 5.1 | 11.2 |
Myricetin | 1.90 | 5.60 | 0.9999 | 22.3 | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.W.; Hussain, M.; Akhtar, S.; Ismail, T.; Qamar, M.; Shafiq, Z.; Esatbeyoglu, T. Bioactive Compounds, Antioxidant, Anti-Inflammatory, Anti-Cancer, and Toxicity Assessment of Tribulus terrestris—In Vitro and In Vivo Studies. Antioxidants 2022, 11, 1160. https://doi.org/10.3390/antiox11061160
Abbas MW, Hussain M, Akhtar S, Ismail T, Qamar M, Shafiq Z, Esatbeyoglu T. Bioactive Compounds, Antioxidant, Anti-Inflammatory, Anti-Cancer, and Toxicity Assessment of Tribulus terrestris—In Vitro and In Vivo Studies. Antioxidants. 2022; 11(6):1160. https://doi.org/10.3390/antiox11061160
Chicago/Turabian StyleAbbas, Malik Waseem, Mazhar Hussain, Saeed Akhtar, Tariq Ismail, Muhammad Qamar, Zahid Shafiq, and Tuba Esatbeyoglu. 2022. "Bioactive Compounds, Antioxidant, Anti-Inflammatory, Anti-Cancer, and Toxicity Assessment of Tribulus terrestris—In Vitro and In Vivo Studies" Antioxidants 11, no. 6: 1160. https://doi.org/10.3390/antiox11061160
APA StyleAbbas, M. W., Hussain, M., Akhtar, S., Ismail, T., Qamar, M., Shafiq, Z., & Esatbeyoglu, T. (2022). Bioactive Compounds, Antioxidant, Anti-Inflammatory, Anti-Cancer, and Toxicity Assessment of Tribulus terrestris—In Vitro and In Vivo Studies. Antioxidants, 11(6), 1160. https://doi.org/10.3390/antiox11061160