Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Microalgal Species and Cultivation Conditions
2.3. Analytical Measurements
2.4. Biomass Composition Analysis
2.4.1. Biomass Collection
2.4.2. Moisture and Ash Content Determination
2.4.3. Protein Content Determination
2.4.4. Carbohydrate Content Determination
2.4.5. Lipid Profiling and Quantification
2.4.6. Pigment Content Determination
2.5. Extraction Methods
2.5.1. Sequential Extraction with H2O and MeOH (Protocol A)
2.5.2. Ultrasound-Assisted Extraction with 70% MeOH (Protocol B)
2.5.3. Ultrasound-Assisted Extraction with MeOH (Protocol C)
2.6. Determination of Total Phenolic Content (TPC)
2.7. Determination of Antioxidant Activity
2.7.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7.2. DPPH Radical Scavenging Activity (DPPH RSA) Assay
2.7.3. Iron Chelating Activity (ICA) Assay
2.8. Chromatographic Methods
2.8.1. High Performance Liquid Chromatography (HPLC)
2.8.2. Liquid Chromatography-Mass Spectrometry (LC-MS)
2.8.3. Semi-Preparative HPLC
2.9. Statistical Analysis
3. Results and Discussion
3.1. Growth and Biomass Productivity
3.2. Biomass Composition and FA Analysis
3.2.1. Late Stationary Phase Composition and FA Profile
3.2.2. Early Stationary Phase Composition and FA Profile of N. oculata and T. lutea
3.3. Total Phenolic Content and Antioxidant Activity
3.3.1. TPC
Genus | N of Ref | TPC | Min | Solvent | Ref | Max | Solvent | Ref |
---|---|---|---|---|---|---|---|---|
Acutodesmus | 1 | 6.4 | Acetone | [56] | ||||
Anabaena | 4 | 6.7 ± 7.0 | 0.6 | Hexane | [49] | 24.5 | Hexane, Chlorophorm, Ethyl Acetate, Ethanol 70%, Water | [55] |
Arthrospira | 3 | 6.4 ± 5.4 | 0.0 | Hexane | [14] | 22.5 | Hexane, Chlorophorm, Ethyl Acetate, Ethanol 70%, Water | [55] |
Botryococcus | 1 | 10.2 ± 3.1 | 7.1 | Acetone | [56] | 13.2 | Acetone | [56] |
Chaetoceros | 1 | 0.4 ± 0.2 | 0.2 | Water | [62] | 0.7 | Hexane | [62] |
Chlamydomonas | 1 | 5.0 ± 2.4 | 2.4 | Water | [48] | 8.1 | Hexane | [48] |
Chlorella | 11 | 4.8 ± 6.7 | 0.0 | Hexane | [52] | 39.1 | Hexane, Chlorophorm, Ethyl Acetate, Ethanol 70%, Water | [55] |
Chlorococcum | 1 | 2.9 ± 0.7 | 2.2 | Water | [47] | 3.7 | Ethanol | [47] |
Chroococcus | 1 | 3.0 ± 0.4 | 2.5 | Hexane | [49] | 3.4 | Ethyl acetate | [49] |
Cryptheconidium | 1 | 3.8 ± 4.2 | 0.9 | Ethyl acetate | [48] | 12.7 | Hexane | [48] |
Desmodesmus | 1 | 7.8 | Methanol | [8] | ||||
Dictyochloropsis | 1 | 38.5 | Hexane, Chlorophorm, Ethyl Acetate, Ethanol 70%, Water | [55] | ||||
Dunaliella | 3 | 2.3 ± 2.1 | 0.1 | Hexane | [62] | 5.9 | Methanol | [17] |
Fischerella | 1 | 2.3 ± 1.8 | 0.4 | Hexane | [49] | 5.0 | Water | [49] |
Haematococcus | 1 | 0.9 ± 0.3 | 0.5 | Ethanol/Water 3:1 | [20] | 1.2 | Ethanol/Water 3:1 | [20] |
Isochrysis | 2 | 2.3 ± 1.3 | 0.2 | Water | [62] | 3.9 | Methanol | [18] |
Microchaete | 1 | 1.5 ± 1.5 | 0.2 | Hexane | [49] | 3.7 | Water | [49] |
Nannochloropsis | 4 | 2.9 ± 3.1 | 0.1 | Water | [62] | 8.0 | Acetone | [56] |
Neochloris | 1 | 9.8 | Acetone | [56] | ||||
Nitzschia | 1 | 2.9 ± 0.7 | 2.4 | Ethyl acetate or Hexane | [48] | 3.9 | Water | [48] |
Nostoc | 3 | 6.4 ± 8.9 | 0.3 | Hexane | [49] | 39.9 | Hexane | [48] |
Oscillatoria | 2 | 17.4 ± 6.2 | 8.0 | Water | [54] | 24.5 | Hexane, Chlorophorm, Ethyl Acetate, Ethanol 70%, Water | [55] |
Parachlorella | 1 | 1.4 | Ethanol/Water 3:1 | [20] | ||||
Pavlova | 1 | 0.2 ± 0.1 | 0.1 | Hexane | [62] | 0.3 | Ethyl acetate | [62] |
Phaeodactylum | 3 | 4.2 ± 2.3 | 2.1 | Ethanol/Water 3:1 | [56] | 9.9 | Acetone | [56] |
Phormidium | 1 | 28.0 | Hexane, Chlorophorm, Ethyl Acetate, Ethanol 70%, Water | [55] | ||||
Porphyridium | 1 | 6.5 | Acetone | [56] | ||||
Rhodomonas | 1 | 0.0 | Methanol or Hexane | [52] | ||||
Scenedesmus | 2 | 15.5 ± 13.6 | 1.9 | Ethanol/Water 3:1 | [20] | 29.1 | Hexane, Chlorophorm, Ethyl Acetate, Ethanol 70%, Water | [55] |
Schizochytrium | 1 | 3.3 ± 4.7 | 0.0 | Ethyl acetate or Hexane | [48] | 13.6 | Hexane | [48] |
Skeletonema | 1 | 9.5 ± 2.9 | 6.6 | Methanol | [57] | 12.4 | Methanol | [57] |
Synechococcus | 1 | 3.5 ± 1.5 | 2.1 | Hexane | [48] | 5.6 | Ethyl acetate | [48] |
Tetraselmis | 4 | 2.8 ± 5.2 | 0.0 | Hexane | [52] | 20.0 | Acetone | [56] |
Thraustochytrium | 1 | 2.2 ± 1.3 | 1.2 | Ethyl acetate | [48] | 4.0 | Hexane | [48] |
Tolypothrix | 1 | 1.4 ± 1.2 | 0.2 | Hexane | [49] | 3.0 | Water | [49] |
3.3.2. DPPH RSA
3.3.3. FRAP
3.3.4. ICA
3.3.5. Pearson Correlation Analysis
3.3.6. PCA
3.4. Chromatographic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novoveská, L.; Ross, M.E.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.-F. Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Mar. Drugs 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- García-Chavarría, M.; Lara-Flores, M. The Use of Carotenoid in Aquaculture. Res. J. Fish. Hydrobiol. 2013, 8, 38–49. [Google Scholar]
- Pérez-Legaspi, I.A.; Valadez-Rocha, V.; Ortega-Clemente, L.A.; Jiménez-García, M.I. Microalgal pigment induction and transfer in aquaculture. Rev. Aquac. 2020, 12, 1323–1343. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.-S.; Wang, H.-D.; Zhang, X.; Yu, Q.; Li, W.; Zhou, M.-L.; Wang, X.-L. Astaxanthin Activates Nuclear Factor Erythroid-Related Factor 2 and the Antioxidant Responsive Element (Nrf2-ARE) Pathway in the Brain after Subarachnoid Hemorrhage in Rats and Attenuates Early Brain Injury. Mar. Drugs 2014, 12, 6125–6141. [Google Scholar] [CrossRef]
- Jin, W.; Yang, L.; Yi, Z.; Fang, H.; Chen, W.; Hong, Z.; Zhang, Y.; Zhang, G.; Li, L. Anti-Inflammatory Effects of Fucoxanthinol in LPS-Induced RAW264.7 Cells through the NAAA-PEA Pathway. Mar. Drugs 2020, 18, 222. [Google Scholar] [CrossRef] [Green Version]
- Conde, T.; Lopes, D.; Łuczaj, W.; Neves, B.; Pinto, B.; Maurício, T.; Domingues, P.; Skrzydlewska, E.; Domingues, M.R. Algal Lipids as Modulators of Skin Disease: A Critical Review. Metabolites 2022, 12, 96. [Google Scholar] [CrossRef]
- Martins, C.B.; Ferreira, O.; Rosado, T.; Gallardo, E.; Silvestre, S.; Santos, L.M.A. Eustigmatophyte strains with potential interest in cancer prevention and treatment: Partial chemical characterization and evaluation of cytotoxic and antioxidant activity. Biotechnol. Lett. 2021, 43, 1487–1502. [Google Scholar] [CrossRef]
- Safafar, H.; Van Wagenen, J.M.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [Green Version]
- Koutra, E.; Papavasileiou, P.; Andriopoulos, V.; Mastropetros, S.G.; Kornaros, M. Bioactive compounds from microalgae cultivated in wastewaters. In An Integration of Phycoremediation Processes in Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 177–202. [Google Scholar] [CrossRef]
- Kaurinovic, B.; Vastag, D. Flavonoids and Phenolic Acids as Potential Natural Antioxidants; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Baky, H.H.; El Baz, F.K.; El-Baroty, G.S. Production of Phenolic Compounds from Spirulina maxima Microalgae and Its Protective Effects in vitro toward Hepatotoxicity Model. Afr. J. Pharm. Pharmacol. 2009, 3, 133–139. [Google Scholar]
- Goiris, K.; Van Colen, W.; Wilches, I.; León-Tamariz, F.; De Cooman, L.; Muylaert, K. Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res. 2015, 7, 51–57. [Google Scholar] [CrossRef]
- Klejdus, B.; Kopecký, J.; Benešová, L.; Vacek, J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J. Chromatogr. A 2009, 1216, 763–771. [Google Scholar] [CrossRef]
- Scaglioni, P.T.; Quadros, L.; de Paula, M.; Furlong, V.B.; Abreu, P.C.; Badiale-Furlong, E. Inhibition of Enzymatic and Oxidative Process by Phenolic Extracts from Spirulina sp. and Nannochloropsis sp. Food Technol. Biotechnol. 2018, 56, 344–353. [Google Scholar] [CrossRef]
- Sozmen, A.B.; Canbay, E.; Sozmen, E.Y.; Ovez, B. The effect of temperature and light intensity during cultivation of Chlorella miniata on antioxidant, anti-inflammatory potentials and phenolic compound accumulation. Biocatal. Agric. Biotechnol. 2018, 14, 366–374. [Google Scholar] [CrossRef]
- Strejckova, A.; Dvorak, M.; Klejdus, B.; Krystofova, O.; Hedbavny, J.; Adam, V.; Huska, D. The strong reaction of simple phenolic acids during oxidative stress caused by nickel, cadmium and copper in the microalga Scenedesmus quadricauda. New Biotechnol. 2018, 48, 66–75. [Google Scholar] [CrossRef]
- Al-Rashed, S.A.; Ibrahim, M.M.; El-Gaaly, G.A.; Al-Shehri, S.; Mostafa, A. Evaluation of radical scavenging system in two microalgae in response to interactive stresses of UV-B radiation and nitrogen starvation. Saudi J. Biol. Sci. 2016, 23, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.; Prasad, S.M.; Mishra, N. Influence of High Light Intensity and Nitrate Deprivation on Growth and Biochemical Composition of the Marine Microalgae Isochrysis galbana. Braz. Arch. Biol. Technol. 2019, 62. [Google Scholar] [CrossRef]
- Bulut, O.; Akın, D.; Sönmez, Ç.; Öktem, A.; Yücel, M.; Öktem, H.A. Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp. (Chlorophyta) extracted with different solvents. J. Appl. Phycol. 2019, 31, 1675–1683. [Google Scholar] [CrossRef]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Yarnold, J.; Karan, H.; Oey, M.; Hankamer, B. Microalgal Aquafeeds as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Gifuni, I.; Pollio, A.; Safi, C.; Marzocchella, A.; Olivieri, G. Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends Biotechnol. 2019, 37, 242–252. [Google Scholar] [CrossRef]
- APHA. Standard Methods for Examination of Water and Wastewater, 20th ed.; (Electronic) r0304-3894 (Linking); American Public Health Association: Washington, DC, USA, 1998; ISBN 1873-3336. [Google Scholar]
- Zhu, C.J.; Lee, Y.K. Determination of biomass dry weight of marine microalgae. J. Appl. Phycol. 1997, 9, 189–194. [Google Scholar] [CrossRef]
- Griffiths, M.J.; Garcin, C.; van Hille, R.P.; Harrison, S.T. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 2011, 85, 119–123. [Google Scholar] [CrossRef]
- Do, B.C.; Dang, T.T.; Berrin, J.G.; Haltrich, D.; To, K.A.; Sigoillot, J.C.; Yamabhai, M. Cloning, Expression in Pichia Pastoris, and Characterization of a Thermostable GH5 Mannan Endo-1,4-Beta-Mannosidase from Aspergillus Niger BK01. Available online: https://www.scienceopen.com/document?vid=8f3823b9-b461-49b4-8e91-a93572357775 (accessed on 17 May 2021).
- Levine, R.B.; Costanza-Robinson, M.S.; Spatafora, G.A. Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 2011, 35, 40–49. [Google Scholar] [CrossRef]
- Koutra, E.; Grammatikopoulos, G.; Kornaros, M. Microalgal post-treatment of anaerobically digested agro-industrial wastes for nutrient removal and lipids production. Bioresour. Technol. 2017, 224, 473–480. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta BBA Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Manisali, A.Y.; Sunol, A.K.; Philippidis, G.P. Effect of macronutrients on phospholipid production by the microalga Nannochloropsis oculata in a photobioreactor. Algal Res. 2019, 41, 101514. [Google Scholar] [CrossRef]
- Gao, F.; Teles, I.; Ferrer-Ledo, N.; Wijffels, R.H.; Barbosa, M.J. Production and high throughput quantification of fucoxanthin and lipids in Tisochrysis lutea using single-cell fluorescence. Bioresour. Technol. 2020, 318, 124104. [Google Scholar] [CrossRef]
- Byrd, S.M.; Burkholder, J.M. Environmental stressors and lipid production in Dunaliella spp. II. Nutrients, pH, and light under optimal or low salinity. J. Exp. Mar. Biol. Ecol. 2017, 487, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Bauer, L.M.; Rodrigues, E.; Rech, R. Potential of immobilized Chlorella minutissima for the production of biomass, proteins, carotenoids and fatty acids. Biocatal. Agric. Biotechnol. 2020, 25, 101601. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, R.G.; Grougnet, R.; Bodet, P.-E.; Bonnet, A.; Nicolau, E.; Jebali, A.; Rumin, J.; Picot, L. Updated pigment composition of Tisochrysis lutea and purification of fucoxanthin using centrifugal partition chromatography coupled to flash chromatography for the chemosensitization of melanoma cells. Algal Res. 2020, 51, 102035. [Google Scholar] [CrossRef]
- Nobre, B.P.; Villalobos, F.; Barragán, B.E.; Oliveira, A.C.; Batista, A.P.; Marques, P.A.S.S.; Mendes, R.L.; Sovová, H.; Palavra, A.F.; Gouveia, L. A biorefinery from Nannochloropsis sp. Microalga—Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour. Technol. 2013, 135, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fosse, H.K.; Li, K.; Chauton, M.S.; Vadstein, O.; Reitan, K.I. Influence of Nitrogen Limitation on Lipid Accumulation and EPA and DHA Content in Four Marine Microalgae for Possible Use in Aquafeed. Front. Mar. Sci. 2019, 6, 95. [Google Scholar] [CrossRef]
- Jónasdóttir, S.H. Fatty Acid Profiles and Production in Marine Phytoplankton. Mar. Drugs 2019, 17, 151. [Google Scholar] [CrossRef] [Green Version]
- Gharat, K.; Agarwal, A.; Pandit, R.A.; Lali, A.M. Development of fed batch strategies to improve the production of eicosapentaenoic acid from a marine microalga Nannochloropsis oculata. Bioresour. Technol. Rep. 2018, 4, 193–201. [Google Scholar] [CrossRef]
- Matsui, H.; Intoy, M.M.B.; Waqalevu, V.; Ishikawa, M.; Kotani, T. Suitability of Tisochrysis lutea at different growth phases as an enrichment diet for Brachionus plicatilis sp. complex rotifers. J. Appl. Phycol. 2020, 32, 3933–3947. [Google Scholar] [CrossRef]
- Gharaati Jahromi, S. Extraction Techniques of Phenolic Compounds from Plants. In Plant Physiological Aspects of Phenolic Compounds; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Choochote, W.; Suklampoo, L.; Ochaikul, D. Evaluation of antioxidant capacities of green microalgae. J. Appl. Phycol. 2013, 26, 43–48. [Google Scholar] [CrossRef]
- Li, H.-B.; Cheng, K.-W.; Wong, C.-C.; Fan, K.-W.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007, 102, 771–776. [Google Scholar] [CrossRef]
- Hajimahmoodi, M.; Faramarzi, M.A.; Mohammadi, N.; Soltani, N.; Oveisi, M.R.; Nafissi-Varcheh, N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J. Appl. Phycol. 2009, 22, 43–50. [Google Scholar] [CrossRef]
- Al Khawli, F.; Martí-Quijal, F.J.; Pallarés, N.; Barba, F.J.; Ferrer, E. Ultrasound Extraction Mediated Recovery of Nutrients and Antioxidant Bioactive Compounds from Phaeodactylum tricornutum Microalgae. Appl. Sci. 2021, 11, 1701. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Ogbonna, C.N.; Ishika, T.; Vadiveloo, A. Microalgal Pigments: A Source of Natural Food Colors. In Microalgae Biotechnology for Food, Health and High Value Products; Springer: Singapore, 2020; pp. 81–123. ISBN 9789811501692. [Google Scholar]
- Custódio, L.; Justo, T.; Silvestre, L.; Barradas, A.; Duarte, C.V.; Pereira, H.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities. Food Chem. 2012, 131, 134–140. [Google Scholar] [CrossRef]
- Olasehinde, T.A.; Odjadjare, E.C.; Mabinya, L.V.; Olaniran, A.O.; Okoh, A.I. Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electron. J. Biotechnol. 2019, 40, 1–9. [Google Scholar] [CrossRef]
- El-Aty, A.M.A.; Mohamed, A.A.; Samhan, F.A. In vitro antioxidant and antibacterial activities of two fresh water Cyanobacterial species, Oscillatoria agardhii and Anabaena sphaerica. JAPS 2014, 4, 69–75. [Google Scholar] [CrossRef]
- Ali, H.E.A.; Shanab, S.M.M.; Abo-State, M.A.M.; Shalaby, E.A.A.; Eldmerdash, U.; Abdullah, M.A. Screening of Microalgae for Antioxidant Activities, Carotenoids and Phenolic Contents. AMM 2014, 625, 156–159. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Smerilli, A.; Orefice, I.; Corato, F.; Olea, A.G.; Ruban, A.V.; Brunet, C. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi. Environ. Microbiol. 2017, 19, 611–627. [Google Scholar] [CrossRef]
- Santhosh, S.; Manivannan, N.; Ragavendran, C.; Mathivanan, N.; Natarajan, D.; Hemalatha, N.; Dhandapani, R. Growth optimization, free radical scavenging and antibacterial potential of Chlorella sp. SRD3 extracts against clinical isolates. J. Appl. Microbiol. 2019, 127, 481–494. [Google Scholar] [CrossRef]
- Stanciu, G.; Cristache, N.; Lupsor, S.; Dobrinas, S. Evaluation of Antioxidant Activity and Total Phenols Content in Selected Spices. Rev. Chim. 2017, 68, 1429–1434. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds from Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef]
- Schade, S.; Meier, T. Techno-economic assessment of microalgae cultivation in a tubular photobioreactor for food in a humid continental climate. Clean Technol. Environ. Policy 2021, 23, 1475–1492. [Google Scholar] [CrossRef]
- Ahmed, F.; Fanning, K.; Netzel, M.; Turner, W.; Li, Y.; Schenk, P.M. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem. 2014, 165, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Layden, E.A.; Schertz, K.E.; London, S.E.; Berman, M.G. Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny. NeuroImage 2019, 195, 113–127. [Google Scholar] [CrossRef]
- El-Hamidi, M.; Zaher, F.A.; El-Shami, S.M. Interaction of Oilseed Pigments and Phospholipids in the Determination of Total Phenolic Compounds Using the Folin-Ciocalteu Reagent. Available online: https://www.researchgate.net/publication/304953271_Interaction_of_oilseed_pigments_and_phospholipids_in_the_determination_of_total_phenolic_compounds_using_the_Folin-Ciocalteu_reagent (accessed on 17 May 2021).
- Gkioni, M.D.; Andriopoulos, V.; Koutra, E.; Hatziantoniou, S.; Kornaros, M.; Lamari, F.N. Ultrasound-Assisted Extraction of Nannochloropsis oculata with Ethanol and Betaine: 1,2-Propanediol Eutectic Solvent for Antioxidant Pigment-Rich Extracts Retaining Nutritious the Residual Biomass. Antioxidants 2022, 11, 1103. [Google Scholar] [CrossRef]
- Kolb, D.K.; Brown, J.B. Low temperature solubilities of fatty acids in selected organic solvents. J. Am. Oil Chem. Soc. 1955, 32, 357–361. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. A thorough study of reactivity of various compound classes toward the folin-ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar]
- Apak, R.; Capanoglu, E.; Shahidi, F. (Eds.) Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Cobos, M.; Pérez, S.; Braga, J.; Vargas-Arana, G.; Flores, L.; Paredes, J.D.; Maddox, J.D.; Marapara, J.L.; Castro, J.C. Nutritional evaluation and human health-promoting potential of compounds biosynthesized by native microalgae from the Peruvian Amazon. World J. Microbiol. Biotechnol. 2020, 36, 121. [Google Scholar] [CrossRef]
Species * | C. minutissima | D. salina | N. oculata | T. lutea | I. galbana |
---|---|---|---|---|---|
mg N L−1 conc. | 48.05 ± 0.10 ab | 44.91 ± 1.42 b | 49.44 ± 0.33 a | 49.77 ± 0.02 a | 48.96 ± 0.06 a |
μg P L−1 conc. | 4605.95 ± 0.05 a | 4605.66 ± 0.01 b | 4605.97 ± 0.03 a | 4605.80 ± 0.02 ab | 4605.69 ± 0.04 b |
Final pH | 8.65 ± 0.05 ab | 8.55 ± 0.25 ab | 9.50 ± 0.11 a | 8.31 ± 0.07 b | 8.62 ± 0.28 ab |
OD750/Dilution | 6.85 ± 0.18 a | 2.17 ± 0.35 b | 6.21 ± 0.69 a | 2.24 ± 0.16 b | 2.52 ± 0.12 b |
TSS g DW L−1 | 1.35 ± 0.13 a | 0.82 ± 0.14 ab | 1.25 ± 0.05 a | 0.83 ± 0.02 ab | 0.69 ± 0.10 b |
μmax (d−1) | 0.31 ± 0.04 a | 0.28 ± 0.18 a | 0.45 ± 0.05 a | 0.45 ± 0.11 a | 0.29 ± 0.04 a |
Species * | C. minutissima | D. salina | N. oculata | T. lutea | I. galbana |
---|---|---|---|---|---|
Ash (%) | 8.30 ± 1.54 de | 10.08 ± 0.01 cde | 3.81 ± 0.21 e | 12.81 ± 3.16 bcde | 10.85 ± 0.35 cde |
Carbohydrates (%) | 18.00 ± 3.43 abcde | 20.32 ± 2.48 abcde | 21.48 ± 10.62 abcde | 10.04 ± 1.67 ce | 8.81 ± 2.59 de |
Protein (%) | 31.08 ± 0.93 abcd | 36.72 ± 5.05 ab | 27.71 ± 3.12 abcde | 39.69 ± 5.03 ab | 31.40 ± 4.32 abcd |
Lipids (%) | 11.11 ± 0.15 cde | 9.23 ± 3.24 de | 36.70 ± 3.30 ab | 7.39 ± 0.45 de | 8.77 ± 0.56 de |
Other (%) | 26.63 ± 5.46 abcde | 22.23 ± 5.44 abcde | 9.91 ± 9.91 cde | 28.35 ± 2.95 abcde | 44.06 ± 11.65 a |
Chla (%) | 2.80 ± 0.16 a | 0.88 ± 0.24 bc | 0.71 ± 0.31 bcd | 0.95 ± 0.06 bc | 1.01 ± 0.25 bc |
Chlb (%) | 1.01 ± 0.05 bc | 0.29 ± 0.04 cd | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.08 ± 0.03 d |
Car (%) | 1.07 ± 0.08 b | 0.24 ± 0.08 cd | 0.35 ± 0.12 bcd | 0.77 ± 0.07 bcd | 0.27 ± 0.02 cd |
MUFA (% lipids) | 3.86 ± 0.84 f | 11.42 ± 0.45 ef | 36.58 ± 0.35 bcd | 15.36 ± 3.10 def | 22.38 ± 2.16 cde |
PUFA (% lipids) | 59.44 ± 0.57 a | 44.27 ± 6.63 abc | 13.45 ± 0.50 ef | 45.86 ± 6.25 ab | 29.40 ± 3.81 bcd |
SFA (% lipids) | 27.42 ± 0.34 bcde | 44.31 ± 6.19 abc | 49.97 ± 0.86 ab | 38.79 ± 9.35 abc | 48.22 ± 1.64 ab |
EPA (mg g−1 DW) | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 28.19 ± 0.03 a | 2.91 ± 2.9 c | 1.97 ± 1.97 c |
DHA (mg g−1 DW) | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 21.56 ± 2.04 ab | 14.93 ± 2.76 b |
Species * ** *** | N. oculata | T. lutea |
---|---|---|
Ash | 2.10 ± 0.61 e | 14.93 ± 2.90 cd |
Carbohydrates (%) | 14.92 ± 1.83 cd | 7.21 ± 0.10 d |
Protein (%) | 39.88 ± 1.72 ab | 43.30 ± 1.33 a |
Lipids (%) | 26.39 ± 3.00 abc | 9.45 ± 0.30 d |
Other (%) | 14.21 ± 3.48 abcd | 22.20 ± 4.15 cd |
Chla (%) | 1.86 ± 0.11 aA | 1.95 ± 0.11 aA |
Chlb (%) | 0.00 ± 0.00 c | 0.02 ± 0.00 c |
Car (%) | 0.64 ± 0.13 b | 0.92 ± 0.02 b |
MUFA (% lipids) | 31.68 ± 0.25 ab | 17.10 ± 0.81 b |
PUFA (% lipids) | 19.38 ± 3.29 b | 45.71 ± 3.09 a |
SFA (% lipids) | 48.94 ± 3.54 a | 37.19 ± 2.28 a |
EPA (mg g−1 DW) | 33.74 ± 9.98 a | 2.80 ± 1.81 b |
DHA (mg g−1 DW) | 0.00 ± 0.00 b | 31.31 ± 2.92 a |
Species * | Phase | Solvent | TPC | FRAP | DPPH RSA | ICA |
---|---|---|---|---|---|---|
C. minutissima | Early st. | H2O | 3.00 ± 0.30 def | 0.47 ± 0.04 d | 1.07 ± 0.18 c | 9.47 ± 0.12 abc |
MeOH | 9.04 ± 0.68 a | 18.24 ± 0.8 a | 3.74 ± 0.23 a | 19.61 ± 0.09 ab | ||
Late st. | H2O | 2.81 ± 0.24 def | 0.84 ± 0.03 d | 0.83 ± 0.02 c | 8.84 ± 0.12 c | |
MeOH | 6.23 ± 0.52 abcd | 11.16 ± 0.35 b | 2.50 ± 0.05 b | 17.42 ± 0.18 abc | ||
D. salina | Early st. | H2O | 6.44 ± 0.93 abc | 0.25 ± 0.03 d | 1.32 ± 0.27 c | 9.53 ± 0.34 abc |
MeOH | 2.25 ± 1.20 def | 3.84 ± 1.69 cd | 0.16 ± 0.14 c | 18.51 ± 0.50 ab | ||
Late st. | H2O | 8.78 ± 1.49 a | 0.34 ± 0.07 d | 0.70 ± 0.07 c | 9.60 ± 0.36 bc | |
MeOH | 1.30 ± 0.37 ef | 2.04 ± 0.92 d | 0.15 ± 0.15 c | 18.13 ± 0.50 ab | ||
N. oculata | Early st. | H2O | 3.46 ± 1.24 cdef | 0.29 ± 0.12 d | 0.29 ± 0.29 c | 13.58 ± 4.18 abc |
MeOH | 3.32 ± 0.10 cdef | 6.73 ± 0.73 c | 0.75 ± 0.13 c | 15.41 ± 3.53 abc | ||
Late st. | H2O | 3.81 ± 0.90 cdef | 0.21 ± 0.08 d | 0.51 ± 0.51 c | 13.69 ± 4.03 abc | |
MeOH | 1.30 ± 0.26 ef | 3.63 ± 2.16 cd | 0.24 ± 0.04 c | 14.95 ± 2.63 abc | ||
T. lutea | Early st. | H2O | 4.43 ± 0.57 bcdef | 0.55 ± 0.15 d | 0.90 ± 0.29 c | 14.34 ± 1.64 abc |
MeOH | 2.32 ± 0.36 def | 2.59 ± 0.43 cd | 0.36 ± 0.21 c | 16.10 ± 0.62 abc | ||
Late st. | H2O | 4.75 ± 0.53 bcde | 0.92 ± 0.06 d | 0.54 ± 0.08 c | 15.95 ± 0.48 abc | |
MeOH | 1.25 ± 0.44 ef | 1.47 ± 0.01 cd | 0.25 ± 0.11 c | 13.28 ± 0.57 abc | ||
I. galbana | Early st. | H2O | 8.13 ± 0.39 ab | 0.39 ± 0.50 d | 0.42 ± 0.04 c | 16.74 ± 0.10 abc |
MeOH | 2.03 ± 0.18 def | 3.05 ± 0.01 cd | 0.25 ± 0.16 c | 17.23 ± 0.15 ab | ||
Late st. | H2O | 6.49 ± 0.51 abc | 0.51 ± 0.27 d | 0.98 ± 0.19 c | 8.93 ± 0.76 abc | |
MeOH | 1.78 ± 0.0 f | 1.58 ± 0.33 d | 0.62 ± 0.39 c | 19.04 ± 0.84 abc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriopoulos, V.; Gkioni, M.D.; Koutra, E.; Mastropetros, S.G.; Lamari, F.N.; Hatziantoniou, S.; Kornaros, M. Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants 2022, 11, 1320. https://doi.org/10.3390/antiox11071320
Andriopoulos V, Gkioni MD, Koutra E, Mastropetros SG, Lamari FN, Hatziantoniou S, Kornaros M. Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants. 2022; 11(7):1320. https://doi.org/10.3390/antiox11071320
Chicago/Turabian StyleAndriopoulos, Vasilis, Maria D. Gkioni, Eleni Koutra, Savvas G. Mastropetros, Fotini N. Lamari, Sophia Hatziantoniou, and Michael Kornaros. 2022. "Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed" Antioxidants 11, no. 7: 1320. https://doi.org/10.3390/antiox11071320
APA StyleAndriopoulos, V., Gkioni, M. D., Koutra, E., Mastropetros, S. G., Lamari, F. N., Hatziantoniou, S., & Kornaros, M. (2022). Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants, 11(7), 1320. https://doi.org/10.3390/antiox11071320