Changes in Biomarkers of Redox Status in Saliva of Pigs after an Experimental Sepsis Induction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Experimental Design
2.2. Sampling Procedure
2.3. Assessment of Salivary Biomarkers of Oxidative Status
2.4. Statistical Analysis
3. Results
3.1. Antioxidant Biomarkers
3.2. Oxidant Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cerón, J.J.; Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Martínez, M.J.; Ortín-Bustillo, A.; Franco-Martínez, L.; Rubio, C.P.; Muñoz-Prieto, A.; Tvarijonaviciute, A.; et al. Basics for the potential use of saliva to evaluate stress, inflammation, immune system, and redox homeostasis in pigs. BMC Vet. Res. 2022, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.; Wang, C.; Prickett, J.R.; Pogranichniy, R.; Yoon, K.J.; Main, R.; Johnson, J.K.; Rademacher, C.; Hoogland, M.; Hoffmann, P.; et al. Efficient surveillance of pig populations using oral fluids. Prev. Vet. Med. 2012, 104, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Coudert, P. Les principales maladies du porc. Actual. Pharm. 2018, 57, 50–55. [Google Scholar] [CrossRef]
- VanderWaal, K.; Deen, J. Global trends in infectious diseases of swine. Proc. Natl. Acad. Sci. USA 2018, 115, 11495–11500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, F.; Luise, D.; Castillo, M.; Peris, S.; Palomo-Yague, A.; Bosi, P.; Trevisi, P. Effect of dietary supplementation with a blend of protected aromatic compounds, including benzoic acid, on growth performance and faecal microbial profile of weaned piglets as an alternative to Zinc Oxide. Livest. Sci. 2021, 246, 104455. [Google Scholar] [CrossRef]
- Oh, H.J.; Kim, M.H.; Yun, W.; Lee, J.H.; An, J.S.; Kim, Y.J.; Kim, M.J.; Kim, H.B.; Cho, J.H. Effect of nano zinc oxide or chelated zinc as alternatives to medical zinc oxide on growth performance, faecal scores, nutrient digestibility, blood profiles and faecal Escherichia coli and Lactobacillus concentrations in weaned piglets. Ital. J. Anim. Sci. 2022, 21, 708–716. [Google Scholar] [CrossRef]
- Guan, X.; Santos, R.R.; Kettunen, H.; Vuorenmaa, J.; Molist, F. Effect of Resin Acid and Zinc Oxide on Immune Status of Weaned Piglets Challenged with E. coli Lipopolysaccharide. Front. Vet. Sci. 2021, 8, 761742. [Google Scholar] [CrossRef]
- Goldfarb, R.D.; Dellinger, R.P.; Parrillo, J.E. Porcine models of severe sepsis: Emphasis on porcine peritonitis. Shock 2005, 24, 75–81. [Google Scholar] [CrossRef]
- Zadeh, J.K.; Ruemmler, R.; Hartmann, E.K.; Ziebart, A.; Ludwig, M.; Patzak, A.; Xia, N.; Li, H.; Pfeiffer, N.; Gericke, A. Responses of retinal arterioles and ciliary arteries in pigs with acute respiratory distress syndrome (ARDS). Exp. Eye Res. 2019, 184, 152–161. [Google Scholar] [CrossRef]
- Ben-Shaul, V.; Lomnitski, L.; Nyska, A.; Zurovsky, Y.; Bergman, M.; Grossman, S. The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol. Lett. 2001, 123, 1–10. [Google Scholar] [CrossRef]
- Kadiiska, M.B.; Peddada, S.; Herbert, R.A.; Basu, S.; Hensley, K.; Jones, D.P.; Hatch, G.E.; Mason, R.P. Biomarkers of oxidative stress study VI. Endogenous plasma antioxidants fail as useful biomarkers of endotoxin-induced oxidative stress. Free Radic. Biol. Med. 2015, 81, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.P.; Mainau, E.; Cerón, J.J.; Contreras-Aguilar, M.D.; Martínez-Subiela, S.; Navarro, E.; Tecles, F.; Manteca, X.; Escribano, D. Biomarkers of oxidative stress in saliva in pigs: Analytical validation and changes in lactation. BMC Vet. Res. 2019, 15, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puzio, W.; Chrobak, L.; Rutkowski, M.; Franczyk, M.; Kankofer, M. Antioxidative and oxidative profiles in plasma and saliva of cows in different ages and hormonal status. Vet. Ital. 2019, 55, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Damián, J.P.; Bengoa, L.; Pessina, P.; Martínez, S.; Fumagalli, F. Serial collection method of dog saliva: Effects of different chemical stimulants on behaviour, volume and saliva composition. Open Vet. J. 2018, 8, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, C.P.; Contreras-Aguilar, M.D.; Quiles, A.; López-Arjona, M.; Cerón, J.J.; Martínez-Subiela, S.; Hevia, M.L.; Escribano, D.; Tecles, F. Biomarkers of oxidative stress in saliva of sheep: Analytical performance and changes after an experimentally induced stress. Res. Vet. Sci. 2019, 123, 71–76. [Google Scholar] [CrossRef]
- Greabu, M.; Totan, A.; Battino, M.; Mohora, M.; Didilescu, A.; Totan, C.; Spinu, T. Cigarette smoke effect on total salivary antioxidant capacity, salivary glutathione peroxidase and gamma-glutamyltransferase activity. BioFactors 2008, 33, 129–136. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, J.; Ahmad, H.; Zhang, H.; Xu, Z.; Wang, T. Evaluation of antioxidant activities of ampelopsin and its protective effect in lipopolysaccharide-induced oxidative stress piglets. PLoS ONE 2014, 9, e108314. [Google Scholar] [CrossRef] [Green Version]
- Petry, A.L.; McGilvray, W.S.; Pendleton, A.R.; Rakhshandeh, A. Assessment of an alternative technique for measuring body temperature in pigs. J. Anim. Sci. 2017, 95, 42–43. [Google Scholar] [CrossRef]
- Wyns, H.; Plessers, E.; De Backer, P.; Meyer, E.; Croubels, S. In vivo porcine lipopolysaccharide inflammation models to study immunomodulation of drugs. Vet. Immunol. Immunopathol. 2015, 166, 58–69. [Google Scholar] [CrossRef]
- López-Martínez, M.J.; Escribano, D.; Martínez-Miró, S.; Ramis, G.; Manzanilla, E.G.; Tecles, F.; Martínez-Subiela, S.; Cerón, J.J. Measurement of procalcitonin in saliva of pigs: A pilot study. BMC Vet. Res. 2022, 18, 139. [Google Scholar] [CrossRef] [PubMed]
- Arab, K.; Steghens, J.-P. Plasma lipid hydroperoxides measurement by an automated xylenol orange method. Anal. Biochem. 2004, 325, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Tatzber, F.; Griebenow, S.; Wonisch, W.; Winkler, R. Dual method for the determination of peroxidase activity and total peroxides-iodide leads to a significant increase of peroxidase activity in human sera. Anal. Biochem. 2003, 316, 147–153. [Google Scholar] [CrossRef]
- Cesarone, M.R.; Belcaro, G.; Carratelli, M.; Cornelli, U.; De Sanctis, M.T.; Incandela, L.; Barsotti, A.; Terranova, R.; Nicolaides, A. A simple test to monitor oxidative stress. Int. Angiol. 1999, 18, 127–130. [Google Scholar]
- López-Martínez, M.J.; Cerón, J.J.; Ortín-Bustillo, A.; Escribano, D.; Kuleš, J.; Beletić, A.; Rubić, I.; González-Sánchez, J.C.; Mrljak, V.; Martínez-Subiela, S.; et al. A Proteomic Approach to Elucidate the Changes in Saliva and Serum Proteins of Pigs with Septic and Non-Septic Inflammation. Int. J. Mol. Sci. 2022, 23, 6738. [Google Scholar] [CrossRef]
- Basu, S.; Eriksson, M. Oxidative injury and survival during endotoxemia. FEBS Lett. 1998, 438, 159–160. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Eriksson, M. Lipid peroxidation induced by an early inflammatory response in endotoxaemia. Acta Anaesthesiol. Scand. 2000, 44, 17–23. [Google Scholar] [CrossRef]
- Bavunoglu, I.; Genc, H.; Konukoglu, D.; Cicekci, H.; Sozer, V.; Gelisgen, R. Oxidative stress parameters and inflammatory and immune mediators as markers of the severity of sepsis. J. Infect. Dev. Ctries. 2016, 10, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Gupta, E.; Kaushik, S.; Kumar Srivastava, V.; Mehta, S.K.; Jyoti, A. Evaluation of oxidative stress and antioxidant status: Correlation with the severity of sepsis. Scand. J. Immunol. 2018, 87, e12653. [Google Scholar] [CrossRef] [Green Version]
- Draganov, D.; Teiber, J.; Watson, C.; Bisgaier, C.; Nemzek, J.; Remick, D.; Standiford, T.; Du, B. La PON1 and oxidative stress in human sepsis and an animal model of sepsis. Adv. Exp. Med. Biol. 2010, 660, 89–97. [Google Scholar] [CrossRef]
- Seema; Kumar, R.; Mandal, R.N.; Tandon, A.; Randhawa, V.S.; Mehta, G.; Batra, S.; Ray, G.N.; Kapoor, A.K. Serum TNF-alpha and free radical scavengers in neonatal septicemia. Indian J. Pediatr. 1999, 66, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Cowley, H.C.; Bacon, P.J.; Goode, H.F.; Webster, N.R.; Jones, J.G.; Menon, D.K. Plasma antioxidant potential in severe sepsis: A comparison of survivors and nonsurvivors. Crit. Care Med. 1996, 24, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- Karapetsa, M.; Pitsika, M.; Goutzourelas, N.; Stagos, D.; Tousia, A.; Zakynthinos, E. Oxidative status in ICU patients with septic shock. Food Chem. Toxicol. 2013, 61, 106–111. [Google Scholar] [CrossRef]
- Doise, J.M.; Aho, L.S.; Quenot, J.P.; Guilland, J.C.; Zeller, M.; Vergely, C.; Aube, H.; Blettery, B.; Rochette, L. Plasma antioxidant status in septic critically ill patients: A decrease over time. Fundam. Clin. Pharmacol. 2008, 22, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Gomis, J.; Rubio, C.P.; Conesa, C.M.; Salaverri, J.O.; Cerón, J.J.; Tortosa, D.E.; Pablo, M.J.C. Effects of dietary supplementation of garlic and oregano essential oil on biomarkers of oxidative status, stress and inflammation in postweaning piglets. Animals 2020, 10, 2093. [Google Scholar] [CrossRef]
- González-Hernández, J.M.; Franco, L.; Colomer-Poveda, D.; Martinez-Subiela, S.; Cugat, R.; Cerón, J.J.; Márquez, G.; Martínez-Aranda, L.M.; Jimenez-Reyes, P.; Tvarijonaviciute, A. Influence of Sampling Conditions, Salivary Flow, and Total Protein Content in Uric Acid Measurements in Saliva. Antioxidants 2019, 8, 389. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Martínez, M.J.; Escribano, D.; Ortín-Bustillo, A.; Franco-Martínez, L.; González-Arostegui, L.G.; Cerón, J.J.; Rubio, C.P. Changes in Biomarkers of Redox Status in Saliva of Pigs after an Experimental Sepsis Induction. Antioxidants 2022, 11, 1380. https://doi.org/10.3390/antiox11071380
López-Martínez MJ, Escribano D, Ortín-Bustillo A, Franco-Martínez L, González-Arostegui LG, Cerón JJ, Rubio CP. Changes in Biomarkers of Redox Status in Saliva of Pigs after an Experimental Sepsis Induction. Antioxidants. 2022; 11(7):1380. https://doi.org/10.3390/antiox11071380
Chicago/Turabian StyleLópez-Martínez, María José, Damián Escribano, Alba Ortín-Bustillo, Lorena Franco-Martínez, Luis Guillermo González-Arostegui, José Joaquín Cerón, and Camila Peres Rubio. 2022. "Changes in Biomarkers of Redox Status in Saliva of Pigs after an Experimental Sepsis Induction" Antioxidants 11, no. 7: 1380. https://doi.org/10.3390/antiox11071380
APA StyleLópez-Martínez, M. J., Escribano, D., Ortín-Bustillo, A., Franco-Martínez, L., González-Arostegui, L. G., Cerón, J. J., & Rubio, C. P. (2022). Changes in Biomarkers of Redox Status in Saliva of Pigs after an Experimental Sepsis Induction. Antioxidants, 11(7), 1380. https://doi.org/10.3390/antiox11071380