Effects of Kiwifruit Peel Extract and Its Antioxidant Potential on the Quality Characteristics of Beef Sausage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Lyophilized Kiwifruit Peel Extract
2.3. Beef Sausage Preparation
2.4. Color Measurement
2.5. pH Measurement
2.6. Cooking Yield Determination
2.7. Lipid oxidation Determination
2.8. Electronic Nose
2.9. Statistical Analysis
3. Results and Discussion
3.1. Color
3.2. pH Evaluation
3.3. Cooking Yield
3.4. TBARS
3.5. Electronic Nose
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Xiao, S.; Samaraweera, H.; Lee, E.J.; Ahn, D.U. Improving functional value of meat products. Meat Sci. 2010, 86, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, W.; Zhou, G. Emulsion stability, thermo-rheology and quality characteristics of ground pork patties prepared with soy protein isolate and carrageenan. J. Sci. Food Agric. 2015, 95, 2832–2837. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Xiao, S.; Ahn, D.U. Protein oxidation: Basic principles and implications for meat quality. Crit. Rev. Food Sci. Nutr. 2013, 53, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, R.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Bohrer, B.; Lorenzo, J.M. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants 2021, 11, 60. [Google Scholar] [CrossRef]
- Lourenco, S.C.; Fraqueza, M.J.; Fernandes, M.H.; Moldao-Martins, M.; Alves, V.D. Application of Edible Alginate Films with Pineapple Peel Active Compounds on Beef Meat Preservation. Antioxidants 2020, 9, 667. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Hang, Y.; Luh, B.; Woodams, E. Microbial production of citric acid by solid state fermentation of kiwifruit peel. J. Food Sci. 1987, 52, 226–227. [Google Scholar] [CrossRef]
- Du, G.; Li, M.; Ma, F.; Liang, D. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
- Ma, T.; Sun, X.; Zhao, J.; You, Y.; Lei, Y.; Gao, G.; Zhan, J. Nutrient compositions and antioxidant capacity of kiwifruit (Actinidia) and their relationship with flesh color and commercial value. Food Chem. 2017, 218, 294–304. [Google Scholar] [CrossRef]
- Satpal, D.; Kaur, J.; Bhadariya, V.; Sharma, K. Actinidia deliciosa (Kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization, and commercialization. J. Food Process. Preserv. 2021, 45, e15588. [Google Scholar] [CrossRef]
- Lee, E.J.; Oh, S.W.; Lee, N.H.; Kim, Y.H.; Lee, D.U.; Yamamoto, K.; Kim, Y.J. Application of a kiwifruit (Actinidia chinensis) to improve the textural quality on beef bulgogi treated with hydrostatic pressure. Food Sci. Anim. Resour. 2009, 29, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.A.; Jung, S.H.; Park, I.S. Applications of proteolytic enzymes from kiwifruit on quality improvements of meat foods in foodservice. Food Sci. Anim. Resour. 2010, 30, 669–673. [Google Scholar] [CrossRef]
- Lewis, D.A.; Luh, B. Application of actinidin from kiwifruit to meat tenderization and characterization of beef muscle protein hydrolysis. J. Food Biochem. 1988, 12, 147–158. [Google Scholar] [CrossRef]
- Kaur, L.; Boland, M. Influence of kiwifruit on protein digestion. Adv. Food Nutr. Res. 2013, 68, 149–167. [Google Scholar]
- Khan, I.A.; Xu, W.; Wang, D.; Yun, A.; Khan, A.; Zongshuai, Z.; Ijaz, M.U.; Yiqun, C.; Hussain, M.; Huang, M. Antioxidant potential of chrysanthemum morifolium flower extract on lipid and protein oxidation in goat meat patties during refrigerated storage. J. Food Sci. 2020, 85, 618–627. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, W.; Zhou, G. Effects of glutinous rice flour on the physiochemical and sensory qualities of ground pork patties. LWT 2014, 58, 135–141. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhou, L.; Zhang, R. Study on the influences of ultrasound on the flavor profile of unsmoked bacon and its underlying metabolic mechanism by using HS-GC-IMS. Ultrason Sonochem. 2021, 80, 105807. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, Y.; Xing, L.; Zhang, W. Influences of ultrasonic-assisted frying on the flavor characteristics of fried meatballs. Innov. Food Sci. Emerg. Technol. 2020, 62, 102365. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Naveena, B.M.; Sen, A.R.; Vaithiyanathan, S.; Babji, Y.; Kondaiah, N. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat Sci. 2008, 80, 1304–1308. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liu, R.; Zhou, G.; Zhang, W. Effects of Packaging Methods on the Color of Beef Muscles Through Influencing Myoglobin Status, Metmyoglobin Reductase Activity and Lipid Oxidation. J. Food Process. Preserv. 2017, 41, e12740. [Google Scholar] [CrossRef]
- Fik, M.; Leszczyńska-Fik, A. Microbiological and Sensory Changes in Minced Beef Treated with Potassium Lactate and Sodium Diacetate during Refrigerated Storage. Int. J. Food Prop. 2007, 10, 589–598. [Google Scholar] [CrossRef]
- Zhang, Y.; Puolanne, E.; Ertbjerg, P. Mimicking myofibrillar protein denaturation in frozen-thawed meat: Effect of pH at high ionic strength. Food Chem. 2021, 338, 128017. [Google Scholar] [CrossRef]
- Jayawardana, B.C.; Liyanage, R.; Lalantha, N.; Iddamalgoda, S.; Weththasinghe, P. Antioxidant and antimicrobial activity of drumstick (Moringa oleifera) leaves in herbal chicken sausages. LWT 2015, 64, 1204–1208. [Google Scholar] [CrossRef]
- Ghafouri-Oskuei, H.; Javadi, A.; Saeidi Asl, M.R.; Azadmard-Damirchi, S.; Armin, M. Quality properties of sausage incorporated with flaxseed and tomato powders. Meat Sci. 2020, 161, 107957. [Google Scholar] [CrossRef]
- Hawashin, M.D.; Al-Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Babiker, E.E. Physicochemical, microbiological and sensory evaluation of beef patties incorporated with destoned olive cake powder. Meat Sci. 2016, 122, 32–39. [Google Scholar] [CrossRef]
- Pereira, J.; Brohi, S.A.; Malairaj, S.; Zhang, W.; Zhou, G. Quality of fat-reduced frankfurter formulated with unripe banana by-products and pre-emulsified sunflower oil. Int. J. Food Prop. 2020, 23, 420–433. [Google Scholar] [CrossRef] [Green Version]
- Reihani, S.F.; Tan, T.C.; Huda, N.; Easa, A.M. Frozen storage stability of beef patties incorporated with extracts from ulam raja leaves (Cosmos caudatus). Food Chem. 2014, 155, 17–23. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S. Reducing lipid peroxidation for improving colour stability of beef and lamb: On-farm considerations. J. Sci. Food Agric. 2012, 92, 719–726. [Google Scholar] [CrossRef]
- Zareian, M.; Tybussek, T.; Silcock, P.; Bremer, P.; Beauchamp, J.; Böhner, N. Interrelationship among myoglobin forms, lipid oxidation and protein carbonyls in minced pork packaged under modified atmosphere. Food Pack. Shelf Life 2019, 20, 100311. [Google Scholar] [CrossRef]
- Cunha, L.C.M.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.S.; Muchenje, V.; de Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Özünlü, O.; Ergezer, H.; Gökçe, R. Improving physicochemical, antioxidative and sensory quality of raw chicken meat by using acorn extracts. LWT 2018, 98, 477–484. [Google Scholar] [CrossRef]
- Hellwig, M. The Chemistry of Protein Oxidation in Food. Angew. Chem. Int. Ed. Engl. 2019, 58, 16742–16763. [Google Scholar] [CrossRef]
- Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat. Foods 2020, 9, 794. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, D.; Zhang, W.; Lorenzo, J.M. Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends Food Sci. Technol. 2021, 111, 405–425. [Google Scholar] [CrossRef]
- Martins, T.d.S.; Lemos, M.V.A.d.; Mueller, L.F.; Baldi, F.; Amorim, T.R.d.; Ferrinho, A.M.; Muñoz, J.A.; Fuzikawa, I.H.d.S.; Moura, G.V.d.; Gemelli, J.L.; et al. Fat Deposition, Fatty Acid Composition, and Its Relationship with Meat Quality and Human Health. In Meat Science and Nutrition; Arshad, M.S., Ed.; IntechOpen: London, UK, 2018; pp. 17–37. [Google Scholar]
Ingredients | Sample Groups Amount (%) | ||||
---|---|---|---|---|---|
CT | BHT | KPE1 | KPE2 | KPE3 | |
Meat | 77.83 | 77.82 | 76.33 | 74.83 | 73.33 |
Added fat | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 |
Mixed spices | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
Garlic powder | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
Onion powder | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 |
NaNO2/NaNO3 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
Red pepper powder | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Black pepper powder | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
NaCl | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
Water | 9.55 | 9.55 | 9.55 | 9.55 | 9.55 |
BHT | - | 0.01 | - | - | - |
KPE | - | - | 1.50 | 3.00 | 4.50 |
Total | 100 | 100 | 100 | 100 | 100 |
Storage Time (Days) | Sample Groups External Color | ||||
---|---|---|---|---|---|
CT | BHT | KPE1 | KPE2 | KPE3 | |
L* | |||||
Day 0 | 53.99 ± 3.40 aA | 53.47 ± 2.03 aA | 52.52 ± 3.27 aA | 48.99 ± 3.31 bA | 47.69 ± 3.03 bA |
Day 3 | 53.48 ± 2.38 aA | 53.38 ± 1.35 aA | 52.46 ± 3.43 aA | 48.51 ± 3.89 bA | 47.44 ± 3.59 bA |
Day 6 | 53.53 ± 1.34 aA | 53.22 ± 3.20 aA | 50.05 ± 2.74 bAB | 47.61 ± 4.32 cA | 46.57 ± 3.83 dA |
Day 9 | 52.97 ± 2.01 aA | 52.96 ± 2.47 aA | 48.93 ± 4.20 bB | 46.27 ± 3.89 cAB | 44.95 ± 2.12 dA |
Day 12 | 48.87 ± 1.22 aB | 47.39 ± 1.35 bB | 44.59 ± 2.50 cC | 43.94 ± 2.88 dB | 39.89 ± 2.09 eB |
a* | |||||
Day 0 | 9.68 ± 1.70 aA | 8.87 ± 2.51 bA | 7.95 ± 2.27 cA | 5.83 ± 1.60 dA | 5.32 ± 1.74 dA |
Day 3 | 9.36 ± 2.40 aAB | 8.64 ± 2.15 bA | 7.62 ± 2.19 cA | 5.64 ± 1.06 dAB | 5.27 ± 1.00 dA |
Day 6 | 9.24 ± 1.85 aB | 7.96 ± 1.85 bB | 7.23 ± 2.05 cAB | 5.40 ± 1.54 dB | 5.07 ± 1.10 eB |
Day 9 | 8.98 ± 1.76 aC | 7.81 ± 1.51 bB | 6.82 ± 1.85 cB | 5.23 ± 1.40 dB | 4.83 ± 1.22 eB |
Day 12 | 8.47 ± 2.35 aD | 7.46 ± 2.29 abB | 6.79 ± 2.23 bAB | 5.11 ± 1.18 cB | 4.62 ± 1.28 dB |
b* | |||||
Day 0 | 11.82 ± 2.08 abA | 11.40 ± 1.31 bA | 12.04 ± 1.61 abA | 12.26 ± 1.47 aA | 12.35 ± 1.42 aA |
Day 3 | 11.29 ± 1.18 bAB | 11.34 ± 1.58 bA | 11.44 ± 1.75 bAB | 12.32 ± 1.54 aA | 12.29 ± 1.99 aA |
Day 6 | 11.25 ± 1.49 cAB | 11.19 ± 1.44 dAB | 11.39 ± 2.03 bB | 11.97 ± 1.90 aA | 12.10 ± 1.88 aA |
Day 9 | 10.95 ± 1.42 cB | 10.65 ± 1.02 dB | 11.34 ± 1.14 bB | 11.84 ± 1.67 aA | 11.90 ± 1.59 aA |
Day 12 | 9.98 ± 1.48 dC | 9.93 ± 2.11 eC | 10.30 ± 1.63 cC | 10.66 ± 1.97 bB | 10.80 ± 1.62 aB |
Sample Groups Internal Color | |||||
L* | |||||
Day 0 | 55.73 ± 2.00 aA | 55.14 ± 3.80 aA | 54.23 ± 4.35 aA | 53.27 ± 3.56 bA | 52.39 ± 3.50 cA |
Day 3 | 55.01 ± 1.79 aA | 54.73 ± 3.17 aA | 54.68 ± 3.33 aA | 53.15 ± 3.26 bA | 52.51 ± 3.93 cA |
Day 6 | 55.76 ± 2.90 aA | 53.87 ± 1.53 bB | 53.12 ± 3.07 bB | 52.95 ± 2.71 cA | 51.94 ± 4.48 dB |
Day 9 | 55.64 ± 2.39 aA | 53.17 ± 2.28 bB | 52.10 ± 4.48 cB | 49.03 ± 4.78 bB | 48.34 ± 4.88 bC |
Day 12 | 50.79 ± 4.47 aB | 47.44 ± 2.63 bC | 46.44 ± 4.98 cC | 45.63 ± 4.13 dC | 42.91 ± 4.45 eD |
a* | |||||
Day 0 | 10.54 ± 2.01 aA | 9.54 ± 1.73 bA | 8.53 ± 1.57 cA | 6.15 ± 1.54 dA | 5.86 ± 1.29 dA |
Day 3 | 10.29 ± 1.39 aAB | 9.39 ± 2.17 bA | 8.46 ± 1.67 cA | 5.82 ± 1.09 dAB | 5.81 ± 1.04 dA |
Day 6 | 10.19 ± 2.78 aB | 8.63 ± 1.95 bB | 7.45 ± 1.50 cAB | 5.56 ± 1.92 dB | 5.52 ± 1.10 dB |
Day 9 | 9.68 ± 1.25 aC | 8.52 ± 1.60 bB | 7.05 ± 1.51 cB | 5.61 ± 1.48 dB | 5.28 ± 1.22 eB |
Day 12 | 9.28 ± 2.50 aD | 8.28 ± 2.00 abB | 7.31 ± 1.02 bAB | 5.47 ± 1.27 cB | 5.47 ± 1.04 cB |
b* | |||||
Day 0 | 9.74 ± 1.88 abA | 9.53 ± 2.03 bA | 11.39 ± 1.94 abA | 11.67 ± 1.70 aA | 11.84 ± 1.93 aA |
Day 3 | 9.59 ± 1.70 bAB | 9.47 ± 1.35 bA | 11.17 ± 1.50 abAB | 11.77 ± 1.90 aA | 11.79 ± 1.80 aA |
Day 6 | 9.48 ± 2.34 cAB | 9.18 ± 1.84 dAB | 10.68 ± 1.96 bB | 11.37 ± 2.03 aA | 11.63 ± 2.21 aA |
Day 9 | 9.05 ± 1.54 cB | 9.03 ± 1.86 dB | 10.63 ± 2.39 bB | 11.26 ± 1.78 aA | 11.57 ± 2.36 aA |
Day 12 | 8.95 ± 1.83 dC | 8.85 ± 1.54 eC | 10.04 ± 2.18 cC | 10.53 ± 2.66 abB | 11.02 ± 2.57 aB |
Storage Time (Days) | pH | ||||
---|---|---|---|---|---|
CT | BHT | KPE1 | KPE2 | KPE3 | |
Day 0 | 6.58 ± 0.05 aA | 6.50 ± 0.01 bA | 6.18 ± 0.01 cA | 6.14 ± 0.03 dA | 5.88 ± 0.01 eA |
Day 3 | 6.43 ± 0.01 aC | 6.42 ± 0.04 aB | 6.15 ± 0.02 bB | 6.10 ± 0.02 cB | 5.81 ± 0.06 dAB |
Day 6 | 6.48 ± 0.01 aB | 6.30 ± 0.01 bC | 5.96 ± 0.01 cC | 5.88 ± 0.04 dC | 5.63 ± 0.02 eB |
Day 9 | 6.20 ± 0.02 aD | 6.17 ± 0.06 bD | 5.78 ± 0.31 cD | 5.63 ± 0.29 dD | 5.59 ± 0.07 eBC |
Day 12 | 5.85 ± 0.06 aE | 5.76 ± 0.30 bE | 5.45 ± 0.33 dE | 5.51 ± 0.27 cE | 5.35 ± 0.08 eC |
Storage Time (Days) | Cooking Yield (%) | ||||
---|---|---|---|---|---|
CT | BHT | KPE1 | KPE2 | KPE3 | |
Day 0 | 95.06 ± 1.68 bA | 95.01 ± 0.25 bA | 97.74 ± 0.38 abA | 98.75 ± 0.45 abA | 98.95 ± 0.05 aA |
Day 3 | 93.74 ± 0.20 cA | 93.02 ± 0.40 cAB | 97.51 ± 0.22 bA | 98.65 ± 0.01 aA | 98.67 ± 0.14 aA |
Day 6 | 89.18 ± 0.06 bB | 88.91 ± 2.26 bB | 93.15 ± 0.01 abB | 96.18 ± 0.01 aB | 96.83 ± 1.31 aB |
Day 9 | 88.57 ± 0.70 bB | 88.29 ± 0.97 bB | 92.71 ± 0.21 abC | 93.19 ± 0.34 abC | 94.13 ± 2.48 aC |
Day 12 | 87.80 ± 4.57 cB | 87.48 ± 0.67 cC | 90.71 ± 4.12 bD | 93.55 ± 3.65 aC | 93.60 ± 0.17 aC |
Chemical Sensor | Chemical Sensor Class | Descriptions |
---|---|---|
W1S | Broad methane | Sensitive to methane |
W5S | Broad range | Sensitive to nitrogen oxides |
W1W | Sulfur organics | Sensitive to organic sulfides |
W6S | Hydrogen | Sensitive to hydrogen compounds |
W3S | Methane aliphatic | Sensitive to methane and aliphatic |
W3C | Aromatic | Sensitive to ammonia, aromatic molecules |
W2S | Broad alcohols | Sensitive to alcohols, ketones, and aldehydes |
W1C | Aromatic | Sensitive to aromatic and benzene compounds |
W2W | Sulfur chloride | Sensitive to organic-sulfides and organic-chloride |
W5C | Aromatic aliphatic | Sensitive to methane, propane, and aliphatic non-polar molecules |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boateng, E.F.; Yang, Z.; Zhang, W. Effects of Kiwifruit Peel Extract and Its Antioxidant Potential on the Quality Characteristics of Beef Sausage. Antioxidants 2022, 11, 1441. https://doi.org/10.3390/antiox11081441
Boateng EF, Yang Z, Zhang W. Effects of Kiwifruit Peel Extract and Its Antioxidant Potential on the Quality Characteristics of Beef Sausage. Antioxidants. 2022; 11(8):1441. https://doi.org/10.3390/antiox11081441
Chicago/Turabian StyleBoateng, Evans Frimpong, Ziyi Yang, and Wangang Zhang. 2022. "Effects of Kiwifruit Peel Extract and Its Antioxidant Potential on the Quality Characteristics of Beef Sausage" Antioxidants 11, no. 8: 1441. https://doi.org/10.3390/antiox11081441
APA StyleBoateng, E. F., Yang, Z., & Zhang, W. (2022). Effects of Kiwifruit Peel Extract and Its Antioxidant Potential on the Quality Characteristics of Beef Sausage. Antioxidants, 11(8), 1441. https://doi.org/10.3390/antiox11081441