Fortification of Pectin/Blackberry Hydrogels with Apple Fibers: Effect on Phenolics, Antioxidant Activity and Inhibition of α-Glucosidase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Formulation of Hydrogels
2.3. Extraction of Hydrogels
2.4. Spectrophotometric Determination of Total Phenolics and Proanthocyanidins
2.5. HPLC Analysis for Identification and Quantification of Phenolics
2.6. Determination of Antioxidant Activity
2.7. Estimation of Synergism
2.8. Determination of α-Glucosidase Inhibition
2.9. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds
3.2. Antioxidant Activity
3.3. Inhibition of α-Glucosidase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pantelidis, G.E.; Vasilakakis, M.; Manganari, G.A.; Diamantidis, G. Antioxidant activity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currents, gooseberries, and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics, and antioxidant capacity, in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Siriwoharn, T.; Wrolstad, R.E.; Finn, C.E.; Pereira, C.B. Influence of cultivar, maturity, and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. J. Agric. Food Chem. 2004, 52, 8021–8030. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef] [PubMed]
- Kopjar, M.; Piližota, V. Blackberry juice. In Handbook of Functional Beverages and Human Health; Shahidi, F., Alaalvar, C., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 135–145. [Google Scholar]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131. [Google Scholar] [CrossRef]
- Sun, L.; Miao, M. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit. Rev. Food Sci. Nutr. 2019, 60, 541–555. [Google Scholar] [CrossRef]
- Quirós-Sauceda, A.E.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Bello-Perez, L.A.; Alvarez-Parrilla, E.; de la Rosa, L.A.; González-Córdova, A.F.; González-Aguilar, G.A. Dietary fiber and phenolic compounds as functional ingredients: Interaction and possible effect after ingestion. Food Func. 2014, 5, 1063–1072. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. The definition of dietary fiber. Cereal Foods World 2001, 46, 112–116. [Google Scholar]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Fernández-Prior, Á.; Vioque, B.; Fernández-Bolaños, J. Strawberry dietary fiber functionalized with phenolic antioxidants from olives. Interactions between polysaccharides and phenolic compounds. Food Chem. 2018, 280, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rodríguez-Juan, E.; González-Benjumea, A.; Fernández-Bolaños, J. Molecular interactions between 3,4-dihyroxyphenylglycol and pectin and antioxidant capacity of this complex in vitro. Carbohydr. Polym. 2018, 197, 260–268. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Lama-Muñoz, A.; Fernández-Bolañoz, J. Complexation of hydroxytyrosol and 3,4-dihydroxyphenylglycol with pectin and their potential use for colon targeting. Carbohydr. Polym. 2017, 163, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Ištuk, J.; Matić, P.; Skendrović Babojelić, M. Interactions of polyphenols from traditional apple varieties Bobovac, Ljepocvjetka and Crvenka with β-glucan during in vitro simulated digestion. Food Chem. 2021, 363, 130283. [Google Scholar] [CrossRef] [PubMed]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M. Binding of polyphenols to plant cell wall analogues—Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M. Binding of polyphenols to plant cell wall analogues—Part 2: Phenolic acids. Food Chem. 2012, 135, 2292–2297. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.D.T.; Flanagan, B.M.; D’Arcy, B.R.; Gidley, M.J. Binding selectivity of dietary polyphenols to different plant cell wall components: Quantification and mechanism. Food Chem. 2017, 233, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.D.T.; Netzel, G.; Wang, D.; Flanagan, B.M.; D’Arcy, B.R.; Gidley, M.J. Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chem. 2015, 171, 388–396. [Google Scholar] [CrossRef]
- Renard, C.M.; Baron, A.; Guyot, S.; Drilleau, J.-F. Interactions between apple cell walls and native apple polyphenols: Quantification and some consequences. Int. J. Biol. Macromol. 2001, 29, 115–125. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Smith, B.G.; O’Connor, C.J.; Melton, D.L. Effect of raw and cooked onion dietary fiber on the antioxidant activity od ascorbic acid and quercetin. Food Chem. 2008, 11, 580–585. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Melton, L.D.; O’Connor, C.J.; Kilmartin, P.A.; Smith, B.G. Effect of apple cell walls and their extracts on the activity of dietary antioxidants. J. Agric. Food Chem. 2007, 56, 289–295. [Google Scholar] [CrossRef]
- Vukoja, J.; Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Formulation and stability of cellulose-based delivery systems of raspberry phenolics. Processes 2021, 9, 90. [Google Scholar] [CrossRef]
- Vukoja, J.; Buljeta, I.; Ivić, I.; Šimunović, J.; Pichler, A.; Kopjar, M. Disaccharide type affected phenolic and volatile compounds of citrus fiber-blackberry cream fillings. Foods 2021, 10, 243. [Google Scholar] [CrossRef]
- Kopjar, M.; Ivić, I.; Buljeta, I.; Ćorković, I.; Vukoja, J.; Šimunović, J.; Pichler, A. Volatiles and antioxidant activity of citrus fiber/blackberry gels: Influence of sucrose and trehalose. Plants 2021, 10, 1640. [Google Scholar] [CrossRef]
- Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Polyphenols and antioxidant activity of citrus fiber/blackberry juice complexes. Molecules 2021, 26, 4400. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ginéz, J.M.; Fernández-Lòpez, J.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Effects of storage conditions on quality characteristics of bologna sausages made with citrus fibre. J. Food Sci. 2003, 68, 710–715. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Wang, X.; Zheng, X. Modification and application of dietary fiber in foods. J. Chem. 2017, 2017, 9340427. [Google Scholar] [CrossRef] [Green Version]
- Rosell, C.M.; Santos, E.; Collar, C. Physico-chemical properties of commercial fibres from different sources: A comparative approach. Food Res. Int. 2009, 42, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Shewan, H.M.; Stokes, J.R. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J. Food Eng. 2013, 119, 781–792. [Google Scholar] [CrossRef]
- Ćorković, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Hydrogels: Characteristics and Application as Delivery Systems of Phenolic and Aroma Compounds. Foods 2021, 10, 1252. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, J.; Dong, H.; Li, X.; Zhang, J.; Ramaswamy, S.; Xu, F. Pectin in biomedical and drug delivery applications: A review. Int. J. Biol. Macromol. 2021, 185, 49–65. [Google Scholar] [CrossRef]
- Kopjar, M.; Piližota, V.; Nedić Tiban, N.; Šubarić, D.; Babić, J.; Ačkar, Đ. Effect of different pectin addition and its concentration on colour and texture of raspberry jam. Dtsch. Lebensmitt. Rundsch. 2007, 103, 164–168. [Google Scholar]
- Kopjar, M.; Piližota, V.; Nedić Tiban, N.; Šubarić, D.; Babić, J.; Ačkar, Đ.; Sajdl, M. Strawberry jams: Influence of different pectins on colour and textural properties. Czech J. Food Sci. 2009, 27, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Buchweitz, M.; Speth, M.; Kammerer, D.R.; Carle, R. Impact of pectin type on the storage stability of black currant (Ribes nigrum L.) anthocyanins in pectic model solutions. Food Chem. 2013, 139, 1168–1178. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotonutric acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Prior, R.L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Ivić, I.; Kopjar, M.; Jakobek, L.; Jukić, V.; Korbar, S.; Marić, B.; Mesić, J.; Pichler, A. Influence of Processing Parameters on Phenolic Compounds and Color of Cabernet Sauvignon Red Wine Concentrates Obtained by Reverse Osmosis and Nanofiltration. Processes 2021, 9, 89. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of Antioxidant Power: The FRAP assay. Anal. Biochem. 1994, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Sci. Food Agric. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Granados-Guzman, G.; Castro-Rios, R.; Waksman de Torres, N.; Salazar Aranda, R. Optimization and validation of two high-throughput methods indicating antiradical activity. Curr. Anal. Chem. 2017, 13, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Le Bourvellec, C.; Renard, C.M.G.C. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr. Rev. Food Sci. Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczyk, K.; Markowski, J.; Kosmala, M.; Król, B.; Płocharski, W. Apple pomace as a potential source of nutraceutical products. Polish J. Food Nutr. Sci. 2007, 57, 291–295. [Google Scholar]
- Renard, C.M.G.C.; Watrelot, A.A.; Le Bourvellec, C. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends Food Sci. Technol. 2016, 60, 43–51. [Google Scholar] [CrossRef]
- Simpson, K.L. Chemical changes in natural food pigments. In Chemical Changes in Food during Processing; Basic symposium Series; Richardson, T., Finley, W., Eds.; Springer: New York, NY, USA, 1985; pp. 409–441. [Google Scholar]
- Sadilova, E.; Carle, R.; Stintzing, F.C. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res. 2007, 51, 1461–1471. [Google Scholar] [CrossRef]
- Kader, F.; Haluk, J.P.; Nicolas, J.P.; Metche, M. Degradation of cyanidin 3-glucoside by blueberry polyphenol oxidase: Kinetic studies and mechanisms. J. Agric. Food Chem. 1998, 46, 3060–3065. [Google Scholar] [CrossRef]
- Maier, T.; Fromm, M.; Schieber, A.; Kammerer, D.; Carle, R. Process and storage stability of anthocyanins and non-anthocyanin phenolics in pectin and gelatin gels enriched with grape pomace extracts. Eur. Res. Technol. 2009, 229, 949–960. [Google Scholar] [CrossRef]
- Hubbermann, E.M.; Heins, A.; Stockmann, H.; Schwarz, K. Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanins rich blackcurrant and elderberry concentrates. Eur. Food Res. Technol. 2006, 223, 83–90. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agr. Food Chem. 2011, 59, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber—Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2018, 83, 235–247. [Google Scholar] [CrossRef]
- Casatañeda-Ovando, A.; Pacheo-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins. A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-thermal stabilization of anthocyanins in model and food systems. Food Res. Int. 2011, 44, 499–509. [Google Scholar] [CrossRef]
- Kopjar, M.; Lončarić, A.; Mikulinjak, M.; Šrajbek, Ž.; Šrajbek, M.; Pichler, A. Evaluation of antioxidant interactions of combined model systems of phenolics in the presence of sugars. Nat. Prod. Commun. 2016, 11, 1445–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lončarić, A.; Pichler, A.; Rašić, N.; Vukoja, I.; Leventić, A.; Kopjar, M. Influence of phenol and sugar interactions on antioxidant activity of pomegranate juice. Acta Alim. 2018, 47, 203–209. [Google Scholar] [CrossRef]
- Pinelo, M.; Manzocco, L.; Nunez, M.J.; Nicoli, M.C. Interaction among phenols in food fortification: Negative synergism on antioxidant capacity. J. Agric. Food Chem. 2004, 52, 1177–1180. [Google Scholar] [CrossRef]
- Wang, M.; Jin, Y.; Ho, C.T. Evaluation of resveratrol derivatives as potential antioxidants and identification of a reaction product of resveratrol and 2,2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 1999, 47, 3974–3977. [Google Scholar] [CrossRef]
- Ariga, T.; Hamano, M. Radical scavenging action and its mode in procyanidins B1 and B3 from azuki beans to peroxyl radicals. Agric. Biol. Chem. 1990, 54, 2499–2504. [Google Scholar] [CrossRef]
- Saint-Cricq de Gaulejac, N.; Provost, C.; Vivas, N. Comparative study of polyphenol scavenging activities assessed by different methods. J. Agric. Food Chem. 1999, 47, 425–431. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchad, N.T.; Harzfeld, P.W.; Riechel, T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1992. [Google Scholar] [CrossRef]
- Lu, Y.; Yeap Foo, L. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 2000, 68, 81–85. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Manzocco, L.; Calligaris, S. Effect of enzymatic and chemical oxidation on the antioxidant capacity of catechin model systems and apple derivatives. J. Agric. Food Chem. 2000, 48, 4576–4580. [Google Scholar] [CrossRef] [PubMed]
- Espin, J.C.; Wichers, W.J. Study of the oxidation of resveratrol catalyzed by polyphenol oxidase. Effect of polyphenol oxidase, laccase and peroxidase on the antiradical activity of resveratrol. J. Food Biochem. 2000, 24, 225–250. [Google Scholar] [CrossRef]
- De Oliveira Raphaelli, C.; Dos Santos Pereira, E.; Camargo, T.M.; Vinholes, J.; Rombaldi, C.V.; Vizzotto, M.; Nora, L. Apple phenolic extracts strongly inhibit α-glucosidase activity. Plant Foods Hum. Nutr. 2019, 74, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhao, C.; Guven, E.C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K.M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V.; et al. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Front. 2020, 1, 18–44. [Google Scholar] [CrossRef] [Green Version]
- McDougall, G.J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase. J. Agric. Food Chem. 2005, 53, 2760–2766. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in Dietary Polyphenols as α-glucosidases Inhibitors: A Review on Structure-Activity Relationship Aspect. Crit. Rev. Food. Sci. Nutr. 2013, 53, 818–836. [Google Scholar] [CrossRef]
- Han, L.; Fang, C.; Zhu, R.; Peng, Q.; Li, D.; Wang, M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interactions mechanism and molecular docking. Int. J. Biol. Macromol. 2017, 95, 520–527. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Stewart, D. The inhibitory effects of berry polyphenols on digestive enzymes. BioFactors 2005, 23, 189–195. [Google Scholar] [CrossRef]
Sample | TPC (mg GAE/100 g) | PAC (µg/g) |
---|---|---|
blackberry juice | 62.59 ± 0.63 a | 32.97 ± 0.29 a |
apple fiber | 66.03 ± 1.78 b | 153.7 ± 1.7 b |
Samples after preparation | ||
LMP | 46.50 ± 0.95 a | 12.54 ± 0.18 a |
LMP + AF | 97.60 ± 1.78 b | 98.55 ± 0.24 c |
HMP | 43.30 ± 1.10 a | 14.66 ± 0.14 b |
HMP + AF | 109.80 ± 0.07 c | 110.20 ± 0.41 d |
Samples after storage | ||
LMP | 45.10 ± 0.16 b | 7.93 ± 0.03 a |
LMP + AF | 79.01 ± 0.94 d | 34.88 ± 0.18 d |
HMP | 39.20 ± 0.10 a | 10.97 ± 0.06 b |
HMP + AF | 75.8 ± 0.29 c | 28.42 ± 0.07 c |
Phenolic Compound | Blackberry Juice (mg/L) | Apple Fiber (mg/kg) |
---|---|---|
cyanidin-3-O-glucoside | 75.38 ± 1.37 | - |
cyanidin-3-O-dioxalylglucoside | 26.46 ± 0.33 | - |
ellagic acid | 5.93 ± 0.15 | - |
chlorogenic acid | 7.53 ± 0.12 | 51.64 ± 2.70 |
caffeic acid | 0.82 ± 0.02 | - |
gallic acid | 10.25 ± 0.08 | - |
rutin | 1.23 ± 0.06 | 9.54 ± 1.14 |
quercetin | 3.43 ± 0.02 | 130.60 ± 5.38 |
phloretin | - | 17.64 ± 0.48 |
phloridzin | - | 78.21 ± 0.60 |
Hydrogels | c-3-g | c-3-dg | ea | cha | R | phl | Total |
---|---|---|---|---|---|---|---|
After preparation | |||||||
LMP | 72.89 ± 0.19 d | 27.09 ± 0.13 c | 5.43 ± 0.02 a | - | - | - | 105.41 |
LMP + AF | 57.15 ± 0.10 b | 20.56 ± 0.09 a | 5.44 ± 0.01 a | 16.50 ± 0.04 b | 20.37 ± 0.31 a | 95.29 ± 0.07 b | 215.31 |
HMP | 70.50 ± 0.06 c | 26.01 ± 0.18 b | 5.71 ± 0.02 c | - | - | - | 102.22 |
HMP + AF | 55.61 ± 0.03 a | 20.77 ± 0.41 a | 5.51 ± 0.01 b | 15.75 ± 0.04 a | 20.50 ± 0.09 a | 94.79 ± 0.01 a | 212.93 |
After storage | |||||||
LMP | 10.46 ± 0.04 b | 7.03 ± 0.13 b | 6.88 ± 0.00 c | - | - | - | 24.37 |
LMP + AF | 11.38 ± 0.17 c | 7.16 ± 0.09 b | 7.98 ± 0.00 d | 14.46 ± 1.12 b | - | 77.60 ± 0.17 b | 118.58 |
HMP | 11.29 ± 0.03 c | 7.04 ± 0.00 b | 4.93 ± 0.04 b | - | - | - | 23.26 |
HMP + AF | 7.19 ± 0.07 a | 6.45 ± 0.01 a | 4.60 ± 0.01 a | 12.56 ± 0.68 a | 12.78 ± 0.02 a | 59.18 ± 0.11 a | 102.76 |
Sample | FRAP (µmol/100 g) | CUPRAC (µmol/100 g) | DPPH (µmol/100 g) | ABTS (µmol/100 g) |
---|---|---|---|---|
BJ | 0.42 ± 0.01 | 23.36 ± 0.43 | 3.11 ± 0.02 | 4.47 ± 0.02 |
AF | 0.42 ± 0.04 | 3.02 ± 0.01 | 4.17 ± 0.22 | 3.26 ± 0.10 |
Theoretical AA | 0.84 | 26.38 | 7.28 | 7.73 |
LMP | 0.33 ± 0.01 a | 18.97 ± 0.88 a | 3.88 ± 0.01 a | 1.39 ± 0.07 a |
LMP + AF | 0.75 ± 0.01 b | 46.71 ± 0.31 b | 4.47 ± 0.08 b | 3.80 ± 0.02 b |
HMP | 0.35 ± 0.01 a | 18.56 ± 0.56 a | 3.48 ± 0.33 a | 1.34 ± 0.01 a |
HMP + AF | 0.77 ± 0.06 b | 47.98 ± 0.22 b | 4.86 ± 0.09 c | 4.03 ± 0.07 c |
Type of interaction for fortified hydrogels | ||||
Slight antagonistic | Synergistic | Antagonistic | Antagonistic | |
After storage | ||||
LMP | 0.31 ± 0.00 a | 15.43 ± 0.11 a | 2.68 ± 0.04 a | 1.07 ± 0.00 a |
LMP + AF | 0.55 ± 0.00 c | 35.38 ± 0.56 c | 3.94 ± 0.04 b | 2.67 ± 0.02 c |
HMP | 0.33 ± 0.00 a | 16.21 ± 0.83 a | 2.67 ± 0.04 a | 1.28 ± 0.02 b |
HMP + AF | 0.45 ± 0.00 b | 28.06 ± 0.69 b | 3.66 ± 0.02 b | 1.92 ± 0.07 b |
Inhibitor | IC50 |
---|---|
Acarbose | 105.61 |
Blackberry juice | 0.87 |
Apple fiber | 22.23 |
Samples after preparation | |
LMP | 1.98 |
LMP + AF | 6.07 |
HMP | 2.41 |
HMP + AF | 6.55 |
Samples after storage | |
LMP | 3.86 |
LMP + AF | 9.69 |
HMP | 4.43 |
HMP + AF | 10.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopjar, M.; Ćorković, I.; Buljeta, I.; Šimunović, J.; Pichler, A. Fortification of Pectin/Blackberry Hydrogels with Apple Fibers: Effect on Phenolics, Antioxidant Activity and Inhibition of α-Glucosidase. Antioxidants 2022, 11, 1459. https://doi.org/10.3390/antiox11081459
Kopjar M, Ćorković I, Buljeta I, Šimunović J, Pichler A. Fortification of Pectin/Blackberry Hydrogels with Apple Fibers: Effect on Phenolics, Antioxidant Activity and Inhibition of α-Glucosidase. Antioxidants. 2022; 11(8):1459. https://doi.org/10.3390/antiox11081459
Chicago/Turabian StyleKopjar, Mirela, Ina Ćorković, Ivana Buljeta, Josip Šimunović, and Anita Pichler. 2022. "Fortification of Pectin/Blackberry Hydrogels with Apple Fibers: Effect on Phenolics, Antioxidant Activity and Inhibition of α-Glucosidase" Antioxidants 11, no. 8: 1459. https://doi.org/10.3390/antiox11081459
APA StyleKopjar, M., Ćorković, I., Buljeta, I., Šimunović, J., & Pichler, A. (2022). Fortification of Pectin/Blackberry Hydrogels with Apple Fibers: Effect on Phenolics, Antioxidant Activity and Inhibition of α-Glucosidase. Antioxidants, 11(8), 1459. https://doi.org/10.3390/antiox11081459