Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence?
Abstract
:1. Spinal Cord Injury
2. Oxidative Stress and Antioxidants following SCI
3. Oxidative DNA Damage Is Understudied after SCI
3.1. Limited Evidence for Base Lesions
3.1.1. Experimental Challenges of Base Lesion Assays
3.2. Unclear Timing of Strand Breaks
3.2.1. Experimental Challenges of Strand Break Assays
3.3. SCI Causes Systemic DNA-Damaging Effects
4. The DNA Damage Response Is Understudied in SCI
Experimental Challenges of DNA Damage Response Assays
5. DNA Repair Is an Attractive Therapeutic Target in SCI
Experimental Challenges of Therapeutic Studies
6. Future Outlook
6.1. Oxidative DNA Damage
6.2. DNA Repair
6.3. DNA Repair-Based Therapies
6.4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GBD. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef]
- Armour, B.S.; Courtney-Long, E.A.; Fox, M.H.; Fredine, H.; Cahill, A. Prevalence and Causes of Paralysis-United States, 2013. Am. J. Public Health 2016, 106, 1855–1857. [Google Scholar] [CrossRef] [PubMed]
- Lidal, I.B.; Snekkevik, H.; Aamodt, G.; Hjeltnes, N.; Biering-Sorensen, F.; Stanghelle, J.K. Mortality after spinal cord injury in Norway. J. Rehabil. Med. 2007, 39, 145–151. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Perspectives on Spinal Cord Injury; Bickenbach, J.B.C., Brown, D., Burns, A., Campbell, R., Cardenas, D., Charlifue, S., Chen, Y., Gray, D., Li, L., Eds.; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Jain, N.B.; Ayers, G.D.; Peterson, E.N.; Harris, M.B.; Morse, L.R.; O’Connor, K.C.; Garshick, E. Traumatic Spinal Cord Injury in the United States, 1993–2012. J. Am. Med. Assoc. 2015, 313, 2236–2243. [Google Scholar] [CrossRef] [PubMed]
- Post, M.W.M.; van Leeuwen, C.M.C. Psychosocial issues in spinal cord injury: A review. Spinal Cord 2012, 50, 382–389. [Google Scholar] [CrossRef]
- Young, A.E.; Murphy, G.C. Employment status after spinal cord injury (1992–2005): A review with implications for interpretation, evaluation, further research, and clinical practice. Int. J. Rehabil. Res. 2009, 32, 1–11. [Google Scholar] [CrossRef]
- National Spinal Cord Injury Statistical Center. Spinal Cord Injury (SCI) Facts and Figures at a Glance. J. Spinal Cord Med. 2016, 39, 370–371. [Google Scholar] [CrossRef]
- Quadri, S.A.; Farooqui, M.; Ikram, A.; Zafar, A.; Khan, M.A.; Suriya, S.S.; Claus, C.; Fiani, B.; Rahman, M.; Ramachandran, A.; et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 2020, 43, 425–441. [Google Scholar] [CrossRef]
- Huang, W.L.; King, V.R.; Curran, O.E.; Dyall, S.C.; Ward, R.E.; Lal, N.; Priestley, J.; Michael-Titus, A. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 2000, 130, 3004–3019. [Google Scholar] [CrossRef]
- Tiwari, V.; Wilson, D.M., 3rd. DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. Am. J. Hum. Genet. 2019, 105, 237–257. [Google Scholar] [CrossRef] [Green Version]
- Scheijen, E.E.M.; Wilson, D.M. Genome Integrity and Neurological Disease. Int. J. Mol. Sci. 2022, 23, 4142. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Xie, Y.; Ordaz, J.D.; Huh, A.J.; Huang, N.; Wu, W.; Liu, N.; Chamberlain, K.; Sheng, Z.; Xu, X. Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metab. 2020, 31, 623–641.e8. [Google Scholar] [CrossRef] [PubMed]
- Scholpa, N.E.; Schnellmann, R.G. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. J. Pharmacol. Exp. Ther. 2017, 363, 303–313. [Google Scholar] [CrossRef]
- Sugawara, T.; Lewen, A.; Gasche, Y.; Yu, F.S.; Chan, P.H. Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. Faseb J. 2002, 16, 1997–1999. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Wen, J. Elevation of hydrogen peroxide after spinal cord injury detected by using the Fenton reaction. Free. Radic. Biol. Med. 1999, 27, 478–482. [Google Scholar] [CrossRef]
- Azbill, R.D.; Mu, X.J.; BruceKeller, A.J.; Mattson, M.P.; Springer, J.E. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 1997, 765, 283–290. [Google Scholar] [CrossRef]
- Visavadiya, N.P.; Patel, S.P.; VanRooyen, J.L.; Sullivan, P.G.; Rabchevsky, A.G. Cellular and subcellular oxidative stress parameters following severe spinal cord injury. Redox Biol. 2016, 8, 59–67. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Sun, D.; Wen, J. The time course of hydroxyl radical formation following spinal cord injury: The possible role of the iron-catalyzed Haber-Weiss reaction. J. Neurotrauma 2004, 21, 805–816. [Google Scholar] [CrossRef]
- Liu, D.; Ling, X.; Wen, J.; Liu, J. The role of reactive nitrogen species in secondary spinal cord injury: Formation of nitric oxide, peroxynitrite, and nitrated protein. J. Neurochem. 2000, 75, 2144–2154. [Google Scholar] [CrossRef] [PubMed]
- Hakan, T.; Toklu, H.Z.; Biber, N.; Celik, H.; Erzik, C.; Oğünç, A.V.; Cetinel, S.; Sener, G. Meloxicam exerts neuroprotection on spinal cord trauma in rats. Int. J. Neurosci. 2011, 121, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.H.; Ouyang, L.; Lin, S.Z.; Chen, S.; Liu, Y.J.; Zhou, W.; Wang, X. Protective role of beta-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int. Immunopharmacol. 2018, 61, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Wang, Z.; Zheng, J.; Wang, R. Protective effects of gallic acid against spinal cord injury-induced oxidative stress. Mol. Med. Rep. 2015, 12, 3017–3024. [Google Scholar] [CrossRef] [PubMed]
- Toklu, H.Z.; Hakan, T.; Celik, H.; Biber, N.; Erzik, C.; Ogunc, A.V.; Akagin, D.; Cikler, E.; Cetinel, S.; Ersahin, M.; et al. Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats. J. Spinal Cord Med. 2010, 33, 401–409. [Google Scholar] [CrossRef]
- Springer, J.E.; Azbill, R.D.; Mark, R.J.; Begley, J.G.; Waeg, G.; Mattson, M.P. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J. Neurochem. 1997, 68, 2469–2476. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Rabchevsky, A.G.; Hall, E.D. Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J. Neurochem. 2007, 100, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chi, L.; Xu, R.; Ke, Y.; Luo, C.; Cai, J.; Qiu, M.; Gozal, D.; Liu, R. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord. 2005, 43, 204–213. [Google Scholar] [CrossRef]
- Feng, Z.; Min, L.; Chen, H.; Deng, W.; Tan, M.; Liu, H.; Hou, J. Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol. 2021, 43, 101984. [Google Scholar] [CrossRef]
- Prá, D.; Franke, S.I.; Henriques, J.A.; Fenech, M. Iron and genome stability: An update. Mutat Res. 2012, 733, 92–99. [Google Scholar] [CrossRef]
- Chen, A.S.; McEwen, M.L.; Sun, S.X.; Ravikumar, R.; Springer, J.E. Proteomic and Phosphoproteomic Analyses of the Soluble Fraction following Acute Spinal Cord Contusion in Rats. J. Neurotrauma 2010, 27, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wang, H.D.; Wang, X.L.; Tian, L.; Xu, J.Y. Disruption of Nrf2 exacerbated the damage after spinal cord injury in mice. J. Trauma Acute Care Surg. 2012, 72, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Sakarcan, S.; Ersahin, M.; Eminoglu, M.E.; Cevik, O.; Ak, E.; Ercan, F.; Sener, G. Riboflavin Treatment Reduces Apoptosis and Oxidative DNA Damage in a Rat Spinal Cord Injury Model. Clin. Exp. Health Sci. 2017, 7, 55–63. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.B.; Gu, Z.S.; Zhang, Q.; Zheng, H. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice. BioSci. Trends 2016, 10, 288–293. [Google Scholar] [CrossRef]
- Martin, L.J.; Chen, K.; Liu, Z.P. Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J. Neurosci. 2005, 25, 6449–6459. [Google Scholar] [CrossRef]
- Takahashi, G.; Sakurai, M.; Abe, K.; Itoyama, Y.; Tabayashi, K. MCI-186 reduces oxidative cellular damage and increases DNA repair function in the rabbit spinal cord after transient ischemia. Ann. Thorac. Surg. 2004, 78, 602–607. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Xiong, J.; Xu, H.L.; Xiang, G.H.; Fan, M.Q.; Zhou, K.; Lin, Y.; Chen, X.; Xie, L. Delivery of pOXR1 through an injectable liposomal nanoparticle enhances spinal cord injury regeneration by alleviating oxidative stress. Bioact. Mater. 2021, 6, 3177–3191. [Google Scholar] [CrossRef]
- Liu, D.; Bao, F. Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: Attenuation by a metalloporphyrin. Neuroscience 2015, 285, 81–96. [Google Scholar] [CrossRef]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Mao, L.; Wang, H.D.; Wang, X.L.; Liao, H.; Zhao, X.Z. Transcription Factor Nrf2 Protects the Spinal Cord from Inflammation Produced by Spinal Cord Injury. J. Surg. Res. 2011, 170, E105–E115. [Google Scholar] [CrossRef]
- Dizdaroglu, M.; Jaruga, P. Mechanisms of free radical-induced damage to DNA. Free. Radic. Res. 2012, 46, 382–419. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.; Davies, K.J.A.; Medeiros, M.H.; Di Mascio, P.; Wagner, J.R. Formation and repair of oxidatively generated damage in cellular DNA. Free. Radic. Biol. Med. 2017, 107, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Borges, H.L.; Linden, R.; Wang, J.Y. DNA damage-induced cell death: Lessons from the central nervous system. Cell Res. 2008, 18, 17–26. [Google Scholar] [CrossRef]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. Faseb J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef]
- Sakurai, M.; Nagata, T.; Abe, K.; Horinouchi, T.; Itoyama, Y.; Tabayashi, K. Oxidative damage and reduction of redox factor-1 expression after transient spinal cord ischemia in rabbits. J. Vasc. Surg. 2003, 37, 446–452. [Google Scholar] [CrossRef]
- Bao, F.; Chen, Y.H.; Dekaban, G.A.; Weaver, L.C. An anti-CD11d integrin antibody reduces cyclooxygenase-2 expression and protein and DNA oxidation after spinal cord injury in rats. J. Neurochem. 2004, 90, 1194–1204. [Google Scholar] [CrossRef]
- King, V.R.; Huang, W.L.; Dyall, S.C.; Curran, O.E.; Priestley, J.V.; Michael-Titus, A.T. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J. Neurosci. 2006, 26, 4672–4680. [Google Scholar] [CrossRef] [PubMed]
- Kotipatruni, R.R.; Dasari, V.R.; Veeravalli, K.K.; Dinh, D.H.; Fassett, D.; Rao, J.S. p53- and Bax-mediated apoptosis in injured rat spinal cord. Neurochem. Res. 2011, 36, 2063–2074. [Google Scholar] [CrossRef] [PubMed]
- Leski, M.L.; Bao, F.; Wu, L.Q.; Qian, H.; Sun, D.C.; Liu, D.X. Protein and DNA oxidation in spinal injury: Neurofilaments—An oxidation target. Free. Radic. Biol. Med. 2001, 30, 613–624. [Google Scholar] [CrossRef]
- Liu, Z.P.; Martin, L.J. Motor neurons rapidly accumulate DNA single-strand breaks after in vitro exposure to nitric oxide and peroxynitrite and in vivo axotomy. J. Comp. Neurol. 2001, 432, 35–60. [Google Scholar] [CrossRef]
- Martin, L.J.; Liu, Z. Injury-induced spinal motor neuron apoptosis is preceded by DNA single-strand breaks and is p53- and Bax-dependent. J. Neurobiol. 2002, 50, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Dagci, T.; Konyalioglu, S.; Keser, A.; Kayalioglu, G. Effects of Embryonic Neural Stem Cell Transplantation on DNA Damage in the Brain and Spinal Cord Following Spinal Cord Injury. Neurophysiology 2009, 41, 409–415. [Google Scholar] [CrossRef]
- Dagci, T.; Armagan, G.; Konyalioglu, S.; Yalcin, A. Alterations in the Expression of the Apurinic/Apyrimidinic Endonuclease-1/Redox Factor-1 (APE/Ref-1) and DNA Damage in the Caudal Region of Acute and Chronic Spinal Cord Injured Rats Treated by Embryonic Neural Stem Cells. Physiol. Res. 2009, 58, 427–434. [Google Scholar] [CrossRef]
- Ozgonul, A.M.; Konyalioglu, S.; Dagci, T.; Kilinc, E. Effects of Embryonic Neural Stem Cell Therapy on DNA Damage Products in Urine and Tissue After Spinal Cord Injury in Rats. Turk. Klin. Tip Bilimleri Derg. 2012, 32, 1217–1225. [Google Scholar]
- Genovese, T.; Mazzon, E.; Muià, C.; Patel, N.S.; Threadgill, M.D.; Bramanti, P.; De Sarro, A.; Thiemermman, C.; Cuzzocrea, A. Inhibitors of poly(ADP-ribose) polymerase modulate signal transduction pathways and secondary damage in experimental spinal cord trauma. J. Pharmacol. Exp. Ther. 2005, 312, 449–457. [Google Scholar] [CrossRef]
- Paterniti, I.; Mazzon, E.; Emanuela, E.; Di Paola, R.; Galuppo, M.; Bramanti, P.; Cuzzorea, S. Modulation of inflammatory response after spinal cord trauma with deferoxamine, an iron chelator. Free. Radic. Res. 2010, 44, 694–709. [Google Scholar] [CrossRef]
- Tuxworth, R.I.; Taylor, M.J.; Anduaga, A.M.; Hussien-Ali, A.; Chatzimatthaiou, S.; Longland, J.; Thompson, A.; Almutirim, S.; Alifragis, P.; Kyriacou, C.; et al. Attenuating the DNA damage response to double-strand breaks restores function in models of CNS neurodegeneration. Brain Commun. 2019, 1, fcz005. [Google Scholar] [CrossRef] [PubMed]
- Abbotts, R.; Wilson, D.M. Coordination of DNA single strand break repair. Free. Radic. Biol. Med. 2017, 107, 228–244. [Google Scholar] [CrossRef]
- Mah, L.J.; El-Osta, A.; Karagiannis, T.C. γH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia 2010, 24, 679–686. [Google Scholar] [CrossRef]
- Springer, J.E.; Azbill, R.D.; Knapp, P.E. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat. Med. 1999, 5, 943–946. [Google Scholar] [CrossRef]
- Qiu, J.; Nesic, O.; Ye, Z.; Rea, H.; Westlund, K.N.; Xu, G.Y.; Mcadoo, D.; Hulsebosch, C.; Perez-Polo, J. Bcl-xL expression after contusion to the rat spinal cord. J. Neurotrauma 2001, 18, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.K.; Matzelle, D.D.; Wilford, G.G.; Hogan, E.L.; Banik, N.L. Inhibition of calpain-mediated apoptosis by E-64 d-reduced immediate early gene (IEG) expression and reactive astrogliosis in the lesion and penumbra following spinal cord injury in rats. Brain Res. 2001, 916, 115–126. [Google Scholar] [CrossRef]
- Ray, S.K.; Matzelle, D.D.; Sribnick, E.A.; Guyton, M.K.; Wingrave, J.M.; Banik, N.L. Calpain inhibitor prevented apoptosis and maintained transcription of proteolipid protein and myelin basic protein genes in rat spinal cord injury. J. Chem. Neuroanat. 2003, 26, 119–124. [Google Scholar] [CrossRef]
- Chen, W.-H.; Tzeng, S.-F. Pituitary adenylate cyclase-activating polypeptide prevents cell death in the spinal cord with traumatic injury. Neurosci. Lett. 2005, 384, 117–121. [Google Scholar] [CrossRef]
- Sribnick, E.A.; Matzelle, D.D.; Banik, N.L.; Ray, S.K. Direct evidence for calpain involvement in apoptotic death of neurons in spinal cord injury in rats and neuroprotection with calpain inhibitor. Neurochem. Res. 2007, 32, 2210–2216. [Google Scholar] [CrossRef]
- Ersahin, M.; Toklu, H.Z.; Erzik, C.; Akakin, D.; Tetik, S.; Sener, G.; Yegen, B. Ghrelin Alleviates Spinal Cord Injury in Rats Via Its Anti-inflammatory Effects. Turk. Neurosurg. 2011, 21, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Q.; Song, W.Q.; Deng, B.; Xing, Z.L.; Zhang, W.H. 3-aminobenzamide, one of poly(ADP-ribose) polymerase-1 inhibitors, rescuesapoptosisin rat models of spinal cord injury. Int. J. Clin. Exp. Pathol. 2015, 8, 12207–12215. [Google Scholar]
- Zhang, J.F.; Wu, Y.C.; Xu, J.J.; Zhang, S.H.; Li, S.S. Neuroprotective effects of electro-acupuncture in spinal cord injury rats via up-regulation of DUSP14. Trop. J. Pharm. Res. 2019, 18, 1831–1837. [Google Scholar] [CrossRef]
- Casili, G.; Campolo, M.; Lanza, M.; Filippone, A.; Scuderi, S.; Messina, S.; Ardizonne, A.; Esposito, E.; Paterniti, I. Role of ABT888, a Novel Poly(ADP-Ribose) Polymerase (PARP) Inhibitor in Countering Autophagy and Apoptotic Processes Associated to Spinal Cord Injury. Mol. Neurobiol. 2020, 57, 4394–4407. [Google Scholar] [CrossRef]
- Ray, S.K.; Matzelle, D.D.; Wilford, G.G.; Hogan, E.L.; Banik, N.L. Increased calpain expression is associated with apoptosis in rat spinal cord injury: Calpain inhibitor provides neuroprotection. Neurochem. Res. 2000, 25, 1191–1198. [Google Scholar] [CrossRef]
- Ray, S.K.; Matzelle, D.C.; Wilford, G.G.; Hogan, E.L.; Banik, N.L. E-64-d prevents both calpain upregulation and apoptosis in the lesion and penumbra following spinal cord injury in rats. Brain Res. 2000, 867, 80–89. [Google Scholar] [CrossRef]
- Qiu, Y.F.; Zhao, Z.R.; Chen, Q.; Zhang, B.; Yang, C.J. MiR-495 regulates cell proliferation and apoptosis in H2O2 stimulated rat spinal cord neurons through targeting signal transducer and activator of transcription 3 (STAT3). Ann. Transl. Med. 2021, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.S.; Szabo, C.; Hooper, D.C. Poly (ADP-ribse) polymerase activity contributes to peroxynitrite-induced spinal cord neuronal cell death in vitro. J. Neurotrauma 2004, 21, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, L.; Zhang, Y.M.; Gu, H.J.; Huang, Z.Y.; Zhou, K.F.; Yin, X. Activation of AMPK by OSU53 protects spinal cord neurons from oxidative stress. Oncotarget 2017, 8, 112477–112486. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef]
- Medalha, C.C.; Polesel, F.S.; da Silva, V.H.P.; Martins, R.A.; Pozzi, R.; Ribeiro, D.A. Acute Spinal Cord Injury Induces Genetic Damage in Multiple Organs of Rats. Cell. Mol. Neurobiol. 2012, 32, 949–952. [Google Scholar] [CrossRef]
- Muthaiah, V.P.K.; Palaniappan, T.; Rajan, S.S.; Chandrasekar, K.; Venkatachalam, S. Attenuation of oxidative stress after contusion spinal cord injury through inhibition of Poly ADP Ribose Polymerase involves glutamate cysteine ligase. Process Biochem. 2019, 84, 180–185. [Google Scholar] [CrossRef]
- Noristani, H.; Gerber, Y.N.; Sabourin, J.-C.; Le Corre, M.; Lonjon, N.; Mestre-Frances, N.; Hirbec, H.; Perrin, F.E. RNA-Seq Analysis of Microglia Reveals Time-Dependent Activation of Specific Genetic Programs following Spinal Cord Injury. Front. Mol. Neurosci. 2017, 10, 90. [Google Scholar] [CrossRef]
- Di Giovanni, S.; Knoblach, S.M.; Brandoli, C.; Aden, S.A.; Hoffman, E.P.; Faden, A.I. Gene profiling in spinal cord injury shows role of cell cycle neuronal death. Ann. Neurol. 2003, 53, 454–468. [Google Scholar] [CrossRef]
- Chen, J.; Cui, Z.; Li, W.; Shen, A.; Xu, G.; Bao, G.; Sun, Y.; Wang, L.; Fan, J.; Zhang, J.; et al. MCM7 Expression Is Altered in Rat After Spinal Cord Injury. J. Mol. Neurosci. 2013, 51, 82–91. [Google Scholar] [CrossRef]
- Chen, C.; Lu, J.; Yu, Q.; Xiao, J.-R.; Wei, H.-F.; Song, X.-J.; Ge, J.-B.; Tao, W.-D.; Qian, R.; Yu, X.-W.; et al. Expression of CDc6 after acute spinal cord injury in adult rats. Neuropeptides 2016, 56, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, M.B.; Basu, M.; Iswarari, S.; Mukhopadhyay, K.K.; Sardar, K.P.; Acharyya, B.; Mohanty, P.K.; Mukhopadhyay, D. CSF Proteomics of Secondary Phase Spinal Cord Injury in Human Subjects: Perturbed Molecular Pathways Post Injury. PLoS ONE 2014, 9, e110885. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, C.S.; Nori, S.; Tetreault, L.; Wilson, J.; Kwon, B.; Harrop, J.; Choi, D.; Fehlings, M.G. Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery 2017, 80, S9–S22. [Google Scholar] [CrossRef] [PubMed]
- Ropper, A.E.; Ropper, A.H. Acute Spinal Cord Compression. N. Engl. J. Med. 2017, 376, 1358–1369. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Tetreault, L.A.; Wilson, J.R.; Kwon, B.K.; Burns, A.; Martin, A.R.; Hawryluk, G.; Harrop, J.S. A Clinical Practice Guideline for the Management of Acute Spinal Cord Injury: Introduction, Rationale, and Scope. Global Spine J. 2017, 7 (Suppl. 3), 84s–94s. [Google Scholar] [CrossRef] [PubMed]
- Akan, O.B.; Ramezani, H.; Civas, M.; Cetinkaya, O.; Bilgin, B.A.; Abbasi, N.A. Information and Communication Theoretical Understanding and Treatment of Spinal Cord Injuries: State-of-the-art and Research Challenges. IEEE Rev. Biomed. Eng. 2021, 1. [Google Scholar] [CrossRef]
- Erens, C.; Van Broeckhoven, J.; Hoeks, C.; Schabbauer, G.; Cheng, P.N.; Chen, L.; Hellings, N.; Broux, B.; Lemmens, S.; Hendrix, S. L-Arginine Depletion Improves Spinal Cord Injury via Immunomodulation and Nitric Oxide Reduction. Biomedicines 2022, 10, 205. [Google Scholar] [CrossRef]
- Van Broeckhoven, J.; Erens, C.; Sommer, D.; Scheijen, E.; Sanchez, S.; Vidal, P.M.; Dooley, D.; Van Breedam, E.; Quarta, A.; Ponsaerts, P.; et al. Macrophage-based delivery of interleukin-13 improves functional and histopathological outcomes following spinal cord injury. J. Neuroinflammation 2022, 19, 102. [Google Scholar] [CrossRef]
- Wagner, F.; Mignardot, J.-B.; Le Goff-Mignardot, C.G.; Demesmaeker, R.; Komi, S.; Capogrosso, M.; Rowald, A.; Seáñez, I.; Caban, M.; Pirondini, E.; et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018, 563, 65–71. [Google Scholar] [CrossRef]
- Wang, X.; Sekine, Y.; Byrne, A.B.; Cafferty, W.B.; Hammarlund, M.; Strittmatter, S.M. Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury. eNeuro 2016, 3, 6. [Google Scholar] [CrossRef]
- Amente, S.; Scala, G.; Majello, B.; Azmoun, S.; Tempest, H.G.; Premi, S.; Cooke, M.S. Genome-wide mapping of genomic DNA damage: Methods and implications. Cell. Mol. Life Sci. 2021, 78, 6745–6762. [Google Scholar] [CrossRef] [PubMed]
Study | Animal Model | SCI Model | Analysis Method | Time Post-Injury | Effect Size (SCI-Sham) 1 | Measurement Unit | Fold Change (SCI/Sham) 1 | |
---|---|---|---|---|---|---|---|---|
Leski, 2001 [50] | Rat | T13 weight-drop 50–75 g·cm | HPLC with ECD | 1 hpi 3 hpi 6 hpi 12 hpi 1 dpi 2 dpi | 0.5 1.1 * 0.9 * 0.1 0.1 0.1 | 8-oxodG/2-dG × 10−4 | 1.4 1.8 * 1.6 * 1.1 1.1 1.1 | |
Sakurai, 2003 [46] | Rabbit | Transient spinal cord ischemia | 8-oxodG IHC | 8 hpi 1 dpi 2 dpi | No # Up # Up # | 8-oxodG immunoreactivity | ||
Bao, 2004 [47] | Rat | T4 extradural compression via aneurysm clip for 60 s | 8-oxodG IHC | 1 dpi | 24 * | 8-oxodG+ cells/0.4 mm2 | 30 * | |
Takahashi, 2004 [37] | Rabbit | Transient spinal cord ischemia | 8-oxodG IHC | 8 hpi 1 dpi 2 dpi | No # Up # Up # | 8-oxodG immunoreactivity | ||
Martin, 2005 [36] | Rat | Sciatic nerve avulsion | 8-oxodG IHC | 2 dpi 4 dpi 5 dpi 7 dpi 10 dpi | 59 * 129 * 357 * 292 * 194 * | 8-oxodG+ motor neurons | 2.6 * 3.5 * 5.5 * 6.9 * 4.0 * | |
Xu, 2005 [29] | Mouse | T12-L3 compression 20 g for 5 min | 8-oxodG IHC | 1 hpi 6 hpi 12 hpi 1 dpi | Up # Up # Up # Up # | 8-oxodG immunoreactivity | ||
King, 2006 [48] | Rat | T7-9 hemi-section | 8-oxodG IHC | 7 dpi | 15 † (dorsal) 10 † (ventral) | 8-oxodG+ cells/mm2 | ||
Huang, 2007 [10] | Rat | T12 compression 50 g for 5 min | 8-oxodG IHC | 3 dpi 7 dpi | 10 † 4 † | 8-oxodG+ cells | ||
Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | 8-oxodG WB | 1 dpi 3 dpi 7 dpi 14 dpi 21 dpi | 0.36 * 0.44 * 0.57 * 0.41 * 0.32 * | AU | 2.5 * 2.8 * 3.4 * 2.7 * 2.3 * | |
Sakarcan, 2017 [34] | Rat | T7-10 weight-drop 10 g at 10 cm | 8-oxodG ELISA | 7 dpi | 4.5 * | ng/mg DNA | 2.1 * |
Study | Animal Model | SCI Model | Analysis Method | Time Post-Injury | Effect Size (SCI-Sham) 1 | Measurement Unit | Fold Change (SCI/Sham) 1 | |
---|---|---|---|---|---|---|---|---|
Liu, 2001 [51] | Rat | Sciatic nerve avulsion | Comet assay SSBs | 5 dpi 7 dpi 10 dpi | 26 † 36 † 23 † | % Comet | ||
Martin, 2002 [52] | Rat | Sciatic nerve avulsion | Comet assay SSBs | 5 dpi 7 dpi 10 dpi 14 dpi 20 dpi 28 dpi | 24 # 35 # 23 # 0 # 0 # 0 # | % Comet | 13 # 35 # 23 # 0 # 0 # 0 # | |
Genovese, 2005 [56] | Mouse | T6-7 dural compression via 24 g aneurysm clip | PAR IHC | 1 dpi | Up # | PAR immunoreactivity | ||
Dagci, 2009a [53] | 7 dpi 28 dpi | 8 # 17 # | Tail% | 3.0 # 4.4 # | ||||
Rat | T8-9 micro-scissor cuts | Comet assay DNA damage | 7 dpi 28 dpi | 16 # 30 # | Tail length | 4.2 # 7.0 # | ||
7 dpi 28 dpi | 5 # 7 # | Tail moment | 3.5 # 3.3 # | |||||
Dagci, 2009b [54] | 7 dpi 28 dpi | 10.2 * 26.7 * | Tail% | 2.0 * 4.5 * | ||||
Rat | T8-9 micro-scissor cuts | Comet assay DNA damage | 7 dpi 28 dpi | 6.9 * 10.8 * | Tail length | 1.9 * 2.6 * | ||
7 dpi 28 dpi | 3.7 * 10.5 * | Tail moment | 3.7 * 9.9 * | |||||
Paterniti, 2010 [57] | Mouse | T5-8 extradural compression via 24 g aneurysm clip | PAR IHC | 1 dpi | 8 * | % of total tissue area | 3 * | |
Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | Comet assay Strand breaks | 1 dpi 7 dpi 21 dpi | 75 90 114 * | Comets/section | 13 15 19 * | |
Ozgonul, 2012 [55] | 7 dpi 28 dpi | 1.7 * 3.5 * | Tail% | 1.7 * 2.3 * | ||||
Rat | T8-9 micro-scissor cuts | Comet assay DNA damage | 7 dpi 28 dpi | 12.3 * 14.3 * | Tail length | 3.5 * 2.8 * | ||
7 dpi 28 dpi | 1.3 * 1.9 * | Tail moment | 1.9 * 2.1 * | |||||
Tuxworth, 2019 [58] | Rat | T8 dorsal column crush injury | γ-H2AX IHC | 28 dpi | 5.2 † | γ-H2AX+ pixels/cell |
Factor | Function | Study | Animal Model | SCI Model | Analysis Method | Cell Type | Effect |
---|---|---|---|---|---|---|---|
BER | |||||||
OGG1 | DNA glycosylase | Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | qPCR, WB, and IHC | Total SC | Up |
TDG | DNA glycosylase | Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | qPCR, WB, and IHC | Total SC | Up |
APEX1 | AP endonuclease | Sakurai, 2003 [46] | Rabbit | Transient spinal cord ischemia | WB | Neuron | Down |
Bao, 2004 [47] | Rat | T4 extradural compression via aneurysm clip for 60 s | WB and IHC | Total SC | Down | ||
Dagci, 2009b [54] | Rat | T8-9 micro-scissor cuts | qPCR | Total SC | Down | ||
Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | qPCR, WB, and IHC | Total SC | Up | ||
SSBR | |||||||
XRCC1 * | Scaffold, Ligase 3 accessory factor | Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | qPCR, WB, and IHC | Total SC | Up |
PARP1 | Strand break response PAR polymerase | Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | qPCR, WB, and IHC | Total SC | Up |
Meng, 2015 [68] | Rat | T10 weight drop (not further specified) | qPCR, WB, IHC | Total SC | Up | ||
Muthaiah, 2019 [78] | Rat | T10-11 weight-drop 10 g at 2.5 cm | qPCR and WB | Total SC | Up | ||
HR/FA | |||||||
BRCA1 (FANCS) | Accessory factor for transcription and recombination, E3 ubiquitin ligase | Noristani, 2017 [79] | Mouse | T9 full transection or hemi-section | RNA-seq | Microglia | Up |
BRCA2 (FANCD1) | Cooperation with RAD51 in recombinational repair | Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | qPCR and WB | Total SC | Up |
FANCD2 | Target for mono-ubiquitination | Noristani, 2017 [79] | Mouse | T9 full transection or hemi-section | RNA-seq | Microglia | Up |
ATR | DNA damage sensor kinase | Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | qPCR and WB | Total SC | Up |
DSBR | |||||||
ATM | DSB sensor kinase | Kotipatruni, 2011 [49] | Rat | T10 weight-drop 10 g at 1.25 cm | qPCR and WB | Total SC | Up |
DNArep | |||||||
MCM7 | Genome replication factor | Chen, 2013 [81] | Rat | T9 weight-drop 10 g at 10 cm | WB and IHC | Total SC | Up |
PCNA * | Sliding clamp for polymerase delta and epsilon | Giovanni, 2003 [80] | Rat | T8-9 weight-drop 10 g at 1.75 cm | qPCR, WB, and IHC | Total SC | Up |
Chen, 2013 [81] | Rat | T9 weight-drop 10 g at 10 cm | WB and IHC | Total SC | Up | ||
Chen, 2016 [82] | Rat | T9 weight-drop 10 g at 10 cm | WB and IHC | Total SC | Up |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheijen, E.E.M.; Hendrix, S.; Wilson, D.M., III. Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence? Antioxidants 2022, 11, 1728. https://doi.org/10.3390/antiox11091728
Scheijen EEM, Hendrix S, Wilson DM III. Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence? Antioxidants. 2022; 11(9):1728. https://doi.org/10.3390/antiox11091728
Chicago/Turabian StyleScheijen, Elle E. M., Sven Hendrix, and David M. Wilson, III. 2022. "Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence?" Antioxidants 11, no. 9: 1728. https://doi.org/10.3390/antiox11091728
APA StyleScheijen, E. E. M., Hendrix, S., & Wilson, D. M., III. (2022). Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence? Antioxidants, 11(9), 1728. https://doi.org/10.3390/antiox11091728