Comparison of Antioxidant Properties and Metabolite Profiling of Acer pseudoplatanus Leaves of Different Colors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maple Leaves
2.2. Polyphenol Content
2.2.1. Total Polyphenol (TP)
2.2.2. Total Extractable Tannin (TET)
2.2.3. Total Flavonoid Content (TFlav)
2.2.4. Chlorophyll Content
2.2.5. Anthocyanin Content
2.2.6. Total Carotenoid Content
2.3. In Vitro Antioxidant Test
2.3.1. Evaluation of Antioxidant Activity in the Linoleic Acid Model System
Preparation and Treatment of Linoleic Acid Emulsions
Thiobarbituric Acid Reactive Substances (TBARS)
2.3.2. DPPH-Free Radical Scavenging Effect
2.3.3. FRAP
2.3.4. Chelation Capability of Metal Ions
2.4. Extraction and Analysis of Metabolites
2.5. Statistical Analysis and Metabolic Network Analysis
3. Results
3.1. Polyphenol Content
3.2. Antioxidant Activity
3.2.1. TBARS
3.2.2. DPPH-Free Radical Scavenging Effect
3.2.3. FRAP
3.2.4. Metal Ions Chelating Ability
3.3. Correlation Coefficients of Antioxidant Activities and Polyphenols Content
3.4. Metabolite Profiling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vijayalaxmi, S.; Jayalakshmi, S.K.; Sreeramulu, K. Polyphenols from different agricultural residues: Extraction, identification and their antioxidant properties. J. Food Sci. Technol. 2015, 52, 2761–2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, J.G.; Piskounova, E.; Morrison, S.J. Cancer, oxidative stress, and metastasis. Cold Spring Harbor. Symp. Quant. Biol. 2016, 81, 163–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postma, N.S.; Mommers, E.C.; Eling, W.M.; Zuidema, J. Oxidative stress in malaria; implications for prevention and therapy. Pharm. World Sci. 1996, 18, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.; Griendling, K.K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 2003, 91, 7A–11A. [Google Scholar] [CrossRef]
- Wruck, C.J.; Fragoulis, A.; Gurzynski, A.; Brandenburg, L.O.; Kan, Y.W.; Chan, K.; Hassenpflug, J.; Freitag-Wolf, S.; Varoga, D.; Lippross, S.; et al. Role of oxidative stress in rheumatoid arthritis: Insights from the nrf2-knockout mice. Nat. Prod. Res. 2011, 70, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Mateen, S.; Moin, S.; Khan, A.Q.; Zafar, A.; Fatima, N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 2016, 11, e0152925. [Google Scholar] [CrossRef] [Green Version]
- Birch-Machin, M.A.; Bowman, A. Oxidative stress and ageing. Br. J. Dermatol. 2016, 175 (Suppl. 2), 26–29. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Júnior, M.M.; de Oliveira, T.P.; Gonçalves, O.H.; Leimann, F.V.; Medeiros Marques, L.L.; Fuchs, R.H.B.; Cardoso, F.A.R.; Droval, A.A. Substitution of synthetic antioxidant by curcumin microcrystals in mortadella formulations. Food Chem. 2019, 300, 125231. [Google Scholar] [CrossRef]
- Patil, B.S.; Jayaprakasha, G.K.; Chidambara Murthy, K.N.; Vikram, A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2003, 523–524, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of hayward kiwifruit. Food Chem. 2008, 107, 282–288. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chang, Y.H.; Shao, Y.Y. Effects of genotype and treatment on the antioxidant activity of sweet potato in taiwan. Food Chem. 2006, 98, 529–538. [Google Scholar] [CrossRef]
- Clifford, M.N. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004, 70, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Di Majo, D.; La Guardia, M.; Giammanco, S.; La Neve, L.; Giammanco, M. The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chem. 2008, 111, 45–49. [Google Scholar] [CrossRef]
- Royer, M.; Diouf, P.N.; Stevanovic, T. Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts. Food Chem. Toxicol. 2011, 49, 2180–2188. [Google Scholar] [CrossRef]
- Sheabar, F.Z.; Neeman, I. Separation and concentration of natural antioxidants from the rape of olives. J. Am. Oil Chem. Soc. 1988, 65, 990–993. [Google Scholar] [CrossRef]
- Onyeneho, S.N.; Hettiarachchy, N.S. Antioxidant activity of durum wheat bran. J. Agric. Food Chem. 2002, 40, 1496–1500. [Google Scholar] [CrossRef]
- Marinova, E.; Yanishlieva, N.; Kostova, I. Antioxidative action of the ethanolic extract and some hydroxycoumarins of fraxinus ornus bark. Food Chem. 1994, 51, 125–132. [Google Scholar] [CrossRef]
- Sotillo, D.R.; Hadley, M.; Holm, E.T. Potato peel waste: Stability and antioxidant activity of a freeze-dried extract. J. Food Sci. 1994, 59, 1031–1033. [Google Scholar] [CrossRef]
- Shen, J.; Zou, Z.; Zhang, X.; Zhou, L.; Wang, Y.; Fang, W.; Zhu, X. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars. Hortic. Res. 2018, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.-H.; Li, X.; Zhang, X.-X.; Zhang, H.; Zhao, X.-Y. Mutation mechanism of leaf color in plants: A review. Forests 2020, 11, 851. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Z.; Gao, J.; Fu, S.; Hu, H.; Ren, J. Combined metabolome and transcriptome analyses of photosynthetic pigments in red maple. Plant Physiol. Biochem. 2020, 154, 476–490. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Antioxidant capacity, antioxidant compounds and antioxidant enzyme activities in five date cultivars during development and ripening. Sci. Hortic. 2011, 129, 688–693. [Google Scholar] [CrossRef]
- Zimmermann, P.; Zentgraf, U. The correlation between oxidative stress and leaf senescence during plant development. Cell Mol. Biol. Lett. 2005, 10, 515–534. [Google Scholar] [PubMed]
- Abou-Zaid, M.M.; Nozzolillo, C.; Tonon, A.; Coppens, M.; Lombardo, D.A. High-performance liquid chromatography characterization and identification of antioxidant polyphenols in maple syrup. Pharm. Biol. 2008, 46, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Thériault, M.; Caillet, S.; Kermasha, S.; Lacroix, M. Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food Chem. 2006, 98, 490–501. [Google Scholar] [CrossRef]
- Henry, G.E.; Yuan, T.; Edmonds, M.; Li, L.; Seeram, N.P. Antioxidant and α-glucosidase inhibitory activities of maple (Acer spp.) bark extracts. Planta Med. 2012, 78, PI375. [Google Scholar] [CrossRef]
- Song, D.-H.; Gu, T.-W.; Kim, H.-W. Quality characteristics of senior-friendly gelatin gels formulated with hot water extract from red maple leaf as a novel anthocyanin source. Foods 2021, 10, 3074. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef] [PubMed]
- Çam, M.; Hışıl, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Roshanak, S.; Rahimmalek, M.; Goli, S.A. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin c content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J. Pigments in Vegetables: Chlorophylls and Carotenoids; Springer: New York, NY, USA, 1991. [Google Scholar]
- Yen, G.C.; Chang, Y.C.; Su, S.W. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem. 2003, 83, 49–54. [Google Scholar] [CrossRef]
- Tee, P.L.; Yusof, S.; Mohamed, S. Antioxidative properties of roselle (Hibiscus sabdariffa L.) in linoleic acid model system. Nutr. Food Sci. 2002, 32, 17–20. [Google Scholar] [CrossRef]
- Stoilova, I.; Krastanov, A.; Stoyanova, A.; Denev, P.; Gargova, S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 2007, 102, 764–770. [Google Scholar] [CrossRef]
- García-Alonso, M. Evaluation of the antioxidant properties of fruits. Food Chem. 2004, 84, 13–18. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitao, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitao, S.G. Screening of brazilian plant extracts for antioxidant activity by the use of dpph free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of abts, dpph, frap, and orac assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Singh, N.; Rajini, P.S. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004, 85, 611–616. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, E.; Zhang, M.; Lee, Y.-S.; Ji, B.; Lee, S.-H.; Cheong, Y.E.; Yun, S.-I.; Kim, Y.-S.; Kim, K.H.; et al. Antidiabetic effect of noodles containing fermented lettuce extracts. Metabolites 2021, 11, 520. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for nmr- and ms-based metabolomics. Anal. Biochem. 2008, 372, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, Y.; Chen, C.; Ding, Z.; Hu, J.; Zheng, C.; Li, Y. Metabolite profiling of tea (Camellia sinensis L.) leaves in winter. Sci. Hortic. 2015, 192, 1–9. [Google Scholar] [CrossRef]
- Styczynski, M.P.; Moxley, J.F.; Tong, L.V.; Walther, J.L.; Jensen, K.L.; Stephanopoulos, G.N. Systematic identification of conserved metabolites in gc/ms data for metabolomics and biomarker discovery. Anal. Chem. 2007, 79, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, X.; Xuan, Y.; Tang, F.; Wang, J.; Shi, D.; Fu, S.; Ren, J. Transcriptome analysis based on a combination of sequencing platforms provides insights into leaf pigmentation in acer rubrum. BMC Plant Biol. 2019, 19, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Xiaoyu, L.; Junlan, G.; Yun, X.; Jie, R. Integrating transcriptomic and metabolomic analysis of hormone pathways in acer rubrum during developmental leaf senescence. BMC Plant Biol. 2020, 20, 410. [Google Scholar] [CrossRef]
- Zhang, M.; Bu, T.; Liu, S.; Kim, S. Optimization of caffeic acid extraction from dendropanax morbifera leaves using response surface methodology and determination of polyphenols and antioxidant properties. Horticulturae 2021, 7, 491. [Google Scholar] [CrossRef]
- Bandici, L.; Teusdea, A.C.; Soproni, V.D.; Hathazi, F.I.; Arion, M.N.; Molnar, C.O.; Vicas, S.I. The influence of microwave treatments on bioactive compounds and antioxidant capacity of Mentha piperita L. Materials 2022, 15, 7789. [Google Scholar] [CrossRef]
- Gerami, M.; Majidian, P.; Ghorbanpour, A.; Alipour, Z. Stevia rebaudiana bertoni responses to salt stress and chitosan elicitor. Physiol. Mol. Biol. Plants 2020, 26, 965–974. [Google Scholar] [CrossRef]
- Chaves, M.C.; Freitas, J.C.E.; Nery, F.C.; Paiva, R.; Prudente, D.d.O.; Costa, B.G.P.; Daubermann, A.G.; Bernardes, M.M.; Grazul, R.M. Influence of colorful light-emitting diodes on growth, biochemistry, and production of volatile organic compounds in vitro of lippia filifolia (verbenaceae). J. Photochem. Photobiol. B Biol. 2020, 212, 112040. [Google Scholar] [CrossRef]
- Thuraya, A.; Majeda, S.; Mariam, A. Rapid and nondestructive estimations of chlorophyll concentration in date palm (Phoenix dactylifera L.) leaflets using spad-502+ and ccm-200 portable chlorophyll meters. Emir. J. Food. Agric. 2021, 33, 544–554. [Google Scholar] [CrossRef]
- Espinosa-Acosta, G.; Ramos-Jacques, A.L.; Molina, G.A.; Maya-Cornejo, J.; Esparza, R.; Hernandez-Martinez, A.R.; Sánchez-González, I.; Estevez, M. Stability analysis of anthocyanins using alcoholic extracts from black carrot (Daucus carota ssp. Sativus var. Atrorubens alef.). Molecules 2018, 23, 2744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Beta, T. An evaluation of carotenoid levels and composition of glabrous canaryseed. Food Chem. 2012, 133, 782–786. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Jang, H.L.; Lee, J.H.; Choi, Y.; Kim, H.; Hwang, J.; Seo, D.; Kim, S.; Nam, J.S. Changes in the phenolic compounds and antioxidant activities of mustard leaf (Brassica juncea) kimchi extracts during different fermentation periods. Food Sci. Biotechnol. 2017, 26, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Karawita, R.; Siriwardhana, N.; Lee, K.-W.; Heo, M.-S.; Yeo, I.-K.; Lee, Y.-D.; Jeon, Y.-J. Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. Eur. Food Res. Technol. 2004, 220, 363–371. [Google Scholar] [CrossRef]
- Albayrak, S.; Aksoy, A.; Sagdic, O.; Albayrak, S. Antioxidant and antimicrobial activities of different extracts of some medicinal herbs consumed as tea and spices in turkey. J. Food Biochem. 2012, 36, 547–554. [Google Scholar] [CrossRef]
- Shah, P.; Modi, H. Comparative study of dpph, abts and frap assays for determination of antioxidant activity. Int. J. Res. Appl. Sci. Eng. Technol. 2015, 3, 636–641. [Google Scholar]
- Lv, H.P.; Zhang, Y.; Shi, J.; Lin, Z. Phytochemical profiles and antioxidant activities of chinese dark teas obtained by different processing technologies. Food Res. Int. 2017, 100, 486–493. [Google Scholar] [CrossRef]
- Ma, C.; Wang, Z.Q.; Kong, B.B.; Lin, T.B. Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regul. 2013, 70, 275–285. [Google Scholar] [CrossRef]
- Den Hartog, G.J.; Boots, A.W.; Adam-Perrot, A.; Brouns, F.; Verkooijen, I.W.; Weseler, A.R.; Haenen, G.R.; Bast, A. Erythritol is a sweet antioxidant. Nutrition 2010, 26, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Msomi, N.Z.; Erukainure, O.L.; Salau, V.F.; Olofinsan, K.A.; Islam, M.S. Xylitol improves antioxidant, purinergic and cholinergic dysfunction, and lipid metabolic homeostasis in hepatic injury in type 2 diabetic rats. J. Food Biochem. 2022, 46, e14040. [Google Scholar] [CrossRef] [PubMed]
- Akbaribazm, M.; Khazaei, M.R.; Khazaei, M. Phytochemicals and antioxidant activity of alcoholic/hydroalcoholic extract of trifolium pratense. Chin. Herb. Med. 2020, 12, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, S.A.; Bhaskar, J.P.; Krishnan, V.; Sethupathy, S.; Pandipriya, S.; Aruni, W.; Pandian, S.K. Inhibition of biofilm and biofilm-associated virulence factor production in methicillin-resistant staphylococcus aureus by docosanol. J. Biotechnol. 2020, 317, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hidalgo, M.; León-González, A.J.; Gálvez-Peralta, M.; González-Mauraza, N.H.; Martin-Cordero, C. D-pinitol: A cyclitol with versatile biological and pharmacological activities. Phytochem. Rev. 2020, 20, 211–224. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Chandra Shill, M.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A review of biomedical activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef]
- Paniagua-Perez, R.; Madrigal-Bujaidar, E.; Reyes-Cadena, S.; Alvarez-Gonzalez, I.; Sanchez-Chapul, L.; Perez-Gallaga, J.; Hernandez, N.; Flores-Mondragon, G.; Velasco, O. Cell protection induced by beta-sitosterol: Inhibition of genotoxic damage, stimulation of lymphocyte production, and determination of its antioxidant capacity. Arch. Toxicol. 2008, 82, 615–622. [Google Scholar] [CrossRef]
- Matysik, J.; Alia; Bhalu, B.; Mohanty, P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 2002, 82, 525–532. [Google Scholar]
- Lee, H.J.; Lee, J.H.; Wi, S.; Jang, Y.; An, S.; Choi, C.K.; Jang, S. Exogenously applied glutamic acid confers improved yield through increased photosynthesis efficiency and antioxidant defense system under chilling stress condition in solanum lycopersicum l. Cv. Dotaerang dia. Sci. Hortic. 2021, 277, 109817. [Google Scholar] [CrossRef]
- Li, M.F.; Guo, S.J.; Yang, X.H.; Meng, Q.W.; Wei, X.J. Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes. Biol. Plant. 2016, 60, 123–131. [Google Scholar] [CrossRef]
- Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Liang, C.L.; Li, G.M.; Yu, C.Y.; Yin, M. Stearic acid protects primary cultured cortical neurons against oxidative stress. Acta Pharmacol. Sin. 2007, 28, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, O.; De Tullio, M.C. Ascorbic acid: Much more than just an antioxidant. Biochim. Biophys. Acta Gen. Subj. 2002, 1569, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; You, L.; Lin, Z.; Zhao, M.; Cui, C. The antioxidant capacity of polysaccharide fromlaminaria japonicaby citric acid extraction. Int. J. Food Sci. Technol. 2013, 48, 1352–1358. [Google Scholar] [CrossRef]
- Linker, R.A.; Lee, D.H.; Ryan, S.; van Dam, A.M.; Conrad, R.; Bista, P.; Zeng, W.; Hronowsky, X.; Buko, A.; Chollate, S.; et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the nrf2 antioxidant pathway. Brain 2011, 134, 678–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Cao, X.; Jiang, H.; Qi, Y.; Chin, K.L.; Yue, Y. Antioxidant activity of leaf extracts from different hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by lc-q-tof-ms. Molecules 2014, 19, 21226–21238. [Google Scholar] [CrossRef] [Green Version]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Par, A.; Mezes, M.; Nemeth, P.; Javor, T. Effects of cianidanol on the blood lipid peroxide status in patients with chronic hepatitis. Int. J. Clin. Pharmacol. Res. 1985, 5, 389–397. [Google Scholar]
- Engin, K.N. Alpha-tocopherol: Looking beyond an antioxidant. Mol. Vis. 2009, 15, 855–860. [Google Scholar]
- Wagner, K.H.; Kamal-Eldin, A.; Elmadfa, I. Gamma-tocopherol—An underestimated vitamin? Ann. Nutr. Metab. 2004, 48, 169–188. [Google Scholar] [CrossRef]
- Estevez, A.M.; Estevez, R.J. A short overview on the medicinal chemistry of (-)-shikimic acid. Mini-Rev. Med. Chem. 2012, 12, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Blasco, H.; Patin, F.; Descat, A.; Garçon, G.; Corcia, P.; Gelé, P.; Lenglet, T.; Bede, P.; Meininger, V.; Devos, D.; et al. A pharmaco-metabolomics approach in a clinical trial of als: Identification of predictive markers of progression. PLoS ONE 2018, 13, e0198116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Subramanion, L.J.; Zakaria, Z.; Sreenivasan, S. Phytochemicals screening, dpph free radical scavenging and xanthine oxidase inhibitiory activities of cassia fistula seeds extract. J. Med. Plants Res. 2011, 5, 1941–1947. [Google Scholar]
- Sreenivasan, S.; Ibrahim, D.; MOHD KASSIM, M.J.N. Free radical scavenging activity and total phenolic compounds of gracilaria changii. Int. J. Nat. Eng. Sci. 2007, 1, 115–117. [Google Scholar]
- Srianta, I.; Arisasmita, J.; Patria, H.; Epriliati, I. Ethnobotany, nutritional composition and dpph radical scavenging of leafy vegetables of wild paederia foetida and erechtites hieracifolia. Int. Food Res. J. 2012, 19, 245. [Google Scholar]
- Gupta, S.; Prakash, J. Studies on indian green leafy vegetables for their antioxidant activity. Plant Foods Hum. Nutr. 2009, 64, 39–45. [Google Scholar] [CrossRef]
- Surinut, P.; Kaewsutthi, S.; Surakarnkul, R. Radical Scavenging Activity in Fruit Extracts; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2005; pp. 201–203. [Google Scholar]
- Schaberg, P.G.; Murakami, P.F.; Turner, M.R.; Heitz, H.K.; Hawley, G.J. Association of red coloration with senescence of sugar maple leaves in autumn. Trees 2008, 22, 573–578. [Google Scholar] [CrossRef]
- Hu, B.; Lai, B.; Wang, D.; Li, J.; Chen, L.; Qin, Y.; Wang, H.; Qin, Y.; Hu, G.; Zhao, J. Three lcabfs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in litchi chinensis. Plant Cell Physiol. 2019, 60, 448–461. [Google Scholar] [CrossRef]
- Lee, D.W.; O’Keefe, J.; Holbrook, N.M.; Feild, T.S. Pigment dynamics and autumn leaf senescence in a new england deciduous forest, eastern USA. Ecol. Res. 2003, 18, 677–694. [Google Scholar] [CrossRef]
- Renner, S.S.; Zohner, C.M. The occurrence of red and yellow autumn leaves explained by regional differences in insolation and temperature. New Phytol. 2019, 224, 1464–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hortensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 2006, 57, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Hoch, W.A.; Zeldin, E.L.; McCown, B.H. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 2001, 21, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.B.; Wang, J.B.; Dong, X.T.; Han, Y.; Ma, Q.L.; Ding, Y.D.; Zhao, F.; Zhang, J.C.; Chen, H.J.; Xu, Q.; et al. Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC Plant Biol. 2015, 15, 27. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.; Ryser, P. Early autumn senescence in red maple (Acer rubrum L.) is associated with high leaf anthocyanin content. Plants 2015, 4, 505–522. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Liang, L.; Su, M.; Yang, T.; Mao, X.; Wang, Y. Variations in phenolic acids and antioxidant activity of navel orange at different growth stages. Food Chem. 2021, 360, 129980. [Google Scholar] [CrossRef]
- Sharkey, T.D. Pentose phosphate pathway reactions in photosynthesizing cells. Cells 2021, 10, 1547. [Google Scholar] [CrossRef]
- Suárez, S.; Mu, T.; Sun, H.; Añón, M.C. Antioxidant activity, nutritional, and phenolic composition of sweet potato leaves as affected by harvesting period. Int. J. Food Prop. 2020, 23, 178–188. [Google Scholar] [CrossRef]
- Kisa, D.; İmamoğlu, R.; Genç, N.; Şahin, S.; Qayyum, M.A.; Elmastaş, M. The interactive effect of aromatic amino acid composition on the accumulation of phenolic compounds and the expression of biosynthesis-related genes in ocimum basilicum. Physiol. Mol. Biol. Plants 2021, 27, 2057–2069. [Google Scholar] [CrossRef]
TP (mg GAE/g) | TET (mg GAE/g) | TFlav (mg QE/g) | Chl a (mg/g) | Chl b (mg/g) | TAN (mg/100 g) | TAC (mg/100 g) | |
---|---|---|---|---|---|---|---|
Green | 49.66 ± 2.50 a | 39.96 ± 2.65 b | 17.50 ± 0.87 c | 1.49 ± 0.112 a | 0.82 ± 0.12 a | N.D. | 0.21 ± 0.01 c |
Yellow | 69.05 ± 3.59 b | 57.41 ± 3.65 a | 29.60 ± 1.00 b | 0.24 ± 0.01 b | 0.33 ± 0.02 b | 0.02 ± 0.002 b | 0.28 ± 0.01 b |
Red | 106.43 ± 3.83 c | 57.97 ± 3.59 a | 47.48 ± 1.11 a | 0.03 ± 0.01 c | 0.10 ± 0.02 c | 0.07 ± 0.002 a | 0.71 ± 0.01 a |
Scheme | Compound Name | Molecular Formula | p Value | FDR | Maximum Value | Minimum Value | Antioxidant & References |
---|---|---|---|---|---|---|---|
Sugars and sugar alcohols (10) | D-Glucose | C6H12O6 | <0.05 | <0.05 | Red | Green | |
D-Fructose | C6H12O6 | <0.05 | <0.05 | Red | Green | ||
Sucrose | C12H22O11 | <0.05 | <0.05 | Green | Red & Yellow | ||
Trehalose | C12H22O11 | <0.05 | <0.05 | Green | Yellow | △[62] | |
D-Galactose | C6H12O6 | 0.2520 | 0.2617 | Red | Yellow | ||
D-Ribose | C5H10O5 | <0.05 | <0.05 | Yellow | Green | ||
Inositol | C6H12O6 | <0.05 | <0.05 | Green | Red | ||
Erythritol | C4H10O4 | <0.05 | <0.05 | Yellow | Green & Red | ▲[63] | |
Sorbitan | C6H12O5 | <0.05 | <0.05 | Green | Yellow | ||
Xylitol | C5H12O5 | <0.05 | <0.05 | Yellow | Red | △[64] | |
alcohol, Fatty alcohol and phytosterols (8) | 1-Hexadecanol | C16H34O | <0.05 | <0.05 | Yellow | Red | ▲[65] |
Docosanol | C22H46O | 0.3003 | 0.3060 | Red | Yellow | ▲[66] | |
Glycerol | C3H8O3 | <0.05 | <0.05 | Green | Red | ||
Stearyl alcohol | C18H38O | <0.05 | <0.05 | Green | Red | ||
D-Pinitol | C7H14O6 | <0.05 | <0.05 | Green | Yellow | ▲[67] | |
Phytol | C20H40O | <0.05 | <0.05 | Yellow | Red | ▲[68] | |
(2,3,4,5,6-Pentahydroxycyclohexyl) dihydrogen phosphate | C6H13O9P | <0.05 | <0.05 | Green | Red | ||
β-Sitosterol | C29H50O | 0.0655 | 0.0722 | Green | Red | ▲[69] | |
Amino acid (13) | Alanine | C3H7NO2 | <0.05 | <0.05 | Green | Red | |
Aspartic acid | C4H7NO4 | <0.05 | <0.05 | Green | Red | ||
Leucine | C6H13NO2 | <0.05 | <0.05 | Green | Red | ||
Phenylalanine | C9H11NO2 | <0.05 | <0.05 | Green | Red | ||
Proline | C5H9NO2 | <0.05 | <0.05 | Yellow | Red | ▲[70] | |
Pyroglutamic Acid | C5H7NO3 | <0.05 | <0.05 | Yellow | Red | ||
Serine | C3H7NO3 | <0.05 | <0.05 | Yellow | Red | ||
Threonine | C4H9NO3 | <0.05 | <0.05 | Green | Red | ||
Tyrosine | C9H11NO3 | <0.05 | <0.05 | Green | Red | ||
Valine | C5H11NO2 | <0.05 | <0.05 | Green | Red | ||
L-Glutamate | C5H9NO4 | <0.05 | <0.05 | Green | Red | △[71] | |
Glycine | C2H5NO2 | <0.05 | <0.05 | Green | Red | ||
γ-Aminobutyric acid | C4H9NO2 | <0.05 | <0.05 | Green | Red | ▲[72] | |
Organic acid (14) | Malic acid | C4H6O5 | <0.05 | <0.05 | Yellow | Red | |
2-Keto-gluconate | C6H10O7 | <0.05 | <0.05 | Green | Yellow | ||
3-Hydroxypropionic acid | C3H6O3 | <0.05 | <0.05 | Green | Yellow | ||
Lactic acid | C3H6O3 | 0.1433 | 0.1517 | Yellow | Red | ||
Palmitic acid | C16H32O2 | <0.05 | <0.05 | Green | Red | ||
Quinic acid | C7H12O6 | <0.05 | <0.05 | Yellow | Red | △[73] | |
sn-Glycerol 3-phosphate | C3H9O6P | <0.05 | <0.05 | Green | Red | ||
Stearic acid | C18H36O2 | 0.58722 | 0.58722 | Green | Yellow | △[74] | |
Succinic acid | C4H6O4 | <0.05 | <0.05 | Green | Red | ||
Ascorbic acid | C6H8O6 | <0.05 | <0.05 | Red | Yellow | ▲[75] | |
Citric acid | C6H8O7 | <0.05 | <0.05 | Green | Red | △[76] | |
Glyceric acid | C3H6O4 | <0.05 | <0.05 | Yellow | Red | ||
Erythronic acid | C4H8O5 | <0.05 | <0.05 | Green | Red | ||
Fumaric acid | C4H4O4 | <0.05 | <0.05 | Green | Yellow | △[77] | |
Polyphenols and Phenolic acids (7) | Cryptochlorogenic acid | C16H18O9 | <0.05 | <0.05 | Yellow | Green | ▲[78] |
Gallic acid | C7H6O5 | <0.05 | <0.05 | Red | Green | ▲[79] | |
Neochlorogenic acid | C16H18O9 | <0.05 | <0.05 | Red | Green | ▲[78] | |
Cianidanol | C15H14O6 | <0.05 | <0.05 | Red | Yellow | ▲[80] | |
α-Tocopherol | C29H50O2 | <0.05 | <0.05 | Red | Green | ▲[81] | |
γ-Tocopherol | C28H48O2 | <0.05 | <0.05 | Yellow | Green | ▲[82] | |
Shikimic acid | C7H10O5 | <0.05 | <0.05 | Red | Green | ▲[83] | |
Others (2) | Phosphoric acid | H3PO4 | <0.05 | <0.05 | Green | Red | |
Urea | CH4N2O | 0.1101 | 0.1189 | Yellow | Red |
PC 1 | PC 2 | ||
---|---|---|---|
Metabolites | Loadings Scores | Metabolites | Loadings Scores |
Succinic acid | 0.188 | Erythritol | 0.262 |
Inositol | 0.184 | γ-Tocopherol | 0.26 |
Phenylalanine | 0.183 | Phytol | 0.259 |
Glycerol | 0.182 | Quinic acid | 0.231 |
Glycine | 0.181 | Malic acid | 0.229 |
D-Fructose | −0.179 | 1-Hexadecanol | 0.209 |
Erythronic acid | 0.179 | Proline | 0.202 |
Aspartic acid | 0.178 | Serine | 0.195 |
Shikimic acid | −0.178 | Cryptochlorogenic acid | 0.195 |
Citric acid | 0.177 | D-Pinitol | −0.188 |
Valine | 0.176 | Trehalose | −0.187 |
Glutamic acid | 0.174 | D-Ribose | 0.184 |
D-Glucose | −0.174 | Fumaric acid | −0.175 |
Threonine | 0.173 | Sorbitan | −0.174 |
Neochlorogenic acid | −0.173 | 2-Keto-gluconate | −0.163 |
Alanine | 0.172 | Urea | 0.159 |
Tyrosine | 0.171 | Glyceric acid | 0.158 |
Leucine | 0.168 | Xylitol | 0.156 |
Stearyl alcohol | 0.168 | Pyroglutamic Acid | 0.156 |
Phosphoric acid | 0.167 | Cianidanol | −0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Choe, J.; Bu, T.; Liu, S.; Kim, S. Comparison of Antioxidant Properties and Metabolite Profiling of Acer pseudoplatanus Leaves of Different Colors. Antioxidants 2023, 12, 65. https://doi.org/10.3390/antiox12010065
Zhang M, Choe J, Bu T, Liu S, Kim S. Comparison of Antioxidant Properties and Metabolite Profiling of Acer pseudoplatanus Leaves of Different Colors. Antioxidants. 2023; 12(1):65. https://doi.org/10.3390/antiox12010065
Chicago/Turabian StyleZhang, Ming, Jeehwan Choe, Ting Bu, Shuilin Liu, and Sooah Kim. 2023. "Comparison of Antioxidant Properties and Metabolite Profiling of Acer pseudoplatanus Leaves of Different Colors" Antioxidants 12, no. 1: 65. https://doi.org/10.3390/antiox12010065
APA StyleZhang, M., Choe, J., Bu, T., Liu, S., & Kim, S. (2023). Comparison of Antioxidant Properties and Metabolite Profiling of Acer pseudoplatanus Leaves of Different Colors. Antioxidants, 12(1), 65. https://doi.org/10.3390/antiox12010065