In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition–Activity Relationships Modeled through Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils
2.2. Chemicals and Reagents
2.3. Antioxidant Activity
2.3.1. Total Antioxidant Capacity
2.3.2. Metal Chelating Ability (Ferric-Reducing Antioxidant Power (FRAP) Assay)
2.3.3. DPPH-Radical-Neutralizing Activity Assay (DPPH Assay)
2.3.4. Inhibition of Lipid Peroxidation
2.3.5. ABTS-Radical-Cation-Neutralizing Activity (ABTS Assay)
2.3.6. Hydroxyl-Radical-Neutralizing Activity (Hydroxyl Radical Antioxidant Capacity (HORAC)) Assay
2.4. Antigenotoxic Activity In Vitro
The Protective Activity of Essential Oils against Peroxyl- and Hydroxyl-Radicals-Induced DNA Damage
2.5. Machine Learning
- Coarse ML models generation was run with 100 and 1000 random combination runs from all possible considered combinations (Tables S6–S8, Supplementary Material) [111], so we selected the suboptimal ML algorithms and associated pretreatment parameters (n-level, scaling, threshold, and PCA). For details, see Supplementary Material;
- Refined models were investigated with 10,000 and 100,000 random combination runs from all possible considered combinations (Supplementary Material Tables S6, S7 and S9), while avoiding those non-selected in the previous point. The selection of the final models was based on the MCCpred values. For details, see Supplementary Material (Tables S10–S65);
- The final model was finally defined by retaining the optimal parameters selected at point 2 and using the full dataset. The accuracy (ACC), F1 score, and MCC were used to evaluate the binary classification models numerically and graphically. The importance of each chemical component present in the EOs was independently evaluated through the “feature importance” (FI) and partial dependence (PD) [112] methods, as implemented in the Skater Python library [113]. In addition, Spearman’s correlation coefficient was used to weight the correlation between the percentage presence of a component in the EOs and its partial dependence, thus obtaining the weighted FI values (WFI). Models were evaluated by leave-some-out CV by means of five groups using the stratified K-fold method while monitoring the average value of MCCCV obtained from 50 random CV iterations [98,114].
2.6. Animals and Study Design
2.7. Measurement of Antioxidant Markers
2.7.1. Measurement of Serum Toxicity Markers
2.7.2. Xanthine Oxidase Catalytic Activity
2.7.3. NADPH Oxidase Catalytic Activity
2.7.4. Nitric Oxide Catalytic Activity
2.7.5. Glutathione Peroxidase Activity
2.8. Assessment of In Vivo Antigenotoxic Activity
2.9. Statistical Analysis
3. Results
3.1. Determination of In Vitro Antioxidant Activity
3.1.1. Total Antioxidant Capacity
3.1.2. Metal-Ions-Chelating Activity
3.1.3. DPPH•-Radical-Neutralizing Activity
3.1.4. Lipid Peroxidation Inhibition Activity
3.1.5. ABTS-Cation-Radical-Neutralizing Activity
3.1.6. Hydroxyl-Radical-Neutralizing Activity
3.2. Antigenotoxic Activity In Vitro
3.2.1. EOs with Increasing Dose-Dependent Potency to Protect DNA from ROO• and OH•
3.2.2. EOs with Decreasing Dose-Dependent Potency to Protect from ROO• and OH•
3.2.3. EOs with Increasing and Decreasing Dose-Dependent Potency to Protect DNA from ROO• and OH•, Respectively
3.2.4. EOs with Decreasing and Increasing Dose-Dependent Potency to Protect DNA from ROO• and OH•, Respectively
3.3. Machine-Learning-Based QCAR Models
3.3.1. The Contribution of Limonene to the Antioxidant Activity
3.3.2. The Contribution of Linalool to the Antioxidant Activity
3.3.3. The Contribution of Carvacrol to EOs’ Antioxidant Activity
3.3.4. The Contribution of Thymol to the Antioxidant Activity
3.3.5. The Contribution of Eugenol to the Antioxidant Activity
3.3.6. The Contribution of Chrysanthone to the Antioxidant Activity
3.3.7. The Contribution of Eucalyptol to the Antioxidant Activity
3.3.8. The Contribution of α-Pinene to the Antioxidant Activity
3.3.9. The Contribution of Caryophyllene to the Antioxidant Activity
3.3.10. The Contribution of p-Cymene to the Antioxidant Activity
3.4. Antioxidant Activity of Targeted EOs In Vivo
3.4.1. Liver Redox Status
The rTBARS Concentrations
The rSOD Catalytic Activities
The rCAT Catalytic Activities
The rGSH Concentrations
3.4.2. The Hepatocytes Toxicity Status
The rAST and rALT Catalytic Activities
The rALP and γ-GT Catalytic Activities
3.4.3. Kidneys’ Redox Status
The rTBARS Concentrations
The rSOD Catalytic Activities
The rCAT Catalytic Activities
The rGSH Concentration
3.4.4. Chronic Kidney Disease Markers
The rXO Catalytic Activities
The rNOX Catalytic Activities
The rNO Concentrations
The GPx Catalytic Activities
3.5. EOs Antigenotoxic Activity In Vivo
3.5.1. Antigenotoxicity in Liver
3.5.2. Antigenotoxicity in Kidneys
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties—An overview. Forsch. Komplementmed. 2009, 16, 79–90. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, R.; García-Rodríguez, Y.M.; Ríos-Chávez, P.; Saavedra-Molina, A.; López-Meza, J.E.; Ochoa-Zarzosa, A.; Garciglia, R.S. Antioxidant activity of the essential oil and its major terpenes of satureja macrostema (Moc. and Sessé ex Benth.) Briq. Pharmacogn. Mag. 2018, 13, S875–S880. [Google Scholar] [CrossRef]
- Lanigan, R.S.; Yamarik, T.A. Final report on the safety assessment of BHT(1). Int. J. Toxicol. 2002, 21 (Suppl. S2), 19–94. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Superoxide anion chemistry—Its role at the core of the innate immunity. Int. J. Mol. Sci. 2023, 24, 1841. [Google Scholar] [CrossRef] [PubMed]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Burg, A.; Meyerstein, D. Chapter 7—The chemistry of monovalent copper in aqueous solutions. In Advances in Inorganic Chemistry; Eldik, R.V., Ivanović-Burmazović, I., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 64, pp. 219–261. [Google Scholar]
- Kehrer, J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Chew, Y.-L.; Goh, J.-K.; Lim, Y.-Y. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem. 2009, 116, 13–18. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.K.; Chiang, B.H.; Chen, Y.S.; Yang, J.H.; Liu, C.L. Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chem. 2008, 108, 633–641. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Kunchandy, E.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm. 1990, 58, 237–240. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.; Aruoma, O.I. The deoxyribose method: A simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Wang, Y.T.; Chang, H.M.; Wu, J.S.B. DNA protection and antitumor effect of water extract from residue of jelly fig (Ficus awkeotsang Makino) achenes. J. Food Drug Anal. 2020, 16, 14. [Google Scholar] [CrossRef]
- Poorna, C.A.; Resmi, M.S.; Soniya, E.V. In vitro antioxidant analysis and the dna damage protective activity of leaf extract of the Excoecaria agallocha Linn Mangrove Plant. In Agricultural Chemistry; Margarita, S., Roumen, Z., Eds.; IntechOpen: Rijeka, Croatia, 2013; p. Ch. 7. [Google Scholar]
- Zhang, L.L.; Zhang, L.F.; Xu, J.G.; Hu, Q.P. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr. Res. 2017, 61, 1353356. [Google Scholar] [CrossRef]
- Elouaddari, A.; Elamrani, A.; Moutia, M.; Oubrim, N.; Habti, N.; JamalEddine, J. Chemical composition and evaluation of antioxidant, antimicrobial and cytotoxic activities of Moroccan Cladanthus mixtus Essential Oil and Extracts. J. Essent. Oil Bear. Plants 2019, 22, 1450–1466. [Google Scholar] [CrossRef]
- Ovidi, E.; Laghezza Masci, V.; Zambelli, M.; Tiezzi, A.; Vitalini, S.; Garzoli, S. Laurus nobilis, Salvia sclarea and Salvia officinalis essential oils and hydrolates: Evaluation of liquid and vapor phase chemical composition and biological activities. Plants 2021, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Ilić, Z.S.; Kevrešan, Ž.; Šunić, L.; Stanojević, L.; Milenković, L.; Stanojević, J.; Milenković, A.; Cvetković, D. Chemical profiling and antioxidant activity of wild and cultivated sage (Salvia officinalis L.) essential oil. Horticulturae 2023, 9, 624. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plants Res. 2011, 5, 4147–4156. [Google Scholar]
- Zhang, X.; Guo, Y.; Guo, L.; Jiang, H.; Ji, Q. In vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca alternifolia essential oil. Biomed. Res. Int. 2018, 2018, 2396109. [Google Scholar] [CrossRef] [PubMed]
- Mapeka, T.M.; Sandasi, M.; Viljoen, A.M.; van Vuuren, S.F. Optimization of antioxidant synergy in a polyherbal combination by experimental design. Molecules 2022, 27, 4196. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Masci, V.L.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and vapor phase of four conifer-derived essential oils: Comparison of chemical compositions and antimicrobial and antioxidant properties. Pharmaceuticals 2021, 14, 134. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Karanfilova, I.C.; Panovska, T.K.; Stanoeva, J.P.; Stefova, M.; Kulevanova, S. Chemical characterization and antioxidant activity of mountain pine (Pinus mugo Turra, Pinaceae) from Republic of Macedonia. Rec. Nat. Prod. 2018, 13, 50–63. [Google Scholar] [CrossRef]
- Ramdan, B.; Amakran, A.; Mohamed, N. In vitro study of anti-glycation and radical scavenging activities of the essential oils of three plants from Morocco: Origanum compactum, Rosmarinus officinalis and Pelargonium asperum. Pharmacogn. J. 2015, 7, 124–135. [Google Scholar]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; Harki, E.H.; Moja, S.; Greche, H. Antioxidant and antibacterial activities of Pelargonium asperum and Ormenis mixta essential oils and their synergistic antibacterial effect. Environ. Sci. Pollut. Res. Int. 2018, 25, 29860–29867. [Google Scholar] [CrossRef]
- Han, F.; Ma, G.Q.; Yang, M.; Yan, L.; Xiong, W.; Shu, J.C.; Zhao, Z.D.; Xu, H.L. Chemical composition and antioxidant activities of essential oils from different parts of the oregano. J. Zhejiang Univ. Sci. B 2017, 18, 79–84. [Google Scholar] [CrossRef]
- Stanojević, L.P.; Stanojević, J.S.; Savić, V.L.; Cvetković, D.J.; Kolarević, A.; Marjanović-Balaban, Z.; Nikolić, L.B. Peppermint and basil essential oils: Chemical composition, in vitro antioxidant activity and in vivo estimation of skin irritation. J. Essent. Oil Bear. Plants 2019, 22, 979–993. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukovic, N.L.; Hleba, L.; Bobková, A.; Pavelkova, A.; Rovná, K.; Arpášová, H. Antimicrobial and antiradicals activity of Origanum vulgare L. and Thymus vulgaris essential oils. J. Microbiol. Biotechnol. Food Sci. 2019, 2019, 263–271. [Google Scholar]
- Martiniaková, S.; Ácsová, A.; Hojerová, J.; Krepsová, Z.; Kreps, F. Ceylon cinnamon and clove essential oils as promising free radical scavengers for skin care products. Acta Chim. Slovaca 2022, 15, 1–11. [Google Scholar] [CrossRef]
- Handayani, W.; Yasman; Yunilawati, R.; Fauzia, V.; Imawan, C. Coriandrum sativum L. (Apiaceae) and Elettaria cardamomum (L.) maton (Zingiberaceae) for antioxidant and antimicrobial protection. J. Phys. Conf. Ser. 2019, 1317, 012092. [Google Scholar] [CrossRef]
- Jafari, S.; Mori, Y. Chemical composition and antioxidant activity of essential oil of coriandrum sativum l. seeds cultivated in Afghanistan. Eur. J. Med. Plants 2021, 32, 82–92. [Google Scholar] [CrossRef]
- Jeya, K.R.; Veerapagu, M.; Sangeetha, V. Antimicrobial and antioxidant properties of Coriandrum sativum L. seed essential oil. Am. J. Essent. Oils Nat. Prod. 2019, 7, 6–10. [Google Scholar]
- Gharib, F.A.; Badr, S.E.A.; Al-Ghazali, B.A.S.; Zahran, M.K. Chemical composition, antioxidant and antibacterial activities of lavender and marjoram essential oils. Egypt. J. Chem. 2013, 56, 1–24. [Google Scholar] [CrossRef]
- Hamad, K.J.; Al-Shaheen, S.J.A.; Kaskoos, R.A.; Ahamad, J.; Jameel, M.; Mir, S.R. Essential oil composition and antioxidant activity of Lavandula angustifolia from Iraq. Int. Res. J. Pharm. 2013, 4, 117–120. [Google Scholar] [CrossRef]
- Salavati Hamedani, M.; Rezaeigolestani, M.; Mohsenzadeh, M. Chemical composition, antimicrobial and antioxidant activities of Lavandula angustifolia essential oil. J. Nutr. Fasting Health 2020, 8, 273–279. [Google Scholar] [CrossRef]
- Benhadid, R.; Hadef, Y.; Djahoudi, A.; Hosni, K. Chemical characterization, evaluation of the antibacterial and antioxidant activities of the essential oil of Algerian (Myrtus communis L). Prog. Nutr. 2022, 24, e2022029. [Google Scholar] [CrossRef]
- Snoussi, A.; Chaabouni, M.M.; Bouzouita, N.; Kachouri, F. Chemical composition and antioxidant activity of Myrtus communis L. floral buds essential oil. J. Essent. Oil Res. 2011, 23, 10–14. [Google Scholar] [CrossRef]
- Herrera-Calderon, O.; Chacaltana-Ramos, L.J.; Huayanca-Gutiérrez, I.C.; Algarni, M.A.; Alqarni, M.; Batiha, G.E.-S. Chemical Constituents, in vitro antioxidant activity and in silico study on NADPH oxidase of Allium sativum L. (Garlic) essential oil. Antioxidants 2021, 10, 1844. [Google Scholar] [CrossRef] [PubMed]
- Chekki, R.Z.; Snoussi, A.; Hamrouni, I.; Bouzouita, N. Chemical composition, antibacterial and antioxidant activities of Tunisian garlic (Allium sativum) essential oil and ethanol extract. Mediterr. J. Chem. 2014, 3, 947–956. [Google Scholar] [CrossRef]
- Fayed, S.A. Antioxidant and anticancer activities of Citrus reticulate (Petitgrain mandarin) and Pelargonium graveolens (Geranium) essential oils. Res. J. Agric. Biol. Sci. 2009, 5, 740–747. [Google Scholar]
- Meryem, S.; Mohamed, D.; Nour-eddine, C.; Faouzi, E. Chemical composition, antibacterial and antioxidant properties of three Moroccan citrus peel essential oils. Sci. Afr. 2023, 20, e01592. [Google Scholar] [CrossRef]
- Kizil, S.; HaŞİMİ, N.; Tolan, V.; KilinÇ, E.; KarataŞ, H. Chemical composition, antimicrobial and antioxidant activities of Hyssop (Hyssopus officinalis L.) essential oil. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 99–103. [Google Scholar] [CrossRef]
- Moulodi, F.; Khezerlou, A.; Zolfaghari, H.; Mohamadzadeh, A.; Alimoradi, F. Chemical composition and antioxidant and antimicrobial properties of the essential oil of Hyssopus officinalis L. J. Kermanshah Univ. Med. Sci. 2019, in press. [Google Scholar] [CrossRef]
- Deng, W.; Liu, K.; Cao, S.; Sun, J.; Zhong, B.; Chun, J. Chemical composition, antimicrobial, antioxidant, and antiproliferative properties of grapefruit essential oil prepared by molecular distillation. Molecules 2020, 25, 217. [Google Scholar] [CrossRef]
- Ling, Q.; Zhang, B.; Wang, Y.; Xiao, Z.; Hou, J.; Xiao, C.; Liu, Y.; Jin, Z. Chemical composition and antioxidant activity of the essential oils of citral-rich chemotype Cinnamomum camphora and Cinnamomum bodinieri. Molecules 2022, 27, 7356. [Google Scholar] [CrossRef]
- El Hajjouji, H.; Rahhal, R.; Gmouh, S.; Hsaine, M.; Fougrach, H.; Badri, W. Chemical composition, antioxidant and antibacterial activities of the essential oils of Juniperus phoenicea, Juniperus thurifera and Juniperus oxycedrus. Mediterr. J. Chem. 2019, 9, 190–198. [Google Scholar] [CrossRef]
- Ghalem, B.R.; Malika, O.; Fatiha, S. Antioxidant capacity of essential oils of two Juniperus species from northwest of Algeria. Am. J. Appl. Ind. Chem. 2016, 2, 33–36. [Google Scholar] [CrossRef]
- Abbdellaoui, M.; Bouhlali, E.d.T.; Rhaffari, L.E. Chemical composition and antioxidant activities of the essential oils of Cumin (Cuminum cyminum) conducted under organic production conditions. J. Essent. Oil Bear. Plants 2019, 22, 1500–1508. [Google Scholar] [CrossRef]
- Badalamenti, N.; Bruno, M.; Schicchi, R.; Geraci, A.; Leporini, M.; Gervasi, L.; Tundis, R.; Loizzo, M.R. Chemical compositions and antioxidant activities of essential oils, and their combinations, obtained from Flavedo by-product of seven cultivars of sicilian Citrus aurantium L. Molecules 2022, 27, 1580. [Google Scholar] [CrossRef]
- Hariyanti, H.E.; Dayatri, D.Y. Phytochemical identification and antioxidant activity of essential oil of Pogostemon cablin Benth. cultivated in Java Island Indonesia. Int. J. Phytopharm. 2019, 9, e5297. [Google Scholar] [CrossRef]
- Mohammad-Bagher, M. Chemical composition, cytotoxicity and antioxidant activities of the essential oil from the leaves of Citrus aurantium L. Afr. J. Biotechnol. 2011, 11, 498–503. [Google Scholar] [CrossRef]
- Salem, N.; Kefi, S.; Tabben, O.; Ayed, A.; Jallouli, S.; Feres, N.; Hammami, M.; Khammassi, S.; Hrigua, I.; Nefisi, S.; et al. Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards. Ind. Crops Prod. 2018, 124, 115–125. [Google Scholar] [CrossRef]
- Noshad, M.; Alizadeh Behbahani, B. Investigation of phytochemical compounds, antioxidant potential and the antimicrobial effect of bergamot essential oil on some pathogenic strains causing infection in vitro. J. Ilam Univ. Med. Sci. 2019, 26, 122–132. [Google Scholar] [CrossRef]
- Stoilova, I.; Wanner, J.; Trifonova, D.; Stoyanova, S.; Krastanov, I.; Schloss, H.A. Chemical composition and antioxidant properties of juniper berry (Juniperus communis L.) essential oil. Bulg. J. Agric. Sci. 2014, 20, 227–237. [Google Scholar]
- Stoilova, I.; Bail, S.; Buchbauer, G.; Krastanov, A.; Stoyanova, A.; Schmidt, E.; Jirovetz, L. Chemical composition, olfactory evaluation and antioxidant effects of the essential oil of Satureja montana L. Nat. Prod. Commun. 2008, 3, 1035–1042. [Google Scholar] [CrossRef]
- Sabzi Nojadeh, M.; Pouresmaeil, M.; Younessi-Hamzekhanlu, M.; Venditti, A. Phytochemical profile of fennel essential oils and possible applications for natural antioxidant and controlling Convolvulus arvensis L. Nat. Prod. Res. 2021, 35, 4164–4168. [Google Scholar] [CrossRef]
- Šunić, L.; Ilić, Z.S.; Stanojević, L.; Milenković, L.; Stanojević, J.; Kovač, R.; Milenković, A.; Cvetković, D. Comparison of the essential oil content, constituents and antioxidant activity from different plant parts during development stages of Wild Fennel (Foeniculum vulgare Mill.). Horticulturae 2023, 9, 364. [Google Scholar] [CrossRef]
- Vahidi, R.; Pourahmad, R.; Mahmoudi, R. Chemical compounds and antibacterial and antioxidant properties of citron (Citrus medica L.) peel essential oil. J. Food Bioprocess Eng. 2019, 2, 71–76. [Google Scholar]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- El Aboubi, M.; Ben Hdech, D.; Bikri, S.; Benayad, A.; El Magri, A.; Aboussaleh, Y.; Aouane, E.M. Chemical composition of essential oils of Citrus limon peel from three Moroccan regions and their antioxidant, anti-inflammatory, antidiabetic and dermatoprotective properties. J. Herbmed. Pharmacol. 2023, 12, 118–127. [Google Scholar] [CrossRef]
- Himed, L.; Merniz, S.; Monteagudo-Olivan, R.; Barkat, M.; Coronas, J. Antioxidant activity of the essential oil of citrus limon before and after its encapsulation in amorphous SiO2. Sci. Afr. 2019, 6, e00181. [Google Scholar] [CrossRef]
- Farhoudi, R.; Lee, D.-J. P 021—Chemical constituents and antioxidant properties of Matricaria recutita and Chamaemelum nobile essential oil growing in south west of Iran. Free. Radic. Biol. Med. 2017, 108, S24. [Google Scholar] [CrossRef]
- Miladi, H.; Ben Slama, R.; Mili, D.; Zouari, S.; Bakhrouf, A.; Ammar, E. Chemical composition and cytotoxic and antioxidant activities of Satureja montana L. essential oil and its antibacterial potential against Salmonella Spp. Strains. J. Chem. 2013, 2013, 275698. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Gholamhosseinpour, A.; Barba, F.J. Rosmarinus officinalis L. essential oils impact on the microbiological and oxidative stability of Sarshir (Kaymak). Molecules 2023, 28, 4206. [Google Scholar] [CrossRef]
- Beniaich, G.; Zouirech, O.; Allali, A.; Bouslamti, M.; Maliki, I.; El Moussaoui, A.; Chebaibi, M.; Nafidi, H.-A.; Bin Jardan, Y.A.; Bourhia, M.; et al. Chemical characterization, antioxidant, insecticidal and anti-cholinesterase activity of essential oils extracted from Cinnamomum verum L. Separations 2023, 10, 348. [Google Scholar] [CrossRef]
- Kamaly, O.A.; Numan, O.; Almrfadi, O.M.A.; Alanazi, A.S.; Conte, R. Separation and evaluation of potential antioxidant, analgesic, and anti-inflammatory activities of limonene-rich essential oils from Citrus sinensis (L.). Open Chem. 2022, 20, 1517–1530. [Google Scholar] [CrossRef]
- Siddique, S.; Mazhar, S.; Firdaus-e-Bareen; Parveen, Z. Chemical characterization, antioxidant and antimicrobial activities of essential oil from Melaleuca quinquenervia leaves. Indian J. Exp. Biol. 2018, 56, 686–693. [Google Scholar]
- Sbai El Otmani, I.; El Jaziz, H.; Zarayby, L.; Ousaid, A.; Elbakri, W.; Montassif, S.; Ait Haj Said, A. Chemical composition and antioxidant activity of the essential oil of Artemisia vulgaris from Morocco. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 1524. [Google Scholar]
- Pino, J.A.; Regalado, E.L.; Rodríguez, J.L.; Fernández, M.D. Phytochemical analysis and in vitro free-radical-scavenging activities of the essential oils from leaf and fruit of Melaleuca leucadendra L. Chem. Biodivers. 2010, 7, 2281–2288. [Google Scholar] [CrossRef]
- Bagheri, H.; Abdul Manap, M.Y.; Solati, Z. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. Talanta 2014, 121, 220–228. [Google Scholar] [CrossRef]
- Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of antioxidant and antibacterial properties on meat homogenates of essential oils obtained from four Thymus species achieved from organic growth. Foods 2017, 6, 59. [Google Scholar] [CrossRef]
- Sabah, E.; Omayma, B.; Elidrissi, M.; Bouymajane, A.; Choukrad, M. Comparative Study of Chemical -Composition and Physico-Chemical Characteristics of Thymus vulgaris’s Essential Oil Harvested from Deraa-Tafilalet’s Region (Morocco) with Previous Studies; SSRN: Rochester, NY, USA, 2020. [Google Scholar] [CrossRef]
- Paudel, P.N.; Satyal, P.; Satyal, R.; Setzer, W.N.; Gyawali, R. Chemical Composition, enantiomeric distribution, antimicrobial and antioxidant activities of Origanum majorana L. essential oil from Nepal. Molecules 2022, 27, 6136. [Google Scholar] [CrossRef] [PubMed]
- Ben Nouri, A.; Dhifi, W.; Bellili, S.; Ghazghazi, H.; Aouadhi, C.; Chérif, A.; Hammami, M.; Mnif, W. Chemical composition, antioxidant potential, and antibacterial activity of essential oil cones of Tunisian Cupressus sempervirens. J. Chem. 2015, 2015, 538929. [Google Scholar] [CrossRef]
- Fayed, S.A. Chemical Composition, Antioxidant, anticancer properties and toxicity evaluation of leaf essential oil of Cupressus sempervirens. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 320–326. [Google Scholar] [CrossRef]
- Nikolić, V.; Nikolić, L.; Dinić, A.; Gajić, I.; Urosević, M.; Stanojević, L.; Stanojević, J.; Danilović, B. Chemical composition, antioxidant and antimicrobial activity of Nutmeg (Myristica fragrans Houtt.) seed essential oil. J. Essent. Oil Bear. Plants 2021, 24, 218–227. [Google Scholar] [CrossRef]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical composition and antioxidant properties of essential oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef] [PubMed]
- Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Vamvakias, M.; Bardouki, H.; Galanis, A.; Chlichlia, K.; Kourkoutas, Y.; Panayiotidis, M.; Pappa, A. Chemical composition and evaluation of the biological properties of the essential oil of the dietary phytochemical Lippia citriodora. Molecules 2018, 23, 123. [Google Scholar] [CrossRef]
- Sprea, R.M.; Fernandes, L.H.M.; Pires, T.C.S.P.; Calhelha, R.C.; Rodrigues, P.J.; Amaral, J.S. Volatile compounds and biological activity of the essential oil of Aloysia citrodora Paláu: Comparison of hydrodistillation and microwave-assisted hydrodistillation. Molecules 2023, 28, 4528. [Google Scholar] [CrossRef] [PubMed]
- Farouk, A.; Fikry, R.; Mohsen, M. Chemical composition and antioxidant activity of Ocimum basilicum L. essential oil cultivated in Madinah Monawara, Saudi Arabia and its comparison to the Egyptian chemotype. J. Essent. Oil Bear. Plants 2016, 19, 1119–1128. [Google Scholar] [CrossRef]
- Lawrence, K.; Lawrence, R.; Parihar, D.; Srivastava, R.; Charan, A. Antioxidant activity of Palmarosa essential oil (Cymbopogon martini) grown in north Indian plains. Asian Pac. J. Trop. Biomed. 2012, 2, S888–S891. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Ben Kaab, S.; Aidi Wannes, W.; Ksouri, R.; Saidani Tounsi, M.; Fauconnier, M.-L. On the effect of initial drying techniques on essential oil composition, phenolic compound and antioxidant properties of anise (Pimpinella anisum L.) seeds. J. Food Meas. Charact. 2020, 14, 220–228. [Google Scholar] [CrossRef]
- Ouis, N.; Hariri, A. Chemical analysis, antioxidant and antibacterial activities of Aniseeds essential oil. Agric. Conspec. Sci. 2021, 86, 337–348. [Google Scholar]
- Salamatullah, A.M. Identification of volatile compounds and antioxidant, antibacterial, and antifungal properties against drug-resistant microbes of essential oils from the leaves of Mentha rotundifolia var. apodysa Briq. (Lamiaceae). Open Chem. 2022, 20, 484–493. [Google Scholar] [CrossRef]
- Zekri, N.; Elazzouzi, H.; Ailli, A.; Gouruch, A.A.; Radi, F.Z.; El Belghiti, M.A.; Zair, T.; Nieto, G.; Centeno, J.A.; Lorenzo, J.M. Physicochemical characterization and antioxidant properties of essential oils of M. pulegium (L.), M. suaveolens (Ehrh.) and M. spicata (L.) from Moroccan Middle-Atlas. Foods 2023, 12, 760. [Google Scholar] [CrossRef] [PubMed]
- Ouariachi, E.M.E.; Paolini, J.; Bouyanzer, A.; Tomi, P.; Hammouti, B.; Salghi, R.; Majidi, L.; Costa, J. Chemical composition and antioxidant activity of essential oils and solvent extracts of Thymus capitatus (L.) Hoffmanns and link from Morocco. J. Med. Plants Res. 2011, 5, 5773–5778. [Google Scholar]
- Assaggaf, H.M.; Naceiri Mrabti, H.; Rajab, B.S.; Attar, A.A.; Alyamani, R.A.; Hamed, M.; El Omari, N.; El Menyiy, N.; Hazzoumi, Z.; Benali, T.; et al. Chemical analysis and investigation of biological effects of Salvia officinalis essential oils at three phenological stages. Molecules 2022, 27, 5157. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 2011, 16, 7672–7690. [Google Scholar] [CrossRef]
- Wang, B.; Ma, L.; Yin, L.; Chen, J.; Zhang, Y.; Dong, L.; Zhang, X.; Fu, X. Report: Regional variation in the chemical composition and antioxidant activity of Rosmarinus officinalis L. from China and the Mediterranean region. Pak. J. Pharm. Sci. 2018, 31, 221–229. [Google Scholar] [PubMed]
- Patsilinakos, A.; Artini, M.; Papa, R.; Sabatino, M.; Božović, M.; Garzoli, S.; Vrenna, G.; Buzzi, R.; Manfredini, S.; Selan, L.; et al. Machine learning analyses on data including essential oil chemical composition and in vitro experimental antibiofilm activities against Staphylococcus species. Molecules 2019, 24, 890. [Google Scholar] [CrossRef] [PubMed]
- Papa, R.; Garzoli, S.; Vrenna, G.; Sabatino, M.; Sapienza, F.; Relucenti, M.; Donfrancesco, O.; Fiscarelli, E.V.; Artini, M.; Selan, L.; et al. Essential oils biofilm modulation activity, chemical and machine learning analysis. application on Staphylococcus aureus isolates from cystic fibrosis patients. Int. J. Mol. Sci. 2020, 21, 9258. [Google Scholar] [CrossRef] [PubMed]
- Artini, M.; Patsilinakos, A.; Papa, R.; Božović, M.; Sabatino, M.; Garzoli, S.; Vrenna, G.; Tilotta, M.; Pepi, F.; Ragno, R.; et al. Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different mediterranean plants against Pseudomonas aeruginosa. Molecules 2018, 23, 482. [Google Scholar] [CrossRef] [PubMed]
- Ragno, A.; Baldisserotto, A.; Antonini, L.; Sabatino, M.; Sapienza, F.; Baldini, E.; Buzzi, R.; Vertuani, S.; Manfredini, S. Machine learning data augmentation as a tool to enhance quantitative composition–activity relationships of complex mixtures. A new application to dissect the role of main chemical components in bioactive essential oils. Molecules 2021, 26, 6279. [Google Scholar] [CrossRef]
- Sabatino, M.; Fabiani, M.; Božović, M.; Garzoli, S.; Antonini, L.; Marcocci, M.E.; Palamara, A.T.; De Chiara, G.; Ragno, R. Experimental data based machine learning classification models with predictive ability to select in vitro active antiviral and non-toxic essential oils. Molecules 2020, 25, 2452. [Google Scholar] [CrossRef]
- Di Martile, M.; Garzoli, S.; Sabatino, M.; Valentini, E.; D’Aguanno, S.; Ragno, R.; Del Bufalo, D. Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models. Cell Death Discov. 2021, 7, 127. [Google Scholar] [CrossRef]
- Thalappil, M.A.; Butturini, E.; Carcereri de Prati, A.; Bettin, I.; Antonini, L.; Sapienza, F.U.; Garzoli, S.; Ragno, R.; Mariotto, S. Pinus mugo essential oil impairs STAT3 activation through oxidative stress and induces apoptosis in prostate cancer cells. Molecules 2022, 27, 4834. [Google Scholar] [CrossRef] [PubMed]
- Vukić, M.D.; Vuković, N.L.; Mladenović, M.; Tomašević, N.; Matić, S.; Stanić, S.; Sapienza, F.; Ragno, R.; Božović, M.; Kačániová, M. chemical composition of various Nepeta cataria plant organs’ methanol extracts associated with in vivo hepatoprotective and antigenotoxic features as well as molecular modeling investigations. Plants 2022, 11, 2114. [Google Scholar] [CrossRef]
- McKinney, W. Python for Data Analysis; O’Reilly: Beijing, China, 2013; p. xiii. 447p. [Google Scholar]
- Perkel, J.M. Programming: Pick up Python. Nature 2015, 518, 125–126. [Google Scholar] [CrossRef]
- Ragno, R.; Papa, R.; Patsilinakos, A.; Vrenna, G.; Garzoli, S.; Tuccio, V.; Fiscarelli, E.; Selan, L.; Artini, M. Essential oils against bacterial isolates from cystic fibrosis patients by means of antimicrobial and unsupervised machine learning approaches. Sci. Rep. 2020, 10, 2653. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- McKinney, W. Pandas: Powerful Python Data Analysis Toolkit; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2011. [Google Scholar]
- McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018; p. xvi. 524p. [Google Scholar]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B 1999, 61, 611–622. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 12–14 December 2011; pp. 2546–2554. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Wei, P.; Lu, Z.; Song, J. Variable importance analysis: A comprehensive review. Reliab. Eng. Syst. Saf. 2015, 142, 399–432. [Google Scholar] [CrossRef]
- Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.F.; Nielsen, H. Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics 2000, 16, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Szende, B.; Timár, F.; Hargitai, B. Olive oil decreases liver damage in rats caused by carbon tetrachloride (CCl4). Exp. Toxicol. Pathol. 1994, 46, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 1991, 196, 143–151. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Quick, A.J.; Stanley-Brown, M.; Bancroft, F.W. A Study of the Coagulation Defect in Hemophilia and in Jaundice. Thromb. Haemost. 1980, 44, 002–005. [Google Scholar] [CrossRef]
- Bergmeyer, H.U.; Bowers, G.N., Jr.; Horder, M.; Moss, D.W. Provisional recommendations on IFCC methods for the measurement of catalytic concentrations of enzymes. Part 2. IFCC method for aspartate aminotransferase. Clin. Chim. Acta 1976, 70, F19–F29. [Google Scholar] [CrossRef] [PubMed]
- Bergmeyer, H.U. IFCC methods for the measurement of catalytic concentrations of enzymes. part 3, IFCC. Method for alanine aminotransferase (L-alanine 2 -oxoglutarate aminotransferase, ec 2.6.1.2). Clin. Chim. Acta 1980, 105, 145f–172f. [Google Scholar]
- Tietz, N.W.; Rinker, A.D.; Shaw, L.M. IFCC methods for the measurement of catalytic concentration of enzymes Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). J. Clin. Chem. Clin. Biochem. 1983, 21, 731–748. [Google Scholar]
- Schumann, G.; Bonora, R.; Ceriotti, F.; Férard, G.; Ferrero, C.A.; Franck, P.F.; Gella, F.J.; Hoelzel, W.; Jørgensen, P.J.; Kanno, T.; et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 6. Reference procedure for the measurement of catalytic concentration of gamma-glutamyltransferase. Clin. Chem. Lab. Med. 2002, 40, 734–738. [Google Scholar] [CrossRef]
- Shibuya, S.; Watanabe, K.; Ozawa, Y.; Shimizu, T. Xanthine oxidoreductase-mediated superoxide production is not involved in the age-related pathologies in Sod1-deficient mice. Int. J. Mol. Sci. 2021, 22, 3542. [Google Scholar] [CrossRef]
- El-Sawalhi, M.M.; Ahmed, L.A. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem. Biol. Interact. 2014, 207, 58–66. [Google Scholar] [CrossRef]
- Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019, 34, 975–991. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R. The comet assay for DNA damage and repair. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, K.; Banerjee, M.R. β-Carotene reduces sister chromatid exchanges induced by chemical carcinogens in mouse mammary cells in organ culture. Cell Biol. Int. Rep. 1985, 9, 783–789. [Google Scholar] [CrossRef]
- Napolitano, G.; Fasciolo, G.; Venditti, P. The ambiguous aspects of oxygen. Oxygen 2022, 2, 382–409. [Google Scholar] [CrossRef]
- Huie, R.E.; Padmaja, S. The reaction of NO with superoxide. Free Radic. Res. Commun. 1993, 18, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Bielski, B.H.; Arudi, R.L.; Sutherland, M.W. A study of the reactivity of HO2/O2− with unsaturated fatty acids. J. Biol. Chem. 1983, 258, 4759–4761. [Google Scholar] [CrossRef]
- Zielinski, Z.A.M.; Pratt, D.A. Lipid peroxidation: Kinetics, mechanisms, and products. J. Org. Chem. 2017, 82, 2817–2825. [Google Scholar] [CrossRef]
- Foti, M.C. Use and abuse of the DPPH• radical. J. Agric. Food Chem. 2015, 63, 8765–8776. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.K.; Laosinwattana, C.; Teerarak, M.; Pilasombut, K. Potential antioxidant and lipid peroxidation inhibition of Phyllanthus acidus leaf extract in minced pork. Asian-Australas. J. Anim. Sci. 2017, 30, 1323–1331. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.; Wuenschell, G.E.; Holland, V.; Lee, D.H.; Pfeifer, G.P.; Rodriguez, H.; Termini, J. Peroxyl radical mediated oxidative DNA base damage: Implications for lipid peroxidation induced mutagenesis. Biochemistry 2004, 43, 15339–15348. [Google Scholar] [CrossRef]
- Higuchi, H.; Gores, G.J. Mechanisms of liver injury: An overview. Curr. Mol. Med. 2003, 3, 483–490. [Google Scholar] [CrossRef]
- Jabir, M.S.; Taha, A.; Sahib, U. Antioxidant activity of linalool. Eng. Technol. J. 2018, 36, 64–67. [Google Scholar] [CrossRef]
- Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. Metal Ions, metal chelators and metal chelating assay as antioxidant method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil. J. Agric. Food Chem. 2014, 62, 6632–6639. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.R.F.; Militani, I.A.; de Almeida, K.J.; Lunguinho, A.d.S.; Saczk, A.A.; Ionta, M.; da Silva, G.Á.F.; Felix, F.S.; Nelson, D.L.; Cardoso, M.D.G. Antioxidant and cytotoxic activity of essential oils and their principal components: Spectrophotometric, voltammetric, and theoretical investigation of the chelating effect of eugenol and carvacrol. ACS Food Sci. Technol. 2023, 3, 350–360. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, C.; Cao, Y.; Li, Y.; Zhang, Z.; Nie, D.; Tang, W.; Li, Y. Comparison of chemical compositions and antioxidant activity of essential oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus. Molecules 2023, 28, 5051. [Google Scholar] [CrossRef] [PubMed]
- Rolletter, M.; Kaminski, M.; Acir, I.H.; Bohn, B.; Dorn, H.P.; Li, X.; Lutz, A.; Nehr, S.; Rohrer, F.; Tillmann, R.; et al. Investigation of the α-pinene photooxidation by OH in the atmospheric simulation chamber SAPHIR. Atmos. Chem. Phys. 2019, 19, 11635–11649. [Google Scholar] [CrossRef]
- Xanthis, V.; Fitsiou, E.; Voulgaridou, G.-P.; Bogadakis, A.; Chlichlia, K.; Galanis, A.; Pappa, A. Antioxidant and cytoprotective potential of the essential oil Pistacia lentiscus var. chia and its major components myrcene and α-pinene. Antioxidants 2021, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-caryophyllene: A sesquiterpene with countless biological properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- Fouqueau, A.; Cirtog, M.; Cazaunau, M.; Pangui, E.; Doussin, J.F.; Picquet-Varrault, B. An experimental study of the reactivity of terpinolene and β-caryophyllene with the nitrate radical. Atmos. Chem. Phys. 2022, 22, 6411–6434. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Wink, M.; Setzer, W.N. Radical scavenging and antioxidant activities of essential oil components—An experimental and computational investigation. Nat. Prod. Commun. 2015, 10, 153–156. [Google Scholar] [CrossRef]
- Milani, L.; Galindo, C.M.; Turin de Oliveira, N.M.; Corso, C.R.; Adami, E.R.; Stipp, M.C.; Beltrame, O.C.; Acco, A. The GLP-1 analog liraglutide attenuates acute liver injury in mice. Ann. Hepatol. 2019, 18, 918–928. [Google Scholar] [CrossRef]
- Majnooni, M.B.; Mohammadi-Farani, A.; Gholivand, M.B.; Nikbakht, M.R.; Bahrami, G.R. Chemical composition and anxiolytic evaluation of Achillea wilhelmsii C. Koch essential oil in rat. Res. Pharm. Sci. 2013, 8, 269–275. [Google Scholar]
- Abdel-Wahhab, K.G.; El-Shamy, K.A.; El-Beih, N.A.E.-Z.; Morcy, F.A.; Mannaa, F.A. Protective effect of a natural herb (Rosmarinus officinalis) against hepatotoxicity in male albino rats. Comun. Sci. 2011, 2, 9–17. [Google Scholar] [CrossRef]
- Carini, R.; Chiarpotto, E.; Biasi, F.; Leonarduzzi, G.; Comoglio, A.; Carpi, C.; Poli, G. Relation between liver necrosis and intrahepatic cholestasis in rats poisoned with CCl4. Boll. Soc. Ital. Biol. Sper. 1987, 63, 273–280. [Google Scholar]
- Yang, S.Y.; Hong, C.O.; Lee, G.P.; Kim, C.T.; Lee, K.W. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem. Toxicol. 2013, 55, 92–99. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Cmaj 2005, 172, 367–379. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Mazzon, E.; Bauer, M.; Bauer, I.; Delbosc, S.; Cristol, J.-P.; Patel, N.S.A.; Cuzzocrea, S.; Thiemermann, C. Inhibitors of NADPH oxidase reduce the organ injury in hemorrhagic shock. Shock 2005, 23, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Malle, E.; Farhood, A.; Jaeschke, H. Generation of hypochlorite-modified proteins by neutrophils during ischemia-reperfusion injury in rat liver: Attenuation by ischemic preconditioning. Am. J. Physiol.-Gastrointest. Liver Physiol. 2005, 289, G760–G767. [Google Scholar] [CrossRef]
- Chian, C.F.; Chiang, C.H.; Yuan-Jung, C.; Chuang, C.H.; Liu, S.L.; Yi-Han, J.; Zhang, H.; Ryu, J.H. Apocynin attenuates lipopolysaccharide-induced lung injury in an isolated and perfused rat lung model. Shock 2012, 38, 196–202. [Google Scholar] [CrossRef]
- Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant mechanisms in renal injury and disease. Antioxid. Redox Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef]
- Hartmann, A.; Speit, G. The contribution of cytotoxicity to DNA-effects in the single cell gel test (comet assay). Toxicol. Lett. 1997, 90, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Wikanthi, L.; Wulandari, N.; Esti, Y.; Sari, N.; Susidarti, R. Cinnamomum essential oil prevents DNA damage-induced by doxorubicin on CHO-K1 Cells. Indones. J. Cancer Chemoprev. 2017, 8, 27. [Google Scholar] [CrossRef]
- Sekizawa, J.; Shibamoto, T. Genotoxicity of safrole-related chemicals in microbial test systems. Mutat. Res. 1982, 101, 127–140. [Google Scholar] [CrossRef]
- Mezzoug, N.; Idaomar, M.; Baudoux, D.; Debauche, P.; Liemans, V.; Zhiri, A. Genotoxicity of some essential oils frequently used in aromatherapy. Adv. Biosci. Biotechnol. 2016, 07, 63–73. [Google Scholar] [CrossRef]
- Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361–370. [Google Scholar] [CrossRef] [PubMed]
EOs IDs | M n+ a | DPPH• b | LOO• c | ABTS•+ d | OH• e | ROO• f | OH• g |
---|---|---|---|---|---|---|---|
Official Latin names of biological source/sources | EC50 h (µg/mL) | ROO-RBD50 i (µg/mL) | OH-RBD50 j (µg/mL) | ||||
Chamomile Morocco Cladanthus mixtus (L.) Chevall. | >1 | >1 | >1 | >1 | >1 | 137.71 ± 0.53 k | 143.71 ± 0.37 |
Clary sage Salvia sclarea L. | >1 | >1 | >1 | >1 | >1 | 176.43 ± 0.32 | 168.31 ± 0.95 |
Sage oil Salvia officinalis L. | >1 | >1 | >1 | >1 | >1 | 142.56 ± 0.46 | 144.13 ± 0.32 |
Red thyme Thymus praecox Opiz “coccineus” | >1 | 0.230 ± 0.23 | 0.007 ± 0.006 | 0.003 ± 0.003 | 0.010 ± 0.06 | NA | NA l |
Tea tree Melaleuca alternifolia (Maiden & Betche) Cheel | >1 | >1 | >1 | >1 | >1 | 23.33 ± 0.13 | 46.14 ± 0.46 |
Melissa Melissa officinalis L. | >1 | >1 | >1 | >1 | >1 | 172.46 ± 0.57 | 129.13 ± 0.34 |
Mountain pine Pinus mugo Turra | >1 | >1 | >1 | >1 | >1 | NA | 110.92 ± 0.42 |
Geranium Bourbon Pelargonium x asperum Ehrh. ex Willd. | >1 | >1 | >1 | >1 | >1 | NA | 105.16 ± 0.11 |
Oregano Origanum vulgare L. | >1 | 0.110 ± 0.46 | 0.005 ± 0.005 | 0.004 ± 0.003 | 0.024 ± 0.011 | 184.90 ± 0.23 | 155.00 ± 0.54 |
Ylang-ylang Cananga odorata (Lam.) Hook. f. & Thomson | 0.84 ± 0.47 | 0.630 ± 0.45 | 0.32 ± 0.26 | 0.76 ± 0.12 | 0.35 ± 0.14 | 64.12 ± 0.43 | 134.11 ± 0.67 |
Coriander Coriandrum sativum L. | >1 | >1 | >1 | >1 | >1 | NA | 143.54 ± 0.36 |
Lavender Lavandula angustifolia Mill. | >1 | >1 | >1 | >1 | >1 | 44.10 ± 0.54 | 209.76 ± 0.33 |
Myrtle Myrtus communis L. | >1 | >1 | >1 | >1 | >1 | 113.05 ± 0.54 | NA |
Garlic Allium sativum L. | >1 | >1 | >1 | >1 | >1 | 195.62 ± 0.31 | NA |
Cardamom Elettaria cardamomum (L.) Maton | >1 | >1 | >1 | >1 | >1 | NA | 202.89 ± 0.65 |
Mandarin Citrus reticulata Blanco | >1 | >1 | >1 | >1 | >1 | 197.55 ± 0.54 | NA |
Hyssop Hyssopus officinalis L. | >1 | >1 | >1 | >1 | >1 | 141.42 ± 0.56 | 31.07 ± 0.64 |
Grapefruit Citrus paradisi Macfad. | 1.58 ± 0.76 | >1 | >1 | >1 | >1 | 126.74 ± 0.21 | 103.10 ± 0.47 |
Lemongrass Cymbopogon citratus (DC.) Stapf | >1 | 0.720 ± 0.37 | 0.45 ± 0.18 | 0.65 ± 0.38 | 0.58 ± 0.27 | 52.85 ± 0.43 | 80.93 ± 0.41 |
Siberian pine Abies sibirica Ledeb. | >1 | >1 | >1 | >1 | >1 | 108.20 ± 0.11 | 132.61 ± 0.48 |
Camphor Cinnamomum camphora (L.) J. Presl | >1 | >1 | >1 | >1 | >1 | NA | 133.43 ± 0.73 |
Cade Juniperus oxycedrus L. | >1 | 0.007 ± 0.006 | 0.007 ± 0.003 | 0.017 ± 0.01 | 0.023 ± 0.014 | NA | 197.70 ± 0.51 |
Cedar leaves Thuja occidentalis L. | >1 | 0.550 ± 0.21 | 0.60 ± 0.34 | 0.35 ± 0.14 | 0.27 ± 0.12 | 96.44 ± 0.34 | 150.16 ± 0.38 |
Ginger Zingiber officinale Roscoe | >1 | >1 | >1 | >1 | >1 | 8.29 ± 0.54 | 56.34 ± 0.24 |
Cumin Cuminum cyminum L. | >1 | >1 | >1 | >1 | >1 | 168.58 ± 0.13 | 173.92 ± 0.43 |
Patchouli Pogostemon cablin Benth. | >1 | >1 | >1 | >1 | >1 | 63.56 ± 0.43 | 136.71 ± 0.47 |
Orange bitter Citrus aurantium L. | >1 | >1 | >1 | >1 | >1 | NA | 25.70 ± 0.32 |
Eucalyptus Eucalyptus globulus Labill. | 0.78 ± 0.42 | >1 | >1 | >1 | >1 | NA | NA |
Pine Silvestre Natural Pinus sylvestris L. | >1 | >1 | >1 | >1 | >1 | NA | 213.0 ± 0.24 |
Bergamot Citrus limon (L.) Osbeck (syn. Citrus × bergamia Risso & Poit.) | 1.72 ± 0.84 | >1 | >1 | >1 | >1 | NA | 58.70 ± 0.54 |
Juniper Juniperus communis L. | >1 | >1 | >1 | >1 | >1 | NA | 198.26 ± 0.67 |
Birch Betula lenta L. | >1 | 0.014 ± 0.012 | 0.014 ± 0.007 | 0.08 ± 0.04 | 0.12 ± 0.11 | 205.29 ± 0.41 | NA |
Fennel Foeniculum vulgare Mill. | 0.75 ± 0.26 | >1 | >1 | >1 | >1 | NA | NA |
Cedar fruit Citrus medica L. | 0.63 ± 0.37 | >1 | >1 | >1 | >1 | 54.50 ± 0.42 | 95.01 ± 0.54 |
Lemon Citrus limon (L.) Osbeck | 1.28 ± 0.79 | >1 | >1 | >1 | >1 | NA | 136.18 ± 0.32 |
Roman chamomile Chamaemelum nobile (L.) All. | 1.34 ± 0.49 | >1 | >1 | >1 | >1 | NA | 65.90 ± 0.21 |
Savory Satureja hortensis L. | 1.46 ± 0.49 | 0.110 ± 0.03 | 0.18 ± 0.09 | 0.065 ± 0.012 | 0.032 ± 0.007 | NA | NA |
Rosemary Rosmarinus officinalis L. | 1.39 ± 0.67 | 0.375 ± 0.25 | 0.23 ± 0.11 | 0.26 ± 0.11 | 0.42 ± 0.24 | NA | NA |
Ceylon cinnamon peel Cinnamomum verum J. Presl | 0.95 ± 0.78 | 0.023 ± 0.11 | 0.032 ± 0.006 | 0.125 ± 0.45 | 0.078 ± 0.06 | 60.99 ± 0.51 | 78.36 ± 0.43 |
Eucalyptus globulus | 1.26 ± 0.56 | >1 | >1 | >1 | >1 | NA | 54.84 ± 0.11 |
Orange sweet Citrus sinensis (L.) Osbeck | >1 | >1 | >1 | >1 | >1 | NA | NA |
Niaouly Melaleuca quinquenervia (Cav.) S.T.Blake | >1 | >1 | >1 | >1 | >1 | 138.65 ± 0.46 | 195.34 ± 0.45 |
Artemisia Artemisia vulgaris L. | >1 | >1 | >1 | >1 | >1 | 197.40 ± 0.31 | 30.40 ± 0.46 |
Cajeput Melaleuca cajuputi Powell | >1 | >1 | >1 | >1 | >1 | 86.55 ± 0.41 | NA |
Black pepper Piper nigrum L. | >1 | >1 | >1 | >1 | >1 | NA | NA |
White thyme Thymus vulgaris L. | >1 | 0.120 ± 0.06 | 0.18 ± 0.12 | 0.089 ± 0.022 | 0.046 ± 0.031 | 204.18 ± 0.63 | 88.03 ± 0.23 |
Marjoram Origanum marjorana L. | >1 | >1 | >1 | >1 | >1 | 324.83 ± 0.41 | 60.02 ± 0.64 |
Clove Syzygium aromaticum (L.) Merr. & L. M. Perry | >1 | 0.008 ± 0.003 | 0.024 ± 0.007 | 0.0173 ± 0.009 | 0.098 ± 0.034 | 163.54 ± 0.46 | 88.36 ± 0.54 |
Cypress Cupressus sempervirens L. | >1 | >1 | >1 | >1 | >1 | NA | 99.03 ± 0.63 |
Nutmeg natural Myristica fragrans Houtt. | >1 | 0.840 ± 0.34 | 0.54 ± 0.27 | 0.66 ± 0.28 | 0.72 ± 0.24 | NA | NA |
Peppermint Mentha piperita L. | >1 | >1 | >1 | >1 | >1 | NA | NA |
Lemon verbena Aloysia citriodora Palau | >1 | >1 | >1 | >1 | >1 | 159.59 ± 0.54 | 95.99 ± 0.24 |
Basil Ocimum basilicum L. | >1 | >1 | >1 | >1 | >1 | 194.21 ± 0.31 | NA |
Palmarosa Cymbopogon martini (Roxb.) W.Watson | >1 | >1 | >1 | >1 | >1 | NA | NA |
Laurel Laurus nobilis L. | >1 | 0.680 ± 0.12 | 0.75 ± 0.36 | >1 | >1 | NA | 78.70 ± 0.54 |
Natural anise pure Pimpinella anisum L. | >1 | >1 | >1 | >1 | >1 | NA | 83.71 ± 0.15 |
Incense Boswellia spp. | >1 | >1 | >1 | >1 | >1 | NA | 83.96 ± 0.78 |
Mentha suaveolens (Sicily) Mentha suaveolens Ehrh. | >1 | >1 | >1 | 0.89 ± 0.24 | 0.56 ± 0.12 | NA | 145.21 ± 0.34 |
Coridotthymus capitatus (Sicily) Thymbra capitata (L.) Cav. (syn. Thymus capitatus (L.) Hoffmanns. & Link) | >1 | 0.256 ± 0.18 | 0.232 ± 0.14 | 0.09 ± 0.06 | 0.22 ± 0.17 | 215.90 ± 0.45 | 24.26 ± 0.41 |
Thymus vulgaris (Sicily) Thymus vulgaris L. | >1 | 0.990 ± 0.35 | 0.69 ± 0.36 | 0.84 ± 0.15 | 0.56 ± 0.50 | 232.47 ± 0.51 | 200.03 ± 0.53 |
Origanum hirtum (Sicily) Origanum vulgare subsp. hirtum (Link) Ietsw. | >1 | 0.570 ± 0.27 | 0.70 ± 0.28 | 0.39 ± 0.17 | 0.12 ± 0.08 | NA | NA |
AA m | NA | 5.180 ± 0.46 | >100 | 15.47 ± 0.36 | >100 | NA | NA |
BHT n | NA | 13.25 ± 0.41 | 3.12 ± 0.98 | 10.16 ± 1.41 | 30.14 ± 0.24 | NA | NA |
EDTA o | 3.18 ± 0.59 | NA | NA | NA | NA | NA | NA |
Q p | NA | NA | NA | NA | NA | NA | NA |
Model | ML1 | ML2 | ML3 | ML4 | ML5 | ML6 | ML7 |
---|---|---|---|---|---|---|---|
Free Radical | Mn+ | DPPH• | LOO• | ABTS+• | OH• | ROO-RBD50s | OH-RBD50 |
Threshold | 1.752 | 0.63 | 0.19 | 0.097 | 0.111 | 164.548 | 157.662 |
Algorithm | GB | SVM | SVM | KNN | RF | GB | KNN |
N level | 3 | 2 | 0 | 0 | 1 | 1 | 3 |
Scaling | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
PCA | 0.9 | 0.0 | 0.99 | 0.6 | 0.8 | 0.7 | 0.8 |
nMCCPred | 0.81 | 0.90 | 0.98 | 0.93 | 0.95 | 0.73 | 0.68 |
nMCCCV | 0.60 | 0.90 | 0.91 | 0.80 | 0.82 | 0.68 | 0.58 |
Ylang-Ylang EO | Ceylon Cinnamon Peel EO |
---|---|
Component (%) | Component (%) |
eucalyptol (0.24) | eugenol (34.63) |
eugenol (0.58) | linalool (3.19) |
linalool (10.36) | α-pinene (0.25) |
methyl benzoate (2.06) | acetyleugenol (1.29) |
p-methylanisole (3.28) | α-phellandrene (0.34) |
α-copaene (1.24) | o-cymene (0.69) |
farnesyl acetate | β-phellandrene (0.51) |
τ-cadinol (1.69) | α-terpineol (0.31) |
δ-cadinene (3.84) | α-copaene (0.48) |
farnesol (2.61) | limonene (0.20) |
geraniol (1.50) | tetradecanal (0.46) |
nerol acetate (12.21) | trans-3-phenyl-2-propenal (49.11) |
δ-cadinene (3.84) | β-isosafrole (0.89) |
farnesol (2.61) | 2-methoxycinnamaldehyde (0.20) |
geraniol (1.50) | caryophyllene oxide (0.21) |
nerol acetate (12.21) | caryophyllene (4.01) |
caryophyllene (15.47) | humulene (0.63) |
(E)-β-farnesene (13.92) | cinnamyl ester acetic acid (2.61) |
humulene (4.29) | |
cinnamyl ester acetic acid (0.96) | |
germacrene D (18.23) | |
trans-calamenene (0.30) | |
γ-cadinene (2.77) | |
β-elemene (0.48) | |
β-ylangene (0.47) |
Group | rTP (g/L) | rTBARS (nmol/mg) | rSOD (U/mg) | rCAT (U/mg) | rGSH (mg/g) |
---|---|---|---|---|---|
I | 5.56 ± 0.14 a† | 2.48 ± 0.02 † | 5.27 ± 0.95 † | 120.87 ± 0.15 † | 32.24 ± 0.12 † |
II | 6.97 ± 0.12 * | 4.40 ± 0.14 * | 2.76 ± 0.36 * | 70.10 ± 0.3 * | 14.62 ± 0.16 * |
III | 18.94 ± 0.17 *† | 1.84 ± 0.08 *† | 4.95 ± 0.74 *† | 78.93 ± 0.08 *† | 15.76 ± 0.20 *† |
IV | 15.82 ± 0.23 *† | 0.84 ± 0.09 *† | 5.07 ± 0.63 *† | 113.24 ± 0.10 *† | 16.96 ± 0.12 *† |
V | 12.90 ± 0.34 *† | 0.66 ± 0.08 *† | 5.15 ± 0.69 *† | 118.15 ± 0.15 *† | 20.26 ± 0.13 *† |
VI | 8.07 ± 0.24 *† | 2.01 ± 0.02 *† | 4.83 ± 0.44 *† | 73.47 ± 0.23 *† | 17.15 ± 0.14 *† |
VII | 14.56 ± 0.17 *† | 0.94 ± 0.03 *† | 5.11 ± 0.78 *† | 111.76 ± 0.22 *† | 21.62 ± 0.02 *† |
VIII | 14.14 ± 0.41 *† | 0.22 ± 0.06 *† | 5.24 ± 0.85 † | 118.87 ± 0.11 *† | 29.32 ± 0.18 *† |
Group | rAST (U/L) | rALT (U/L) | rALP (U/L) | rγ-GT (U/L) |
---|---|---|---|---|
I | 7.88 ± 0.14 a† | 36.66 ± 0.02 † | 142.45 ± 0.15 † | 3.35 ± 0.32 † |
II | 60.18 ± 0.12 * | 209.31 ± 0.14 * | 292.82 ± 0.31 * | 16.54 ± 0.35 * |
III | 38.60 ± 0.17 *† | 91.33 ± 0.08 *† | 246.10 ± 0.08 *† | 10.24 ± 0.37 *† |
IV | 24.37 ± 0.23 *† | 41.65 ± 0.09 *† | 210.66 ± 0.10 *† | 6.45 ± 0.43 *† |
V | 14.07 ± 0.34 *† | 38.35 ± 0.08 *† | 172.18 ± 0.15 *† | 4.43 ± 0.21 *† |
VI | 20.60 ± 0.24 *† | 80.62 ± 0.02 *† | 279.78 ± 0.23 *† | 9.43 ± 0.34 *† |
VII | 19.87 ± 0.17 *† | 51.80 ± 0.03 *† | 259.88 ± 0.22 *† | 6.12 ± 0.36 *† |
VIII | 17.50 ± 0.41 *† | 46.66 ± 0.06 *† | 179.26 ± 0.11 *† | 4.06 ± 0.21 *† |
Group | rTP (g/L) | rTBARS (nmol/mg) | rSOD (U/mg) | rCAT (U/mg) | rGSH (mg/g) |
---|---|---|---|---|---|
I | 3.91 ± 0.14 a† | 0.43 ± 0.02 † | 5.11 ± 0.32 † | 170.78 ± 0.15 † | 39.58 ± 0.12 † |
II | 5.78 ± 0.12 * | 1.74 ± 0.14 * | 3.12 ± 0.43 * | 52.54 ± 0.3 * | 19.67 ± 0.16 * |
III | 3.96 ± 0.17 † | 3.85 ± 0.08 *† | 4.26 ± 0.23 *† | 147.05 ± 0.08 *† | 24.64 ± 0.20 *† |
IV | 2.59 ± 0.23 *† | 3.72 ± 0.09 *† | 4.44 ± 0.25 *† | 166.27 ± 0.10 *† | 31.78 ± 0.12 *† |
V | 3.22 ± 0.34 *† | 1.23 ± 0.08 *† | 5.49 ± 0.69 *† | 168.98 ± 0.15 *† | 37.18 ± 0.13 *† |
VI | 3.16 ± 0.24 *† | 2.77 ± 0.02 *† | 4.12 ± 0.32 *† | 152.46 ± 0.23 *† | 21.20 ± 0.14 *† |
VII | 5.76 ± 0.17 * | 2.73 ± 0.03 *† | 4.32 ± 0.34 *† | 164.16 ± 0.22 *† | 27.83 ± 0.02 *† |
VIII | 4.64 ± 0.41 *† | 1.09 ± 0.06 *† | 5.85 ± 0.85 *† | 165.52 ± 0.11 *† | 39.22 ± 0.18 † |
Group | rXO (U/L) | rNOX (U/mg Protein) | rNO (µmol/L) | rGPx (U/mg Protein) |
---|---|---|---|---|
I | 18.14 ± 0.58 a† | 1.40 ± 0.05 † | 30.15 ± 0.10 † | 0.25 ± 0.09 † |
II | 50.01 ± 0.64 * | 5.14 ± 0.24 * | 11.58 ± 0.11 * | 0.12 ± 0.03 * |
III | 37.64 ± 0.31 *† | 4.62 ± 0.15 *† | 20.95 ± 0.31 *† | 0.15 ± 0.04 † |
IV | 30.57 ± 0.14 *† | 2.11 ± 0.31 *† | 27.98 ± 0.22 *† | 0.20 ± 0.03 *† |
V | 21.36 ± 0.95 *† | 1.82 ± 0.03 *† | 28.68 ± 0.20 *† | 0.24 ± 0.02 † |
VI | 33.03 ± 0.60 *† | 3.56 ± 0.17 *† | 16.41 ± 0.09 *† | 0.18 ± 0.01 *† |
VII | 29.16 ± 0.36 *† | 1.99 ± 0.09 *† | 21.16 ± 0.15 *† | 0.21 ± 0.03 † |
VIII | 25.31 ± 0.22 *† | 1.66 ± 0.26 *† | 27.54 ± 0.30 *† | 0.22 ± 0.06 † |
Groups | Comet Types a | Total Comet Score (TCS) | %R b | ||||
---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | |||
I | 72.5 ± 0.37 c | 27.5 ± 0.51 | NO d | NO | NO | 27.5 ± 0.41 † | NA e |
II | NO | 61.5 ± 0.32 | 26.2 ± 0.81 | 8.5 ± 0.12 | 3.8 ± 0.72 | 154.6 ± 0.53 * | NA |
III | 54.2 ± 0.82 | 21.5 ± 0.81 | 19.5 ± 0.23 | 4.8 ± 0.56 | NO | 74.9 ± 0.55 *† | 62.7 |
IV | 55.3 ± 0.61 | 31.6 ± 0.23 | 11.2 ± 0.32 | 1.9 ± 0.51 | NO | 59.7 ± 0.34 *† | 74.7 |
V | 67.8 ± 0.90 | 23.9 ± 0.41 | 8.3 ± 0.71 | NO | NO | 40.5 ± 0.84 *† | 89.8 |
VI | 49.4 ± 0.23 | 35.5 ± 0.92 | 11.9 ± 1.24 | 3.2 ± 0.12 | NO | 68.9 ± 0.51 *† | 67.4 |
VII | 66.1 ± 0.17 | 17.7 ± 0.13 | 14.1 ± 0.82 | 2.1 ± 0.85 | NO | 52.2 ± 0.72 *† | 80.6 |
VIII | 61.9 ± 0.11 | 27.9 ± 0.72 | 10.2 ± 0.84 | NO | NO | 48.3 ± 0.92 *† | 83.6 |
Groups | Comet Types a | Total Comet Score (TCS) | %R b | ||||
---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | |||
I | 78.2 ± 0.6 c | 21.8 ± 0.54 | NO d | NO | NO | 21.8 ± 0.52 † | NA e |
II | 20.6 ± 0.72 | 38.3 ± 0.81 | 27.2 ± 0.11 | 9.6 ± 0.24 | 4.3 ± 0.83 | 138.7 ± 0.42 * | NA |
III | 54.5 ± 0.25 | 36.4 ± 0.54 | 9.1 ± 0.32 | NO | NO | 54.6 ± 0.6 *† | 71.9 |
IV | 64.1 ± 0.8 | 29.3 ± 0.68 | 6.6 ± 0.51 | NO | NO | 42.5 ± 0.21 *† | 82.3 |
V | 67.5 ± 1.24 | 28.2 ± 0.62 | 4.3 ± 0.21 | NO | NO | 36.8 ± 0.38 *† | 87.2 |
VI | 62.3 ± 0.25 | 31.5 ± 0.71 | 6.2 ± 0.34 | NO | NO | 43.9 ± 0.51 *† | 81.1 |
VII | 75.1 ± 0.12 | 18.3 ± 0.36 | 4.5 ± 0.50 | 2.1 ± 0.24 | NO | 33.6 ± 0.12 *† | 89.9 |
VIII | 71.5 ± 0.9 | 28.5 ± 0.40 | NO | NO | NO | 28.5 ± 0.31 † | 94.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenović, M.; Astolfi, R.; Tomašević, N.; Matić, S.; Božović, M.; Sapienza, F.; Ragno, R. In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition–Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants 2023, 12, 1815. https://doi.org/10.3390/antiox12101815
Mladenović M, Astolfi R, Tomašević N, Matić S, Božović M, Sapienza F, Ragno R. In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition–Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants. 2023; 12(10):1815. https://doi.org/10.3390/antiox12101815
Chicago/Turabian StyleMladenović, Milan, Roberta Astolfi, Nevena Tomašević, Sanja Matić, Mijat Božović, Filippo Sapienza, and Rino Ragno. 2023. "In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition–Activity Relationships Modeled through Machine Learning Algorithms" Antioxidants 12, no. 10: 1815. https://doi.org/10.3390/antiox12101815
APA StyleMladenović, M., Astolfi, R., Tomašević, N., Matić, S., Božović, M., Sapienza, F., & Ragno, R. (2023). In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition–Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants, 12(10), 1815. https://doi.org/10.3390/antiox12101815