Association between Plasmodium Infection and Nitric Oxide Levels: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Review Question
2.3. Literature Search
2.4. Study Selection
2.5. Data Extraction
2.6. Risk of Bias
2.7. Thematic Analysis
2.8. Meta-Analysis
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Risk of Bias
3.4. Qualitative Synthesis by the Thematic Analysis
3.5. NO Levels in Patients with Malaria and Uninfected Controls
3.6. NO Levels in Patients with Severe and Non-Severe Malaria
3.7. Publication Bias
3.8. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. World Malaria Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Menkin-Smith, L.; Winders, W.T. Plasmodium vivax malaria; StatPearls Ineligible Companies: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zekar, L.; Sharman, T. Plasmodium falciparum malaria; StatPearls Ineligible Companies: Treasure Island, FL, USA, 2023. [Google Scholar]
- Malaria: (Still) A global health priority. EClinicalMedicine 2021, 34, 100891. [CrossRef] [PubMed]
- Garcia, X.; Stein, F. Nitric oxide. Semin. Pediatr. Infect. Dis. 2006, 17, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Bruckdorfer, R. The basics about nitric oxide. Mol. Asp. Med. 2005, 26, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef] [PubMed]
- Gantner, B.N.; LaFond, K.M.; Bonini, M.G. Nitric oxide in cellular adaptation and disease. Redox Biol. 2020, 34, 101550. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Andres, C.M.C.; Perez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Perez-Lebena, E. The role of reactive species on innate immunity. Vaccines 2022, 10, 1735. [Google Scholar] [CrossRef]
- Kleinert, H.; Forstermann, U. Inducible nitric oxide synthase. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–12. [Google Scholar]
- Akaike, T.; Maeda, H. Nitric oxide and virus infection. Immunology 2000, 101, 300–308. [Google Scholar] [CrossRef]
- Bath, P.M.; Coleman, C.M.; Gordon, A.L.; Lim, W.S.; Webb, A.J. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Research 2021, 10, 536. [Google Scholar] [CrossRef]
- Pavanelli, W.R.; Gutierrez, F.R.S.; da Silva, J.J.N.; Costa, I.C.; de Menezes, M.C.N.D.; de Abreu Oliveira, F.J.; Itano, E.N.; Watanabe, M.A.E. The effects of nitric oxide on the immune response during giardiasis. Braz. J. Infect. Dis. 2010, 14, 606–612. [Google Scholar] [CrossRef]
- Jones-Carson, J.; Yahashiri, A.; Kim, J.-S.; Liu, L.; Fitzsimmons, L.F.; Weiss, D.S.; Vázquez-Torres, A. Nitric oxide disrupts bacterial cytokinesis by poisoning purine metabolism. Sci. Adv. 2020, 6, eaaz0260. [Google Scholar] [CrossRef] [PubMed]
- Anstey, N.M.; Weinberg, J.B.; Hassanali, M.Y.; Mwaikambo, E.D.; Manyenga, D.; Misukonis, M.A.; Arnelle, D.R.; Hollis, D.; McDonald, M.I.; Granger, D.L. Nitric oxide in Tanza-nian children with malaria: Inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J. Exp. Med. 1996, 184, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Boutlis, C.S.; Tjitra, E.; Maniboey, H.; Misukonis, M.A.; Saunders, J.R.; Suprianto, S.; Weinberg, J.B.; Anstey, N.M. Nitric oxide production and mono-nuclear cell nitric oxide synthase activity in malaria-tolerant Papuan adults. Infect. Immun. 2003, 71, 3682–3689. [Google Scholar] [CrossRef] [PubMed]
- A Wink, D.; Hines, H.B.; Cheng, R.Y.S.; Switzer, C.H.; Flores-Santana, W.; Vitek, M.P.; A Ridnour, L.; A Colton, C. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol. 2011, 89, 873–891. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P. Nitric oxide and immune response. Indian. J. Biochem. Biophys. 2007, 44, 310–319. [Google Scholar] [PubMed]
- Pierini, D.; Bryan, N.S. Nitric oxide availability as a marker of oxidative stress. Methods Mol. Biol. 2015, 1208, 63–71. [Google Scholar] [PubMed]
- James, S.L. Role of nitric oxide in parasitic infections. Microbiol. Rev. 1995, 59, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, M.R.; Udhayakumar, V.; Levesque, M.C.; Booth, J.; Roberts, J.M.; Tkachuk, A.N.; Pole, A.; Coon, H.; Kariuki, S.; Nahlen, B.L.; et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet 2002, 360, 1468–1475. [Google Scholar] [CrossRef]
- Anstey, N.M.; Mwaikambo, E.D.; Wang, Z.; Granger, D.L.; E Duffy, P.; Weinberg, J.B. Effects of age and parasitemia on nitric oxide production/leukocyte nitric oxide synthase type 2 expression in asymptomatic, malaria-exposed children. Am. J. Trop. Med. Hyg. 1999, 61, 253–258. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Morgan, R.L.; Whaley, P.; Thayer, K.A.; Schunemann, H.J. Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ. Int. 2018, 121 Pt 1, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Chapter 7: Systematic Reviews of Etiology and Risk; The Joanna Briggs Institute (JBI): Adelaide, Australia, 2020; Available online: https://synthesismanual.jbi.global (accessed on 6 September 2023).
- Thomas, J.; Harden, A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med. Res. Methodol. 2008, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Agbenyega, T.; Angus, B.; Bedu-Addo, G.; Baffoe-Bonnie, B.; Griffin, G.; Vallance, P.; Krishna, S. Plasma nitrogen oxides and blood lactate concentrations in Ghanaian children with malaria. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Arun Kumar, C.; Das, U.N. Lipid peroxides, nitrate oxide and essential fatty acids in patients with Plasmodium falciparum malaria. Prostaglandins Leukot. Essent. Fatty Acids 1999, 61, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Awalu, J.C.; Ukibe, N.R.; Onyenekwe, C.C.; Ahaneku, J.E.; Ihim, A.C.; Udeh, T.; Onah, C.E.; Ehiaghe, F.A.; Ukibe, G.E.; Ukibe, B.C. Assessment of oxidative stress and antioxidant status in newly admitted healthy undergraduate students in Nnamdi Azi-kiwe University Awka, Nigeria. J. Pharm. Negat. Results 2022, 13, 1388–1399. [Google Scholar]
- Cramer, J.P.; Nüssler, A.K.; Ehrhardt, S.; Burkhardt, J.; Otchwemah, R.N.; Zanger, P.; Dietz, E.; Gellert, S.; Bienzle, U.; Mockenhaupt, F.P. Age-dependent effect of plasma nitric oxide on parasite density in Ghanaian children with severe malaria. Trop. Med. Int. Health 2005, 10, 672–680. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, K.; Silva, M.S.; Tavira, L.T. Variation of nitric oxide levels in imported Plasmodium falciparum malaria episodes. Afr. J. Biotechnol. 2008, 7, 796–799. [Google Scholar]
- Dondorp, A.M.; Vreeken, J.; Planche, T.; Chotivanich, K.T.; White, N.J.; Ruangveerayuth, R.; Silamut, K.; E de Bel, E.; A Romijn, J.; A Kager, P.; et al. Nitric oxides in plasma, urine, and cerebrospinal fluid in patients with severe falciparum malaria. Am. J. Trop. Med. Hyg. 1998, 59, 497–502. [Google Scholar] [CrossRef]
- Dongmo, F.D.; Ngane, R.N.; Gouado, I.; Mfonkeu, J.P.; Kwemba, V.M.; Ngwa, V.; Kuate, H.F.; Zollo, P.A. Predictors of childhood severe malaria in a densely populated area: Douala, cameroon. Afr. J. Biotechnol. 2011, 10, 6319–6324. [Google Scholar]
- Gyan, B.; Kurtzhals, J.A.; Akanmori, B.D.; Ofori, M.; Goka, B.Q.; Hviid, L.; Behr, C. Elevated levels of nitric oxide and low levels of haptoglobin are associated with severe malarial anaemia in African children. Acta Trop. 2002, 83, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Inocent, G.; Bertrand, P.M.J.; Honoré, F.K.; Odette, Z.; Salomé, N.; Valéry, C.; Georges, G.E.; Henri, A.Z.P. Physiopathologic factors resulting in poor outcome in childhood severe malaria in Cameroon. Pediatr. Infect. Dis. J. 2009, 28, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Kremsner, P.G.; Winkler, S.; Wildling, E.; Prada, J.; Bienzle, U.; Graninger, W.; Nüssler, A.K. High plasma levels of nitrogen oxides are associated with severe disease and correlate with rapid parasitological and clinical cure in Plasmodium falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, K.P.; Bali, P.; Anwar, S.; Kaul, A.; Singh, O.P.; Gupta, B.K.; Kumari, N.; Alam, N.; Raziuddin, M.; et al. iNOS polymorphism modulates iNOS/NO expression via impaired antioxidant and ROS content in P. vivax and P. falciparum infection. Redox Biol. 2018, 15, 192–206. [Google Scholar] [CrossRef]
- Lima-Junior, J.D.C.; Rodrigues-da-Silva, R.N.; Pereira, V.A.; Storer, F.L.; Perce-da-Silva, D.D.S.; Fabrino, D.L.; Santos, F.; Banic, D.M.; Oliveira-Ferreira, J.D. Cells and mediators of inflammation (C-reactive protein, nitric oxide, platelets and neutrophils) in the acute and convalescent phases of un-complicated Plasmodium vivax and Plasmodium falciparum infection. Mem. Inst. Oswaldo Cruz. 2012, 107, 1035–1041. [Google Scholar] [CrossRef]
- Megnekou, R.; Djontu, J.C.; Bigoga, J.D.; Medou, F.M.; Tenou, S.; Lissom, A. Impact of placental Plasmodium falciparum malaria on the profile of some oxidative stress biomarkers in women living in Yaoundé, Cameroon. PLoS ONE 2015, 10, e0134633. [Google Scholar] [CrossRef] [PubMed]
- Noone, C.; Parkinson, M.; Dowling, D.J.; Aldridge, A.; Kirwan, P.; Molloy, S.F.; Asaolu, S.O.; Holland, C.; O’Neill, S.M. Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum. Malar. J. 2013, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Nsonwu-Anyanwu, A.C.; Osuoha, U.O.; Nsonwu, M.C.; Usoro, C.A.O. Antimalaria therapy and changes in oxidative stress indices in falciparum malaria infection in Calabar metropolis, Nigeria. Trop. J. Pharm. Res. 2019, 18, 2431–2437. [Google Scholar]
- Ojongnkpot, T.A.; Sofeu-Feugaing, D.D.; Jugha, V.T.; Taiwe, G.S.; Kimbi, H.K. implication of oxidative stress and antioxidant defence systems in symptomatic and asymptomatic Plasmodium falciparum malaria infection among children aged 1 to 15 years in the Mount Cameroon Area. J. Biosci. Med. 2023, 11, 124–145. [Google Scholar] [CrossRef]
- Sánchez-Arcila, J.C.; Perce-da-Silva, D.D.S.; Vasconcelos, M.P.A.; Rodrigues-da-Silva, R.N.; Pereira, V.A.; Aprígio, C.J.L.; Lima, C.A.M.; Banic, D.M.; Lima-Junior, J.D.C.; Oliveira-Ferreira, J. Intestinal parasites coinfection does not alter plasma cytokines profile elicited in acute malaria in subjects from endemic area of Brazil. Mediat. Inflamm. 2014, 2014, 857245. [Google Scholar] [CrossRef]
- Torre, D.; Ferrario, G.; Matteelli, A.; Speranza, F.; Giola, M.; Pugliese, A.; Cantamessa, C.; Carosi, G.; Fiori, G.P. Levels of circulating nitrate/nitrite and gamma interferon not increased in uncomplicated malaria. Infection 1998, 26, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Onyeneke, E.C.O.P.; Anyanwu, G.O.; Onovughakpo-Sakpa, E.O.; Anionye, J.C.; Anekwe, A.I. Evaluation of nitric oxide and antioxidant status of Plasmodium falciparum infected pregnant Nigerian women with malaria. Idosr J. Sci. Res. 2018, 3, 56–68. [Google Scholar]
- Long, C.A.; Zavala, F. Immune Responses in Malaria. Cold Spring Harb. Perspect. Med. 2017, 7, a025577. [Google Scholar] [CrossRef] [PubMed]
- Nkuo-Akenji, T.; Ntonifor, N.N.; Ndukum, M.B.; Kimbi, H.K.; Abongwa, E.L.; Nkwescheu, A.; Anong, D.N.; Songmbe, M.; Boyo, M.G.; Ndamukong, K.N.; et al. Environmental factors affecting malaria parasite prevalence in rural Bolifamba, South West Cameroon. Afr. J. Health Sci. 2006, 13, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.; Kumar, A.; Upadhyay, S.N.; Yamada, T.; Matsunaga, Y. Nitric oxide protects against chloroquine resistant Plas-modium yoelii nigeriensis parasites in vitro. Exp. Parasitol. 2003, 105, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Xia, H.; Wang, X.M.; Lu, F.; Tao, Z.Y.; Cao, J.; Sun, X.; Gao, Q. In vitro lethal effect of exogenous nitric oxide on blood-stage Plasmodium vivax. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2009, 27, 318–321. [Google Scholar] [PubMed]
- Fritsche, G.; Larcher, C.; Schennach, H.; Weiss, G. Regulatory interactions between iron and nitric oxide metabolism for immune defense against Plasmodium falciparum infection. J. Infect. Dis. 2001, 183, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Wang, J.-C.; Feng, H.; Zhu, X.-T.; An, C.-L.; Cao, Y.-M. In vitro observation on effect of nitric oxide on exflagellation of Plasmodium yoelii. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi = Chin. J. Parasitol. Parasit. Dis. 2007, 25, 206–208+212. [Google Scholar]
- Perkins, D.J.; Kremsner, P.G.; Schmid, D.; Misukonis, M.A.; Kelly, M.A.; Weinberg, J.B. Blood mononuclear cell nitric oxide production and plasma cytokine levels in healthy Gabonese children with prior mild or severe malaria. Infect. Immun. 1999, 67, 4977–4981. [Google Scholar] [CrossRef]
- Serirom, S.; Raharjo, W.H.; Chotivanich, K.; Loareesuwan, S.; Kubes, P.; Ho, M. Anti-adhesive effect of nitric oxide on Plasmodium falciparum cytoadherence under flow. Am. J. Pathol. 2003, 162, 1651–1660. [Google Scholar] [CrossRef]
- Yadav, S.K.; Gupta, S.; Yadav, A.; Bhatt, M.L.; Mishra, D.P.; Roy, D.; Sanyal, S. Endothelial nitric oxide synthase gene polymorphisms modulate the risk of squamous cell carcinoma of head and neck in north Indian population. Meta Gene 2019, 21, 100575. [Google Scholar] [CrossRef]
- Qidwai, T.; Jamal, F. Inducible nitric oxide synthase (iNOS) gene polymorphism and disease prevalence. Scand. J. Immunol. 2010, 72, 375–387. [Google Scholar] [CrossRef]
- Dhangadamajhi, G.; Mohapatra, B.N.; Kar, S.K.; Ranjit, M. Endothelial nitric oxide synthase gene polymorphisms and Plasmodium falciparum infection in Indian adults. Infect. Immun. 2009, 77, 2943–2947. [Google Scholar] [CrossRef] [PubMed]
- Sweazea, K.L.; Johnston, C.S.; Miller, B.; Gumpricht, E. Nitrate-rich fruit and vegetable supplement reduces blood pressure in normotensive healthy young males without significantly altering flow-mediated vasodilation: A randomized, double-blinded, controlled trial. J. Nutr. Metab. 2018, 2018, 1729653. [Google Scholar] [CrossRef] [PubMed]
- Lidder, S.; Webb, A.J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br. J. Clin. Pharmacol. 2013, 75, 677–696. [Google Scholar] [CrossRef] [PubMed]
- Beall, C.M.; Laskowski, D.; Erzurum, S.C. Nitric oxide in adaptation to altitude. Free Radic. Biol. Med. 2012, 52, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Feelisch, M. Enhanced nitric oxide production is a universal response to hypoxic stress. Natl. Sci. Rev. 2018, 5, 532–533. [Google Scholar] [CrossRef]
- Braun, M.; Klingelhöfer, D.; Müller, R.; Groneberg, D.A. The impact of second-hand smoke on nitrogen oxides concentrations in a small interior. Sci. Rep. 2021, 11, 11703. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.M.; Kim, H.S.; Kumar, R.K.; Heywood, G.J.; E Hunt, J.; McNeil, H.P.; Thomas, P.S. Effects of cigarette smoke on degranulation and NO production by mast cells and epithelial cells. Respir. Res. 2005, 6, 108. [Google Scholar] [CrossRef]
- Adam, L.N.; Oraha, A.Y.; Shekha, M.S.; Al-Habib, O.A. Exploring nitric oxide as a crucial prognostic biomarker of coronary artery disease. Prostaglandins Other Lipid Mediat. 2023, 165, 106717. [Google Scholar] [CrossRef]
- Such, J.; Francés, R.; Pérez-Mateo, M. Nitric oxide in patients with cirrhosis and bacterial infections. Metab. Brain Dis. 2002, 17, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Taniuchi, S.; Hasui, M.; Yamamoto, A.; Kobayashi, Y. Increased nitric oxide production by neutrophils from patients with chronic granulomatous disease on trimethoprim–sulfamethoxazole. Nitric Oxide 2002, 7, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Brunet, L.R. Nitric oxide in parasitic infections. Int. Immunopharmacol. 2001, 1, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Toprakçı, M.; Özmen, D.; Mutaf, I.; Turgan, N.; Parıldar, Z.; Habif, S.; Güner, I.; Bayındır, O. Age-associated changes in nitric oxide metabolites nitrite and nitrate. Int. J. Clin. Lab. Res. 2000, 30, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, E.M.; Vasconcelos, A.R.; Degaspari, S.; Bohmer, A.E.; Scavone, C.; Marcourakis, T. Age-related changes in nitric oxide activity, cyclic GMP, and TBARS levels in platelets and erythrocytes reflect the oxidative status in central nervous sys-tem. Age 2013, 35, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, J.B.; Lopansri, B.K.; Mwaikambo, E.; Granger, D.L. Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Curr. Opin. Infect. Dis. 2008, 21, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T.W.; Rooslamiati, I.; Gitawati, R.; Tjitra, E.; Lampah, D.A.; Kenangalem, E.; McNeil, Y.R.; Price, R.N.; Anstey, N.M.; Duffull, S.B. Pharmacokinetics of l -Arginine in adults with moderately severe malaria. Antimicrob. Agents Chemother. 2008, 52, 4381–4387. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T.W.; Lampah, D.A.; Gitawati, R.; Tjitra, E.; Kenangalem, E.; McNeil, Y.R.; Darcy, C.J.; Granger, D.L.; Weinberg, J.B.; Lopansri, B.K.; et al. Recovery of endothelial function in severe falciparum malaria: Relationship with improvement in plasma L-arginine and blood lactate concentrations. J. Infect. Dis. 2008, 198, 602–608. [Google Scholar] [CrossRef]
- Bangirana, P.; Conroy, A.L.; Opoka, R.O.; Hawkes, M.; Hermann, L.; Miller, C.; Namasopo, S.; Liles, C.W.; John, C.C.; Kain, K.C. Inhaled nitric oxide improves neurocognitive outcomes in children with severe malaria and lactic acidosis. Am. J. Trop. Med. Hyg. 2016, 95, 482–483. [Google Scholar]
- Hawkes, M.T.; Conroy, A.L.; Opoka, R.O.; Hermann, L.; Thorpe, K.E.; McDonald, C.; Kim, H.; Higgins, S.; Namasopo, S.; John, C.; et al. Inhaled nitric oxide as adjunctive therapy for severe malaria: A randomized controlled trial. Malar. J. 2015, 14, 421. [Google Scholar] [CrossRef]
Characteristics | n. (21 Studies) | % |
---|---|---|
Publication year | ||
Before 2000 | 7 | 33.33 |
2000–2009 | 4 | 19.05 |
2010–2019 | 8 | 38.10 |
2020–2023 | 2 | 9.52 |
Study designs | ||
Case–control studies | 7 | 33.33 |
Cross-sectional studies | 9 | 42.86 |
Cohort studies | 5 | 23.81 |
Study areas | ||
Asia | 3 | 14.29 |
| 2 | 9.52 |
| 1 | 4.76 |
Africa | 14 | 66.67 |
| 4 | 19.05 |
| 4 | 19.05 |
| 3 | 14.29 |
| 2 | 9.52 |
| 1 | 4.76 |
South America (Brazil) | 2 | 9.52 |
Europe | 2 | 9.52 |
| 1 | 4.76 |
| 1 | 4.76 |
Plasmodium spp. | ||
P. falciparum | 16 | 76.19 |
P. falciparum, P. vivax | 2 | 9.52 |
P. falciparum, P. vivax, P. malariae, P. ovale | 1 | 4.76 |
P. falciparum, P. vivax, mixed infections | 1 | 4.76 |
Not specified | 1 | 4.76 |
Participants | ||
Children | 9 | 42.86 |
Adults | 9 | 42.86 |
Children and adults | 2 | 9.52 |
Not specified | 1 | 4.76 |
Symptom | ||
Symptomatic | 14 | 66.67 |
Asymptomatic | 1 | 4.76 |
Symptomatic and asymptomatic malaria | 1 | 4.76 |
Not specified | 5 | 23.81 |
Severity status | ||
Severe and uncomplicated | 6 | 28.57 |
Non-severe malaria (uncomplicated or asymptomatic malaria) | 5 | 23.81 |
Severe malaria | 2 | 9.52 |
Asymptomatic | 1 | 4.76 |
Not specified | 7 | 3.33 |
Methods for malaria detection | ||
Microscopic method | 11 | 52.38 |
Microscopic method, PCR | 4 | 19.02 |
Microscopic method, RDT | 2 | 9.52 |
Microscopic method, RDT, PCR | 1 | 4.76 |
Not specified | 3 | 14.29 |
Method for NO | ||
Griess assay | 12 | 57.14 |
Colorimetric method (not specified assay) | 4 | 19.05 |
Capillary electrophoresis | 3 | 14.29 |
Ion-pair chromatography | 1 | 4.76 |
Not specified | 1 | 4.76 |
Blood sample for NO measurement | ||
Plasma | 12 | 57.14 |
Serum | 6 | 28.57 |
Not specified | 3 | 14.29 |
No. | Authors | Study Location | Plasmodium spp. | Age Range (Years) | NO Levels in Patients with Malaria |
---|---|---|---|---|---|
1. | Agbenyega et al., 1997 [29] | Ghana | P. falciparum | Children | 1. No difference in NO concentration between malaria and uninfected controls. 2. No difference in NO concentration between severe and non-severe malaria. |
2. | Anstey et al., 1996 [16] | Tanzania | P. falciparum | 6 months–9 years | 1. NOx was significantly lower in those with UM and CM than uninfected controls. 2. NOx was significantly higher in asymptomatic malaria than uninfected controls, and CM. |
3. | Anstey et al., 1999 [23] | Tanzania | P. falciparum | 6 months–9 years | NO was significantly higher in asymptomatic malaria (thick film positive) than asymptomatic malaria (thick film negative/PCR positive) and uninfected controls (thick film negative/PCR negative). |
4. | Arun Kumar C and Das UN [30] | India | P. falciparum | Children and Adults | NO levels were significantly lower in patients with malaria as compared to uninfected controls. |
5. | Awalu et al., 2022 [31] | Nigeria | Not specified | 17–21 years | NO levels were significantly higher in patients with malaria as compared to uninfected controls. |
6. | Cramer et al., 2005 [32] | Ghana | P. falciparum | 6 months–9 years | NO levels were significantly higher in patients with severe malarial anemia than in children without malaria. |
7. | De Sousa et al., 2008 [33] | Portugal | P. falciparum | Not specified | NO levels were significantly higher in patients with malaria than in children without malaria. |
8. | Dondorp et al., 1998 [34] | Thailand | P. falciparum | Not specified | No difference in NO concentration between survivors and fatal cases of malaria. |
9. | Dongho Dongmo et al., 2011 [35] | Cameroon | P. falciparum | ≤15 years | No difference in NO concentration between cerebral malaria, malaria anemia, uncomplicated malaria, and controls. |
10. | Gyan et al., 2002 [36] | Ghana | P. falciparum | 0.5–12 years | NO levels were significantly higher in patients with severe anemia as compared to cerebral malaria and uncomplicated malaria. |
11. | Inocent et al., 2009 [37] | Cameroon | P. falciparum | 0–15 years | 1. No difference in NO concentration between malaria and uninfected controls. 2. No difference in NO concentration between severe (cerebral malaria, cerebral malaria with malarial anemia, malarial anemia) and non-severe malaria. |
12. | Kremsner et al., 1996 [38] | Gabon | P. falciparum | Children and Adults | NO levels were significantly higher in patients with severe malaria as compared to uncomplicated malaria. |
13. | Kumar et al., 2018 [39] | India | P. falciparum, P. vivax | Adult | NOx levels were significantly higher in patients with malaria (P. falciparum and P. vivax) as compared to controls. |
14. | Lima-Junior et al., 2012 [40] | Brazil | P. falciparum, P. vivax | Not specified | NO levels were significantly higher in patients with P. falciparum malaria as compared to controls. |
15. | Megnekou et al., 2015 [41] | Cameroon | P. falciparum | 16–39 years | No difference in NO concentration between malaria and uninfected controls. |
16. | Noone et al., 2013 [42] | Nigeria | P. falciparum | 39–73 months | No difference in NO concentration between malaria and uninfected controls. |
17. | Nsonwu-Anyanwu et al., 2019 [43] | Nigeria | P. falciparum | 18–60 years | NO levels were significantly lower in patients with malaria as compared to uninfected controls. |
18. | Ojongnkpot et al., 2023 [44] | Cameroon | P. falciparum | 1–15 years | 1. NO levels were significantly higher in patients with malaria as compared to uninfected controls. 2. NO levels were significantly higher in patients with symptomatic malaria as compared to asymptomatic malaria. |
19. | Onyeneke et al., 2018 [47] | Nigeria | P. falciparum | Not specified | No difference in NO concentration between malaria and uninfected controls. |
20. | Sánchez-Arcila et al., 2014 [45] | Brazil | P. falciparum, P. vivax, mixed infections | 14–38 years | No difference in NO concentration between malaria and uninfected controls. |
21. | Torre et al., 1998 [46] | Italy | P. falciparum, P. vivax, P. malariae, P. ovale | 18–44 years | No difference in NO concentration between malaria and uninfected controls. |
Subgroup Analyses | p-Value | Hedges’ g (95% CI) | I2 (%) | Number of Studies |
---|---|---|---|---|
Publication years | ||||
2020–2023 | 0.03 | 0.64 (0.05–1.23) | 94.10 | 2 |
2010–2019 | 0.04 | 1.01 (0.04–1.97) | 97.51 | 6 |
2000–2009 | N/A | 1.92 (1.56–2.28) | N/A | 1 |
Before 2000 | 0.01 | −3.52 (−6.11–(−0.93)) | 97.49 | 3 |
Study design | ||||
Cross-sectional study | 0.74 | 0.09 (−0.43–0.60) | 94.80 | 5 |
Case-control study | 0.44 | −1.43 (−5.06–2.21) | 98.84 | 4 |
Cohort study | 1.09 (−5.06–2.21) | 3 | ||
Continent | ||||
Africa | 0.02 | 0.89 (0.12–1.66) | 97.85 | 8 |
Asia | 0.39 | −5.79 (−18.87–7.30) | 98.87 | 2 |
Europe | N/A | 0.22 (−0.38–0.82) | N/A | 1 |
South America | N/A | 0.35 (−0.15–0.86) | N/A | 1 |
Age group | ||||
Children | 0.45 | 0.29 (−0.47–1.06) | 96.80 | 5 |
Adults | 0.01 | 1.18 (0.33–2.03) | 97.19 | 6 |
Children and adults | N/A | −12.54 (−15.32–(−9.76)) | N/A | 1 |
Plasmodium species | ||||
P. falciparum | 0.99 | −0.01 (−1.04–1.02) | 98.18 | 8 |
P. falciparum, P. vivax | <0.01 | 0.65 (0.21–1.08) | 65.12 | 2 |
P. falciparum, P. vivax, P. malariae, P. ovale | N/A | 0.22 (−0.38–0.82) | N/A | 1 |
Not specified | N/A | 0.94 (0.73–1.15) | N/A | 1 |
Symptoms | ||||
Symptomatic | 0.90 | −0.04 (−0.67–0.59) | 96.70 | 9 |
Symptomatic and asymptomatic malaria | N/A | 0.34 (0.15–0.53) | N/A | 1 |
Not specified | 0.43 | 2.62 (−3.93–9.17) | 99.41 | 2 |
Severity status | ||||
Severe and uncomplicated malaria | 0.65 | 0.38 (−1.29–2.05) | 98.33 | 3 |
Non-severe malaria (uncomplicated or asymptomatic malaria) | 0.04 | 0.36 (0.02–0.70) | 85.01 | 5 |
Not specified | 0.47 | −1.02 (−3.79–1.75) | 98.84 | 4 |
Methods for malaria detection | ||||
Microscopic method | 0.60 | −0.29 (−1.36–0.79) | 97.99 | 7 |
Microscopic method, PCR | N/A | 0.35 (−0.15–0.86) | N/A | 1 |
Microscopic method, RDT | N/A | 1.92 (1.56–2.28) | N/A | 1 |
Microscopic method, RDT, PCR | N/A | 0.81 (0.63–1.00) | N/A | 1 |
Not specified | 0.07 | 0.64 (−0.06–1.33) | N/A | 2 |
Method for NO | ||||
Griess assay | 0.09 | −0.67 (−1.45–0.11) | 94.81 | 6 |
Colorimetric method (not specified assay) | <0.01 | 0.94 (0.42–1.47) | 93.69 | 4 |
Capillary electrophoresis | N/A | 0.86 (−1.22–(−0.50)) | N/A | 1 |
Ion-pair chromatography | ||||
Not specified | N/A | 5.97 (5.10–6.84) | N/A | 1 |
Types of blood samples | ||||
Serum | 0.01 | 1.23 (0.24–2.22) | 97.85 | 5 |
Plasma | 0.10 | −1.20 (−2.63–0.22) | 98.05 | 5 |
Not specified | 0.22 | 0.53 (−0.31–1.37) | 92.56 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotepui, K.U.; Mahittikorn, A.; Wilairatana, P.; Masangkay, F.R.; Kotepui, M. Association between Plasmodium Infection and Nitric Oxide Levels: A Systematic Review and Meta-Analysis. Antioxidants 2023, 12, 1868. https://doi.org/10.3390/antiox12101868
Kotepui KU, Mahittikorn A, Wilairatana P, Masangkay FR, Kotepui M. Association between Plasmodium Infection and Nitric Oxide Levels: A Systematic Review and Meta-Analysis. Antioxidants. 2023; 12(10):1868. https://doi.org/10.3390/antiox12101868
Chicago/Turabian StyleKotepui, Kwuntida Uthaisar, Aongart Mahittikorn, Polrat Wilairatana, Frederick Ramirez Masangkay, and Manas Kotepui. 2023. "Association between Plasmodium Infection and Nitric Oxide Levels: A Systematic Review and Meta-Analysis" Antioxidants 12, no. 10: 1868. https://doi.org/10.3390/antiox12101868
APA StyleKotepui, K. U., Mahittikorn, A., Wilairatana, P., Masangkay, F. R., & Kotepui, M. (2023). Association between Plasmodium Infection and Nitric Oxide Levels: A Systematic Review and Meta-Analysis. Antioxidants, 12(10), 1868. https://doi.org/10.3390/antiox12101868